Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: Three strategies

Mo Cheng, Junbo Yang, Xiaohui Li, Hui Li, Ruofan Du, Jianping Shi, Jun He

PDF(11622 KB)
PDF(11622 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (6) : 63601. DOI: 10.1007/s11467-022-1190-1
TOPICAL REVIEW
TOPICAL REVIEW

Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: Three strategies

Author information +
History +

Abstract

Two-dimensional (2D) semiconductors are emerging as promising candidates for the next-generation nanoelectronics. As a type of unique channel materials, 2D semiconducting transition metal dichalcogenides (TMDCs), such as MoS2 and WS2, exhibit great potential for the state-of-the-art field-effect transistors owing to their atomically thin thicknesses, dangling-band free surfaces, and abundant band structures. Even so, the device performances of 2D semiconducting TMDCs are still failing to reach the theoretical values so far, which is attributed to the intrinsic defects, excessive doping, and daunting contacts between electrodes and channels. In this article, we review the up-to-date three strategies for improving the device performances of 2D semiconducting TMDCs: (i) the controllable synthesis of wafer-scale 2D semiconducting TMDCs single crystals to reduce the evolution of grain boundaries, (ii) the ingenious doping of 2D semiconducting TMDCs to modulate the band structures and suppress the impurity scatterings, and (iii) the optimization design of interfacial contacts between electrodes and channels to reduce the Schottky barrier heights and contact resistances. In the end, the challenges regarding the improvement of device performances of 2D semiconducting TMDCs are highlighted, and the further research directions are also proposed. We believe that this review is comprehensive and insightful for downscaling the electronic devices and extending the Moore’s law.

Graphical abstract

Keywords

2D semiconductor / transition metal dichalcogenides / wafer-scale single crystal / ingenious doping / interfacial contact / device performance

Cite this article

Download citation ▾
Mo Cheng, Junbo Yang, Xiaohui Li, Hui Li, Ruofan Du, Jianping Shi, Jun He. Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: Three strategies. Front. Phys., 2022, 17(6): 63601 https://doi.org/10.1007/s11467-022-1190-1

