Fast topological pumping for the generation of large-scale Greenberger−Horne−Zeilinger states in a superconducting circuit

Jin-Xuan Han, Jin-Lei Wu, Zhong-Hui Yuan, Yan Xia, Yong-Yuan Jiang, Jie Song

PDF(24236 KB)
PDF(24236 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (6) : 62504. DOI: 10.1007/s11467-022-1193-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Fast topological pumping for the generation of large-scale Greenberger−Horne−Zeilinger states in a superconducting circuit

Author information +
History +

Abstract

Topological pumping of edge states in the finite lattice with nontrivial topological phases provides a powerful means for robust excitation transfer, requiring extremely slow evolution to follow an adiabatic transfer. Here, we propose fast topological pumping via edge channels to generate large-scale Greenberger−Horne−Zeilinger (GHZ) states in a topological superconducting circuit with a sped-up evolution process. The scheme indicates a conceptual way of designing fast topological pumping related to the instantaneous energy spectrum characteristics rather than relying on the shortcuts to adiabaticity. Based on fast topological pumping, large-scale GHZ states show greater robustness against on-site potential defects, the fluctuation of couplings and losses of the system in comparison with the conventional adiabatic topological pumping. With experimentally feasible qutrit-resonator coupling strengths and moderate decay rates of qutrits and resonators, fast topological pumping drastically improves the scalability of GHZ states with a high fidelity. Our work opens up prospects for the realization of large-scale GHZ states based on fast topological pumping in the superconducting quantum circuit system, which provides potential applications of topological matters in quantum information processing.

Graphical abstract

Keywords

topological pumping / superconducting ciruit / large-scale / Greenberger−Horne−Zeilinger states

Cite this article

Download citation ▾
Jin-Xuan Han, Jin-Lei Wu, Zhong-Hui Yuan, Yan Xia, Yong-Yuan Jiang, Jie Song. Fast topological pumping for the generation of large-scale Greenberger−Horne−Zeilinger states in a superconducting circuit. Front. Phys., 2022, 17(6): 62504 https://doi.org/10.1007/s11467-022-1193-y

References

[1]
A.Y. Kitaev, Unpaired Majorana fermions in quantum wires, Phys. Uspekhi . 44(103), 131 ( 2001)
[2]
C.L. Kane E.J. Mele, Z2 topological order and the quantum spin Hall effect , Phys. Rev. Lett . 95(14), 146802 ( 2005)
[3]
D.J. Thouless. Quantization of particle transport. Phys. Rev. B , 1983, 27( 10): 6083
CrossRef ADS Google scholar
[4]
Q.Niu, D.J. Thouless. Quantised adiabatic charge transport in the presence of substrate disorder and many-body interaction. J. Phys. Math. Gen. , 1984, 17( 12): 2453
CrossRef ADS Google scholar
[5]
Y.E. Kraus, Y.Lahini, Z.Ringel, M.Verbin, O.Zilberberg. Topological states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. , 2012, 109( 10): 106402
CrossRef ADS Google scholar
[6]
M.Verbin, O.Zilberberg, Y.Lahini, Y.E. Kraus, Y.Silberberg. Topological pumping over a photonic Fibonacci quasicrystal. Phys. Rev. B , 2015, 91( 6): 064201
CrossRef ADS Google scholar
[7]
N.Lang H.P. Büchler, Topological networks for quantum commuication between distant qubits, npj Quantum Inf. 3, 47 ( 2017)
[8]
F.Mei, G.Chen, L.Tian, S.L. Zhu, S.Jia. Robust quantum state transfer via topological edge states in superconducting qubit chains. Phys. Rev. A , 2018, 98( 1): 012331
CrossRef ADS Google scholar
[9]
J.L. Tambasco, G.Corrielli, R.J. Chapman, A.Crespi, O.Zilberberg, R.Osellame, A.Peruzzo. Quantum interference of topological states of light. Sci. Adv. , 2018, 4( 9): eaat3187
CrossRef ADS Google scholar
[10]
P.Boross, J.K. Asbóth, G.Széchenyi, L.Oroszlány, A.Pályi. Poor man’s topological quantum gate based on the Su−Schrieffer−Heeger model. Phys. Rev. B , 2019, 100( 4): 045414
CrossRef ADS Google scholar
[11]
S.Longhi. Topological pumping of edge states via adiabatic passage. Phys. Rev. B , 2019, 99( 15): 155150
CrossRef ADS Google scholar
[12]
N.E. Palaiodimopoulos, I.Brouzos, F.K. Diakonos, G.Theocharis. Fast and robust quantum state transfer via a topological chain. Phys. Rev. A , 2021, 103( 5): 052409
CrossRef ADS Google scholar
[13]
F.M. D’Angelis, F.A. Pinheiro, D.Guéry-Odelin, S.Longhi, F.Impens. Fast and robust quantum state transfer in a topological Su−Schrieffer−Heeger chain with next-to-nearest-neighbor interactions. Phys. Rev. Res. , 2020, 2( 3): 033475
CrossRef ADS Google scholar
[14]
F.Mei, G.Chen, L.Tian, S.L. Zhu, S.Jia. Topology-dependent quantum dynamics and entanglement-dependent topological pumping in superconducting qubit chains. Phys. Rev. A , 2018, 98( 3): 032323
CrossRef ADS Google scholar
[15]
J.X. Han, J.L. Wu, Y.Wang, Y.Xia, Y.Y. Jiang, J.Song. Large-scale Greenberger−Horne−Zeilinger states through a topologically protected zero-energy mode in a superconducting qutrit-resonator chain. Phys. Rev. A , 2021, 103( 3): 032402
CrossRef ADS Google scholar
[16]
S.Das Sarma, M.Freedman, C.Nayak. Topological quantum computation. Phys. Today , 2006, 59( 7): 32
CrossRef ADS Google scholar
[17]
M.H. Devoret, R.J. Schoelkopf. Superconducting circuits for quantum information: An outlook. Science , 2013, 339( 6124): 1169
CrossRef ADS Google scholar
[18]
J.Q. You F.Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474(189), 8 ( 2005)
[19]
J.M. Martinis, Qubit metrdogy for building a fault−tolerant quantum computer, npj Quantum Inf. 1, 15005 ( 2015)
[20]
C.Song, K.Xu, H.Li, Y.R. Zhang, X.Zhang, W.Liu, Q.Guo, Z.Wang, W.Ren, J.Hao, H.Feng, H.Fan, D.Zheng, D.W. Wang, H.Wang, S.Y. Zhu. Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits. Science , 2019, 365( 6453): 574
CrossRef ADS Google scholar
[21]
J.Kelly, R.Barends, A.G. Fowler, A.Megrant, E.Jeffrey, T.C. White, D.Sank, J.Y. Mutus, B.Campbell, Y.Chen, Z.Chen, B.Chiaro, A.Dunsworth, I.C. Hoi, C.Neill, P.J. J. O’Malley, C.Quintana, P.Roushan, A.Vainsencher, J.Wenner, A.N. Cleland, J.M. Martinis. State preservation by repetitive error detection in a superconducting quantum circuit. Nature , 2015, 519( 7541): 66