References

[1]
R. W. Keyes . Physical limits of silicon transistors and circuits. Rep. Prog. Phys., 2005, 68( 12): 2701
CrossRef ADS Google scholar
[2]
M. Buchanan . Generalizing Moore. Nat. Phys., 2016, 12( 3): 200
CrossRef ADS Google scholar
[3]
S. Lloyd . Ultimate physical limits to computation. Nature, 2000, 406( 6799): 1047
CrossRef ADS Google scholar
[4]
C. Liu , H. Chen , S. Wang , Q. Liu , Y. G. Jiang , D. W. Zhang , M. Liu , P. Zhou . Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol., 2020, 15( 7): 545
CrossRef ADS Google scholar
[5]
M. Chhowalla , D. Jena , H. Zhang . Two-dimensional semiconductors for transistors. Nat. Rev. Mater., 2016, 1( 11): 16052
CrossRef ADS Google scholar
[6]
B. W. Liang , W. H. Chang , H. Y. Lin , P. C. Chen , Y. T. Zhang , K. B. Simbulan , K. S. Li , J. H. Chen , C. H. Kuan , Y. W. Lan . High-frequency graphene base hot-electron transistor. ACS Nano, 2021, 15( 4): 6756
CrossRef ADS Google scholar
[7]
Y. Gong , Z. Q. Xu , D. Li , J. Zhang , I. Aharonovich , Y. Zhang . Two-dimensional hexagonal boron nitride for building next-generation energy-efficient devices. ACS Energy Lett., 2021, 6( 3): 985
CrossRef ADS Google scholar
[8]
N. R. Glavin , C. Muratore , M. L. Jespersen , J. Hu , P. T. Hagerty , A. M. Hilton , A. T. Blake , C. A. Grabowski , M. F. Durstock , M. E. McConney , D. M. Hilgefort , T. S. Fisher , A. A. Voevodin . Amorphous boron nitride: A universal, ultrathin dielectric for 2D nanoelectronics. Adv. Funct. Mater., 2016, 26( 16): 2640
CrossRef ADS Google scholar
[9]
J. Shi , M. Hong , Z. Zhang , Q. Ji , Y. Zhang . Physical properties and potential applications of two-dimensional metallic transition metal dichalcogenides. Coord. Chem. Rev., 2018, 376( 1): 1
CrossRef ADS Google scholar
[10]
P. Wang , Y. Huan , P. Yang , M. Cheng , J. Shi , Y. Zhang . Controlled syntheses and multifunctional applications of two-dimensional metallic transition metal dichalcogenides. Acc. Mater. Res., 2021, 2( 9): 751
CrossRef ADS Google scholar
[11]
Y. Zhang , Y. W. Tan , H. L. Stormer , P. Kim . Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 2005, 438( 7065): 201
CrossRef ADS Google scholar
[12]
K. S. Novoselov , Z. Jiang , Y. Zhang , S. V. Morozov , H. L. Stormer , U. Zeitler , J. C. Maan , G. S. Boebinger , P. Kim , A. K. Geim . Room-temperature quantum Hall effect in graphene. Science, 2007, 315( 5817): 1379
CrossRef ADS Google scholar
[13]
X. Du , I. Skachko , A. Barker , E. Y. Andrei . Approaching ballistic transport in suspended graphene. Nat. Nanotechnol., 2008, 3( 8): 491
CrossRef ADS Google scholar
[14]
H. Seol Jae , I. Jo , L. Moore Arden , L. Lindsay , H. Aitken Zachary , T. Pettes Michael , X. Li , Z. Yao , R. Huang , D. Broido , N. Mingo , S. R. Rodney , L. Shi . Two-dimensional phonon transport in supported graphene. Science, 2010, 328( 5975): 213
CrossRef ADS Google scholar
[15]
R. R. Nair , P. Blake , A. N. Grigorenko , K. S. Novoselov , T. J. Booth , T. Stauber , N. M. R. Peres , A. K. Geim . Fine structure constant defines visual transparency of graphene. Science, 2008, 320( 5881): 1308
CrossRef ADS Google scholar
[16]
L. Ju , M. Bie , X. Zhang , X. Chen , L. Kou . Two-dimensional Janus van der Waals heterojunctions: A review of recent research progresses. Front. Phys., 2021, 16( 1): 13201
CrossRef ADS Google scholar
[17]
D. Akinwande , C. Huyghebaert , C. H. Wang , M. I. Serna , S. Goossens , L. J. Li , H. S. P. Wong , F. H. L. Koppens . Graphene and two-dimensional materials for silicon technology. Nature, 2019, 573( 7775): 507
CrossRef ADS Google scholar
[18]
Q. H. Wang , K. Kalantar-Zadeh , A. Kis , J. N. Coleman , M. S. Strano . Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 2012, 7( 11): 699