CrossRef ADS Google scholar
[22]
J.S. Otterbach R.Manenti N.Alidoust A.Bestwick M.Block B.Bloom S.Caldwell N.Didier E.S. Fried S.Hong P.Karalekas C.B. Osborn A.Papageorge E.C. Peterson G.Prawiroatmodjo N.Rubin C.A. Ryan D.Scarabelli M.Scheer E.A. Sete P.Sivarajah R.S. Smith N.T. A. Staley W.J. Zeng A.Hudson B.R. Johnson M.Reagor M.P. da Silva C.Rigetti, Unsupervised machine learning on a hybrid quantum computer, arXiv: 1712.05771 ( 2017)
[23]
A.Kandala, A.Mezzacapo, K.Temme, M.Takita, M.Brink, J.M. Chow, J.M. Gambetta. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature , 2017, 549( 7671): 242
CrossRef ADS Google scholar
[24]
C.Neill P.Roushan K.Kechedzhi S.Boixo S.V. Isakov V.Smelyanskiy A.Megrant B.Chiaro A.Dunsworth K.Arya R.Barends B.Burkett Y.Chen Z.Chen A.Fowler B.Foxen M.Giustina R.Graff E.Jeffrey T.Huang J.Kelly P.Klimov E.Lucero J.Mutus M.Neeley C.Quintana D.Sank A.Vainsencher J.Wenner T.C. White H.Neven J.M. Martinis, A blueprint for demonstrating quantum supremacy with superconducting qubits, Science 360(6385), 195 ( 2018)
[25]
K.X. Wei, I.Lauer, S.Srinivasan, N.Sundaresan, D.T. McClure, D.Toyli, D.C. McKay, J.M. Gambetta, S.Sheldon. Verifying multipartite entangled Greenberger−Horne−Zeilinger states via multiple quantum coherences. Phys. Rev. A , 2020, 101( 3): 032343
CrossRef ADS Google scholar
[26]
Y.Salathé, M.Mondal, M.Oppliger, J.Heinsoo, P.Kurpiers, A.Potočnik, A.Mezzacapo, U.Las Heras, L.Lamata, E.Solano, S.Filipp, A.Wallraff. Digital quantum simulation of spin models with circuit quantum electrodynamics. Phys. Rev. X , 2015, 5( 2): 021027
CrossRef ADS Google scholar
[27]
S.Hacohen-Gourgy, V.V. Ramasesh, C.De Grandi, I.Siddiqi, S.M. Girvin. Cooling and autonomous feedback in a Bose−Hubbard chain with attractive interactions. Phys. Rev. Lett. , 2015, 115( 24): 240501
CrossRef ADS Google scholar
[28]
P.J. J. O’Malley, R.Babbush, I.D. Kivlichan, J.Romero, J.R. McClean, R.Barends, J.Kelly, P.Roushan, A.Tranter, N.Ding, B.Campbell, Y.Chen, Z.Chen, B.Chiaro, A.Dunsworth, A.G. Fowler, E.Jeffrey, E.Lucero, A.Megrant, J.Y. Mutus, M.Neeley, C.Neill, C.Quintana, D.Sank, A.Vainsencher, J.Wenner, T.C. White, P.V. Coveney, P.J. Love, H.Neven, A.Aspuru-Guzik, J.M. Martinis. Scalable quantum simulation of molecular energies. Phys. Rev. X , 2016, 6( 3): 031007
CrossRef ADS Google scholar
[29]
Y.P. Zhong, D.Xu, P.Wang, C.Song, Q.J. Guo, W.X. Liu, K.Xu, B.X. Xia, C.Y. Lu, S.Han, J.W. Pan, H.Wang. Emulating anyonic fractional statistical behavior in a superconducting quantum circuit. Phys. Rev. Lett. , 2016, 117( 11): 110501
CrossRef ADS Google scholar
[30]
M.Fitzpatrick, N.M. Sundaresan, A.C. Y. Li, J.Koch, A.A. Houck. Observation of a dissipative phase transition in a one-dimensional circuit QED lattice. Phys. Rev. X , 2017, 7( 1): 011016
CrossRef ADS Google scholar
[31]
J.Q. You, X.F. Shi, X.Hu, F.Nori. Quantum emulation of a spin system with topologically protected ground states using superconducting quantum circuits. Phys. Rev. B , 2010, 81( 1): 014505
CrossRef ADS Google scholar
[32]
J.Koch, A.A. Houck, K.L. Hur, S.M. Girvin. Time−reversal-symmetry breaking in circuit-QED-based photon lattices. Phys. Rev. A , 2010, 82( 4): 043811
CrossRef ADS Google scholar
[33]
M.Hafezi, P.Adhikari, J.M. Taylor. Engineering three-body interaction and Pfaffian states in circuit QED systems. Phys. Rev. B , 2014, 90( 6): 060503
CrossRef ADS Google scholar
[34]
E.Kapit, M.Hafezi, S.H. Simon. Induced self-stabilization in fractional quantum Hall states of light. Phys. Rev. X , 2014, 4( 3): 031039
CrossRef ADS Google scholar
[35]
D.I. Tsomokos, S.Ashhab, F.Nori. Using superconducting qubit circuits to engineer exotic lattice systems. Phys. Rev. A , 2010, 82( 5): 052311
CrossRef ADS Google scholar
[36]
F.Mei, Z.Y. Xue, D.W. Zhang, L.Tian, C.Lee, S.L. Zhu. Witnessing topological Weyl semimetal phase in a minimal circuit-QED lattice. Quantum Sci. Technol. , 2016, 1( 1): 015006
CrossRef ADS Google scholar
[37]
J.Tangpanitanon, V.M. Bastidas, S.Al-Assam, P.Roushan, D.Jaksch, D.G. Angelakis. Topological pumping of photons in nonlinear resonator arrays. Phys. Rev. Lett. , 2016, 117( 21): 213603
CrossRef ADS Google scholar
[38]
T.Goren, K.Plekhanov, F.Appas, K.Le Hur. Topological Zak phase in strongly coupled LC circuits. Phys. Rev. B , 2018, 97( 4): 041106
CrossRef ADS Google scholar
[39]
V.V. Ramasesh, E.Flurin, M.Rudner, I.Siddiqi, N.Y. Yao. Direct probe of topological invariants using Bloch oscillating quantum walks. Phys. Rev. Lett. , 2017, 118( 13): 130501
CrossRef ADS Google scholar
[40]
E.Flurin, V.V. Ramasesh, S.Hacohen-Gourgy, L.S. Martin, N.Y. Yao, I.Siddiqi. Observing topological invariants using quantum walks in superconducting circuits. Phys. Rev. X , 2017, 7( 3): 031023
CrossRef ADS Google scholar
[41]
M.D. Schroer, M.H. Kolodrubetz, W.F. Kindel, M.Sandberg, J.Gao, M.R. Vissers, D.P. Pappas, A.Polkovnikov, K.W. Lehnert. Measuring a topological transition in an artificial spin-1/2 system. Phys. Rev. Lett. , 2014, 113( 5): 050402
CrossRef ADS Google scholar
[42]
P.Roushan C.Neill Y.Chen M.Kolodrubetz C.Quintana N.Leung M.Fang R.Barends B.Campbell Z.Chen B.Chiaro A.Dunsworth E.Jeffrey J.Kelly A.Megrant J.Mutus P.J. J. O’Malley D.Sank A.Vainsencher J.Wenner T.White A.Polkovnikov A.N. Cleland J.M. Martinis, Observation of topological transitions in interacting quantum circuits, Nature 515(7526), 241 ( 2014)
[43]
Z.Zhang, T.Wang, L.Xiang, J.Yao, J.Wu, Y.Yin. Measuring the Berry phase in a superconducting phase qubit by a shortcut to adiabaticity. Phys. Rev. A , 2017, 95( 4): 042345
CrossRef ADS Google scholar
[44]
X.Tan, D.W. Zhang, Q.Liu, G.Xue, H.F. Yu, Y.Q. Zhu, H.Yan, S.L. Zhu, Y.Yu. Topological Maxwell metal bands in a superconducting qutrit. Phys. Rev. Lett. , 2018, 120( 13): 130503
CrossRef ADS Google scholar
[45]
C.Song, D.Xu, P.Zhang, J.Wang, Q.Guo, W.Liu, K.Xu, H.Deng, K.Huang, D.Zheng, S.B. Zheng, H.Wang, X.Zhu, C.Y. Lu, J.W. Pan. Demonstration of topological robustness of anyonic braiding statistics with a superconducting quantum circuit. Phys. Rev. Lett. , 2018, 121( 3): 030502
CrossRef ADS Google scholar
[46]
W.Cai, J.Han, F.Mei, Y.Xu, Y.Ma, X.Li, H.Wang, Y.P. Song, Z.Y. Xue, Z.Q. Yin, S.Jia, L.Sun. Observation of topological magnon insulator states in a superconducting circuit. Phys. Rev. Lett. , 2019, 123( 8): 080501
CrossRef ADS Google scholar
[47]
O.Viyuela A.Rivas S.Gasparinetti A.Wallraff A.Wallraff S.Filipp M.A. Martin-Delgado, Observation of topological Uhlmann phases with superconduction qubits, npj Quantum Inform. 4, 10 ( 2018)
[48]
R.Horodecki, P.Horodecki, M.Horodecki, K.Horodecki. Quantum entanglement. Rev. Mod. Phys. , 2009, 81( 2): 865
CrossRef ADS Google scholar
[49]
J.W. Pan, Z.B. Chen, C.Y. Lu, H.Weinfurter, A.Zeilinger, M.Żukowski. Multiphoton entanglement and interferometry. Rev. Mod. Phys. , 2012, 84( 2): 777
CrossRef ADS Google scholar
[50]
L.Pezzè, A.Smerzi, M.K. Oberthaler, R.Schmied, P.Treutlein. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. , 2018, 90( 3): 035005
CrossRef ADS Google scholar
[51]
M.C. Rechtsman, Y.Lumer, Y.Plotnik, A.Perez-Leija, A.Szameit, M.Segev. Topological protection of photonic path entanglement. Optica , 2016, 3( 9): 925
CrossRef ADS Google scholar
[52]
A.Blanco-Redondo, B.Bell, D.Oren, B.J. Eggleton, M.Segev. Topological protection of biphoton states. Science , 2018, 362( 6414): 568
CrossRef ADS Google scholar
[53]
M.Wang, C.Doyle, B.Bell, M.J. Collins, E.Magi, B.J. Eggleton, M.Segev, A.Blanco-Redondo. Topologically protected entangled photonic states. Nanophotonics , 2019, 8( 8): 1327
CrossRef ADS Google scholar
[54]
C.K. Hong, Z.Y. Ou, L.Mandel. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. , 1987, 59( 18): 2044
CrossRef ADS Google scholar
[55]
I.Brouzos, I.Kiorpelidis, F.K. Diakonos, G.Theocharis. Fast, robust, and amplified transfer of topological edge modes on a time-varying mechanical chain. Phys. Rev. B , 2020, 102( 17): 174312
CrossRef ADS Google scholar
[56]
Y.X. Shen, L.S. Zeng, Z.G. Geng, D.G. Zhao, Y.G. Peng, X.F. Zhu. Acoustic adiabatic propagation based on topological pumping in a coupled multicavity chain lattice. Phys. Rev. Appl. , 2020, 14( 1): 014043
CrossRef ADS Google scholar
[57]
J.L. Wu, Y.Wang, J.X. Han, Y.K. Feng, S.L. Su, Y.Xia, Y.Jiang, J.Song. One-step implementation of Rydberg-antiblockade SWAP and controlled-SWAP gates with modified robustness. Photon. Res. , 2021, 9( 5): 814
CrossRef ADS Google scholar
[58]
X.R. Huang, Z.X. Ding, C.S. Hu, L.T. Shen, W.Li, H.Wu, S.B. Zheng. Robust Rydberg gate via Landau−Zener control of Förster resonance. Phys. Rev. A , 2018, 98( 5): 052324
CrossRef ADS Google scholar
[59]
Q.Guo, S.B. Zheng, J.Wang, C.Song, P.Zhang, K.Li, W.Liu, H.Deng, K.Huang, D.Zheng, X.Zhu, H.Wang, C.Y. Lu, J.W. Pan. Dephasing-insensitive quantum information storage and processing with superconducting qubits. Phys. Rev. Lett. , 2018, 121( 13): 130501
CrossRef ADS Google scholar
[60]
V.Balachandran, J.Gong. Adiabatic quantum transport in a spin chain with a moving potential. Phys. Rev. A , 2008, 77( 1): 012303
CrossRef ADS Google scholar
[61]
J.Allcock, N.Linden. Quantum communication beyond the localization length in disordered spin chains. Phys. Rev. Lett. , 2009, 102( 11): 110501
CrossRef ADS Google scholar
[62]
J.L. Wu, Y.Wang, J.X. Han, S.L. Su, Y.Xia, Y.Jiang, J.Song. Unselective ground-state blockade of Rydberg atoms for implementing quantum gates. Front. Phys. , 2022, 17( 2): 22501
CrossRef ADS Google scholar
[63]
R.R. Agundez, C.D. Hill, L.C. L. Hollenberg, S.Rogge, M.Blaauboer. Superadiabatic quantum state transfer in spin chains. Phys. Rev. A , 2017, 95( 1): 012317
CrossRef ADS Google scholar
[64]
J.L. Wu, Y.Wang, J.X. Han, Y.Jiang, J.Song, Y.Xia, S.L. Su, W.Li. Systematic-error-tolerant multiqubit holonomic entangling gates. Phys. Rev. Appl. , 2021, 16( 6): 064031
CrossRef ADS Google scholar
[65]
Y.Zhou, D.Y. Lü, W.Y. Zeng. Chiral single-photon switch-assisted quantum logic gate with a nitrogen-vacancy center in a hybrid system. Photon. Res. , 2021, 9( 3): 405
CrossRef ADS Google scholar
[66]
D.M. Greenberger M.A. Horne A.Zeilinger, Bell’s theorem, Quantum Theory, and Conceptions of the Universe, Kluwer Dordrecht, 1989
[67]
M.Hillery, V.Bužek, A.Berthiaume. Quantum secret sharing. Phys. Rev. A , 1999, 59( 3): 1829
CrossRef ADS Google scholar
[68]
S.Bose, V.Vedral, P.L. Knight. Multiparticle generalization of entanglement swapping. Phys. Rev. A , 1998, 57( 2): 822
CrossRef ADS Google scholar
[69]
E.Knill. Quantum computing with realistically noisy devices. Nature , 2005, 434( 7029): 39
CrossRef ADS Google scholar
[70]
V.Giovannetti, S.Lloyd, L.Maccone. Quantum-enhanced measurements: Beating the standard quantum limit. Science , 2004, 306( 5700): 1330
CrossRef ADS Google scholar
[71]
D.Leibfried, M.Barrett, T.Schaetz, J.Britton, J.Chiaverini, W.Itano, J.Jost, C.Langer, D.Wineland. Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science , 2004, 304( 5676): 1476
CrossRef ADS Google scholar
[72]
C.P. Yang, Q.P. Su, S.B. Zheng, F.Nori. Entangling superconducting qubits in a multi-cavity system. New J. Phys. , 2016, 18( 1): 013025
CrossRef ADS Google scholar
[73]
S.Matsuo S.Ashhab T.Fujii F.Nori K.Nagai N.Hatakenaka, Generation of Bell states and Greenberger−Horne−Zeilinger states in superconducting phase qubits, in: Quantum Communication, Measurement and Computing, No. 8, Ed.: O. Hirota et al. , Tokyo: NICT, 2006
[74]
L.F. Wei, Y.Liu, F.Nori. Generation and control of Greenberger−Horne−Zeilinger entanglement in superconducting circuits. Phys. Rev. Lett. , 2006, 96( 24): 246803
CrossRef ADS Google scholar
[75]
S.L. Zhu, Z.D. Wang, P.Zanardi. Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity. Phys. Rev. Lett. , 2005, 94( 10): 100502
CrossRef ADS Google scholar
[76]
C.P. Yang, Q.P. Su, S.Han. Generation of Greenberger−Horne−Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction. Phys. Rev. A , 2012, 86( 2): 022329
CrossRef ADS Google scholar
[77]
C.P. Yang, Q.P. Su, S.B. Zheng, S.Han. Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit. Phys. Rev. A , 2013, 87( 2): 022320
CrossRef ADS Google scholar
[78]
S.Aldana, Y.D. Wang, C.Bruder. Greenberger−Horne−Zeilinger generation protocol forN superconducting transmon qubits capacitively coupled to a quantum bus. Phys. Rev. B , 2011, 84( 13): 134519
CrossRef ADS Google scholar
[79]
W.Feng, P.Wang, X.Ding, L.Xu, X.Q. Li. Generating and stabilizing the Greenberger−Horne−Zeilinger state in circuit QED: Joint measurement, Zeno effect, and feedback. Phys. Rev. A , 2011, 83( 4): 042313
CrossRef ADS Google scholar
[80]
J.L. Wu, C.Song, J.Xu, L.Yu, X.Ji, S.Zhang. Adiabatic passage for one-step generation of n-qubit Greenberger–Horne–Zeilinger states of superconducting qubits via quantum Zeno dynamics. Quantum Inform. Process. , 2016, 15( 9): 3663
CrossRef ADS Google scholar
[81]
X.T. Mo, Z.Y. Xue. Single-step multipartite entangled states generation from coupled circuit cavities. Front. Phys. , 2019, 14( 3): 31602
CrossRef ADS Google scholar
[82]
Y.H. Kang, Z.C. Shi, B.H. Huang, J.Song, Y.Xia. Deterministic conversions between Greenberger−Horne−Zeilinger states and W states of spin qubits via Lie-transform-based inverse Hamiltonian engineering. Phys. Rev. A , 2019, 100( 1): 012332
CrossRef ADS Google scholar
[83]
T.Liu, Q.P. Su, Y.Zhang, Y.L. Fang, C.P. Yang. Generation of quantum entangled states of multiple groups of qubits distributed in multiple cavities. Phys. Rev. A , 2020, 101( 1): 012337
CrossRef ADS Google scholar
[84]
J.M. Chow, J.M. Gambetta, E.Magesan, D.W. Abraham, A.W. Cross, B.R. Johnson, N.A. Masluk, C.A. Ryan, J.A. Smolin, S.J. Srinivasan, M.Steffen. Implementing a strand of a scalable fault-tolerant quantum computing fabric. Nat. Commun. , 2014, 5( 1): 4015
CrossRef ADS Google scholar
[85]
L.DiCarlo M.D. Reed L.Sun B.R. Johnson J.M. Chow J.M. Gambetta L.Frunzio M.H. Girvin, S. M. and Devoret, and R. J. Schoelkopf, Preparation and measurement of three-qubit entanglement in a superconduction circuit, Nature 467(7315), 574 ( 2010)
[86]
R.Barends, J.Kelly, A.Megrant, A.Veitia, D.Sank, E.Jeffrey, T.C. White, J.Mutus, A.G. Fowler, B.Campbell, Y.Chen, Z.Chen, B.Chiaro, A.Dunsworth, C.Neill, P.O’Malley, P.Roushan, A.Vainsencher, J.Wenner, A.N. Korotkov, A.N. Cleland, J.M. Martinis. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature , 2014, 508( 7497): 500
CrossRef ADS Google scholar
[87]
C.Song K.Xu W. Liu C.Yang S.B. Zheng H.Deng Q.Xie K.Huang Q.Guo L.Zhang P.Zhang D.Xu D. Zheng X.Zhu H.Wang Y.A. Chen C.Y. Lu S.Han J.W. Pan, 10-qubit entanglement and parallel logic operations with a superconducting circuit, Phys. Rev. Lett . 119(18), 180511 ( 2017)
[88]
A.Cervera-Lierta, M.Krenn, A.Aspuru-Guzik, A.Galda. Experimental high-dimensional Greenberger−Horne−Zeilinger entanglement with superconducting transmon qutrits. Phys. Rev. Appl. , 2022, 17( 2): 024062
CrossRef ADS Google scholar
[89]
X.Chen, I.Lizuain, A.Ruschhaupt, D.Guéry-Odelin, J.G. Muga. Shortcut to adiabatic passage in two- and three-level atoms. Phys. Rev. Lett. , 2010, 105( 12): 123003
CrossRef ADS Google scholar
[90]
D.Guéry-Odelin, A.Ruschhaupt, A.Kiely, E.Torrontegui, S.Martínez-Garaot, J.G. Muga. Shortcuts to adiabaticity: Concepts, methods, and applications. Rev. Mod. Phys. , 2019, 91( 4): 045001
CrossRef ADS Google scholar
[91]
A.Altland, M.R. Zirnbauer. Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B , 1997, 55( 2): 1142
CrossRef ADS Google scholar
[92]
S.Ryu, Y.Hatsugai. Topological origin of zero-energy edge states in particle−hole symmetric systems. Phys. Rev. Lett. , 2002, 89( 7): 077002
CrossRef ADS Google scholar
[93]
J.K. Asbóth L.Oroszlány A.Pályi, A short course on topological insulators, Lect. Notes Phys . 919, 85 ( 2016)
[94]
A.Coutant, V.Achilleos, O.Richoux, G.Theocharis, V.Pagneux. Robustness of topological corner modes against disorder with application to acoustic networks. Phys. Rev. B , 2020, 102( 21): 214204
CrossRef ADS Google scholar
[95]
D.M. Greenberger, M.A. Horne, A.Shimony, A.Zeilinger. Bell’s theorem without inequalities. Am. J. Phys. , 1990, 58( 12): 1131
CrossRef ADS Google scholar
[96]
R.Mukherjee, H.Xie, F.Mintert. Bayesian optimal control of Greenberger−Horne−Zeilinger states in Rydberg lattices. Phys. Rev. Lett. , 2020, 125( 20): 203603
CrossRef ADS Google scholar
[97]
F.Reiter, D.Reeb, A.S. Sørensen. Scalable dissipative preparation of many-body entanglement. Phys. Rev. Lett. , 2016, 117( 4): 040501
CrossRef ADS Google scholar
[98]
S.B. Zheng. One-step synthesis of multiatom Greenberger−Horne−Zeilinger states. Phys. Rev. Lett. , 2001, 87( 23): 230404
CrossRef ADS Google scholar
[99]
P.Mundada, G.Zhang, T.Hazard, A.Houck. Suppression of qubit crosstalk in a tunable coupling superconducting circuit. Phys. Rev. Appl. , 2019, 12( 5): 054023
CrossRef ADS Google scholar
[100]
W.P. Su, J.R. Schrieffer, A.J. Heeger. Solitons in Polyacetylene. Phys. Rev. Lett. , 1979, 42( 25): 1698
CrossRef ADS Google scholar
[101]
J.Pachos, H.Walther. Quantum computation with trapped ions in an optical cavity. Phys. Rev. Lett. , 2002, 89( 18): 187903
CrossRef ADS Google scholar
[102]
A.P. M. Place, L.V. H. Rodgers, P.Mundada, B.M. Smitham, M.Fitzpatrick, Z.Leng, A.Premkumar, J.Bryon, A.Vrajitoarea, S.Sussman, G.Cheng, T.Madhavan, H.K. Babla, X.H. Le, Y.Gang, B.Jäck, A.Gyenis, N.Yao, R.J. Cava, N.P. de Leon, A.A. Houck. New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds. Nat. Commun. , 2021, 12( 1): 1779
CrossRef ADS Google scholar
[103]
H.Zhang, S.Chakram, T.Roy, N.Earnest, Y.Lu, Z.Huang, D.K. Weiss, J.Koch, D.I. Schuster. Universal fast-flux control of a coherent, low-frequency qubit. Phys. Rev. X , 2021, 11( 1): 011010
CrossRef ADS Google scholar
[104]
I.M. Pop, M.Ansmann, G.Catelani, R.J. Schoelkopf, L.I. Glazman, M.H. Devoret. Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles. Nature , 2014, 508( 7496): 7496
CrossRef ADS Google scholar
[105]
X.Gu, A.F. Kockum, A.Miranowicz, Y.X. Liu, F.Nori. Microwave photonics with superconducting quantum circuits. Phys. Rep. , 2017, 718– 719,1
CrossRef ADS Google scholar
[106]
M.Reagor, H.Paik, G.Catelani, L.Sun, C.Axline, E.Holland, I.M. Pop, N.A. Masluk, T.Brecht, L.Frunzio, M.H. Devoret, L.Glazman, R.J. Schoelkopf. Reaching 10 ms single photon lifetimes for superconducting aluminum cavities. Appl. Phys. Lett. , 2013, 102( 19): 192604
CrossRef ADS Google scholar
[107]
M.Reagor, W.Pfaff, C.Axline, R.W. Heeres, N.Ofek, K.Sliwa, E.Holland, C.Wang, J.Blumoff, K.Chou, M.J. Hatridge, L.Frunzio, M.H. Devoret, L.Jiang, R.J. Schoelkopf. Quantum memory with millisecond coherence in circuit QED. Phys. Rev. B , 2016, 94( 1): 014506
CrossRef ADS Google scholar
[108]
C.Axline, M.Reagor, R.Heeres, P.Reinhold, C.Wang, K.Shain, W.Pfaff, Y.Chu, L.Frunzio, R.J. Schoelkopf. An architecture for integrating planar and 3D cQED devices. Appl. Phys. Lett. , 2016, 109( 4): 042601
CrossRef ADS Google scholar
[109]
J.E. Mooij, T.P. Orlando, L.Levitov, L.Tian, C.H. van der Wal, S.Lloyd. Josephson persistent-current qubit. Science , 1999, 285( 5430): 1036
CrossRef ADS Google scholar
[110]
C.H. van der Wal, A.C. J. ter Haar, F.K. Wilhelm, R.N. Schouten, C.J. P. M. Harmans, T.P. Orlando, S.Lloyd, J.E. Mooij. Quantum superposition of macroscopic persistent-current states. Science , 2000, 290( 5492): 773
CrossRef ADS Google scholar
[111]
B.Peropadre, P.Forn-Díaz, E.Solano, J.J. García-Ripoll. Switchable ultrastrong coupling in circuit QED. Phys. Rev. Lett. , 2010, 105( 2): 023601
CrossRef ADS Google scholar
[112]
M.S. Allman F.Altomare J.D. Whittaker K.Cicak D.Li A. Sirois J.Strong J.D. Teufel R.W. Simmonds, RF-SQUID-mediated coherent tunable coupling between a superconducting phase qubit and a lumped-element resonator, Phys. Rev. Lett . 104(17), 177004 ( 2010)
[113]
M.S. Allman, J.D. Whittaker, M.Castellanos-Beltran, K.Cicak, F.da Silva, M.P. DeFeo, F.Lecocq, A.Sirois, J.D. Teufel, J.Aumentado, R.W. Simmonds. Tunable resonant and nonresonant interactions between a phase qubit and LC resonator. Phys. Rev. Lett. , 2014, 112( 12): 123601
CrossRef ADS Google scholar
[114]
J.Bourassa, J.M. Gambetta, A.A. Abdumalikov, O.Astafiev, Y.Nakamura, A.Blais. Ultrastrong coupling regime of cavity QED with phase-biased flux qubits. Phys. Rev. A , 2009, 80( 3): 032109
CrossRef ADS Google scholar
[115]
T.P. Orlando, J.E. Mooij, L.Tian, C.H. van der Wal, L.S. Levitov, S.Lloyd, J.J. Mazo. Superconducting persistent-current qubit. Phys. Rev. B , 1999, 60( 22): 15398
CrossRef ADS Google scholar
[116]
Y.X. Liu, J.Q. You, L.F. Wei, C.P. Sun, F.Nori. Optical selection rules and phase-dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett. , 2005, 95( 8): 087001
CrossRef ADS Google scholar
[117]
M.Devoret B.Huard R.Schoelkopf L.F. Cugliandolo, Quantum Machines: Measurement and Control of Engineered Quantum Systems, Oxford University Press, USA, 2014
[118]
V.E. Manucharyan, J.Koch, L.I. Glazman, M.H. Devoret. Fluxonium: Single Cooper-pair circuit free of charge offsets. Science , 2009, 326( 5949): 113
CrossRef ADS Google scholar
[119]
L.DiCarlo, J.M. Chow, J.M. Gambetta, L.S. Bishop, B.R. Johnson, D.I. Schuster, J.Majer, A.Blais, L.Frunzio, S.M. Girvin, R.J. Schoelkopf. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature , 2009, 460( 7252): 240
CrossRef ADS Google scholar
[120]
T.Wang, Z.Zhang, L.Xiang, Z.Jia, P.Duan, Z.Zong, Z.Sun, Z.Dong, J.Wu, Y.Yin, G.Guo. Experimental realization of a fast controlled-Z gate via a shortcut to adiabaticity. Phys. Rev. Appl. , 2019, 11( 3): 034030
CrossRef ADS Google scholar
[121]
A.A. Clerk, K.W. Lehnert, P.Bertet, J.R. Petta, Y.Nakamura. Hybrid quantum systems with circuit quantum electrodynamics. Nat. Phys. , 2020, 16( 3): 257
CrossRef ADS Google scholar
[122]
T.Niemczyk, F.Deppe, H.Huebl, E.P. Menzel, F.Hocke, M.J. Schwarz, J.J. Garcia-Ripoll, D.Zueco, T.Hümmer, E.Solano, A.Marx, R.Gross. Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nat. Phys. , 2010, 6( 10): 772
CrossRef ADS Google scholar
[123]
A.Blais, S.M. Girvin, W.D. Oliver. Quantum information processing and quantum optics with circuit quantum electrodynamics. Nat. Phys. , 2020, 16( 3): 247
CrossRef ADS Google scholar
[124]
G.J. Mooney, G.A. L. White, C.D. Hill, L.C. L. Hollenberg. Whole-device entanglement in a 65-qubit superconducting quantum computer. Adv. Quantum Technol. , 2021, 4( 10): 2100061
CrossRef ADS Google scholar
[125]
A.Blais, R.S. Huang, A.Wallraff, S.M. Girvin, R.J. Schoelkopf. Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A , 2004, 69( 6): 062320
CrossRef ADS Google scholar
[126]
J.Clarke, F.K. Wilhelm. Superconducting quantum bits. Nature , 2008, 453( 7198): 1031
CrossRef ADS Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11675046), the Program for Innovation Research of Science in Harbin Institute of Technology (Grant No. A201412), and the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province (Grant No. LBH-Q15060).

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(24236 KB)

Accesses

Citations

Detail

Sections
Recommended

/