CrossRef ADS Google scholar
[19]
C. Tan , Z. Lai , H. Zhang . Ultrathin two-dimensional multinary layered metal chalcogenide nanomaterials. Adv. Mater., 2017, 29( 37): 1701392
CrossRef ADS Google scholar
[20]
C. Tan , X. Cao , X. J. Wu , Q. He , J. Yang , X. Zhang , J. Chen , W. Zhao , S. Han , G. H. Nam , M. Sindoro , H. Zhang . Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev., 2017, 117( 9): 6225
CrossRef ADS Google scholar
[21]
Y. Liu , X. Duan , H. J. Shin , S. Park , Y. Huang , X. Duan . Promises and prospects of two-dimensional transistors. Nature, 2021, 591( 7848): 43
CrossRef ADS Google scholar
[22]
X. Jing , Y. Illarionov , E. Yalon , P. Zhou , T. Grasser , Y. Shi , M. Lanza . Engineering field effect transistors with 2D semiconducting channels: Status and prospects. Adv. Funct. Mater., 2020, 30( 18): 1901971
CrossRef ADS Google scholar
[23]
Q. Zeng , H. Wang , W. Fu , Y. Gong , W. Zhou , P. M. Ajayan , J. Lou , Z. Liu . Band engineering for novel two-dimensional atomic layers. Small, 2015, 11( 16): 1868
CrossRef ADS Google scholar
[24]
X. Bao , Q. Ou , Z. Q. Xu , Y. Zhang , Q. Bao , H. Zhang . Band structure engineering in 2D materials for optoelectronic applications. Adv. Mater. Technol., 2018, 3( 11): 1800072
CrossRef ADS Google scholar
[25]
X. Cui , G. H. Lee , Y. D. Kim , G. Arefe , P. Y. Huang , C. H. Lee , D. A. Chenet , X. Zhang , L. Wang , F. Ye , F. Pizzocchero , B. S. Jessen , K. Watanabe , T. Taniguchi , D. A. Muller , T. Low , P. Kim , J. Hone . Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol., 2015, 10( 6): 534
CrossRef ADS Google scholar
[26]
B. Radisavljevic , A. Radenovic , J. Brivio , V. Giacometti , A. Kis . Single-layer MoS2 transistors. Nat. Nanotechnol., 2011, 6( 3): 147
CrossRef ADS Google scholar
[27]
R. Kappera , D. Voiry , S. E. Yalcin , B. Branch , G. Gupta , A. D. Mohite , M. Chhowalla . Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater., 2014, 13( 12): 1128
CrossRef ADS Google scholar
[28]
Y. Liu , J. Guo , Y. Wu , E. Zhu , N. O. Weiss , Q. He , H. Wu , H. C. Cheng , Y. Xu , I. Shakir , Y. Huang , X. Duan . Pushing the performance limit of sub-100 nm molybdenum disulfide transistors. Nano Lett., 2016, 16( 10): 6337
CrossRef ADS Google scholar
[29]
Z. Hu , Z. Wu , C. Han , J. He , Z. Ni , W. Chen . Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem. Soc. Rev., 2018, 47( 9): 3100
CrossRef ADS Google scholar
[30]
S. Najmaei , Z. Liu , W. Zhou , X. Zou , G. Shi , S. Lei , B. I. Yakobson , J. C. Idrobo , P. M. Ajayan , J. Lou . Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater., 2013, 12( 8): 754
CrossRef ADS Google scholar
[31]
D. Rhodes , S. H. Chae , R. Ribeiro-Palau , J. Hone . Disorder in van der Waals heterostructures of 2D materials. Nat. Mater., 2019, 18( 6): 541
CrossRef ADS Google scholar
[32]
H. Qiu , T. Xu , Z. Wang , W. Ren , H. Nan , Z. Ni , Q. Chen , S. Yuan , F. Miao , F. Song , G. Long , Y. Shi , L. Sun , J. Wang , X. Wang . Hopping transport through defect-induced localized states in molybdenum disulphide. Nat. Commun., 2013, 4( 1): 2642
CrossRef ADS Google scholar
[33]
S. H. Ryu , M. Huh , D. Y. Park , C. Jozwiak , E. Rotenberg , A. Bostwick , K. S. Kim . Pseudogap in a crystalline insulator doped by disordered metals. Nature, 2021, 596( 7870): 68
CrossRef ADS Google scholar
[34]
J. Suh , T. L. Tan , W. Zhao , J. Park , D. Y. Lin , T. E. Park , J. Kim , C. Jin , N. Saigal , S. Ghosh , Z. M. Wong , Y. Chen , F. Wang , W. Walukiewicz , G. Eda , J. Wu . Reconfiguring crystal and electronic structures of MoS2 by substitutional doping. Nat. Commun., 2018, 9( 1): 199
CrossRef ADS Google scholar
[35]
V. Kochat , A. Apte , J. A. Hachtel , H. Kumazoe , A. Krishnamoorthy , S. Susarla , J. C. Idrobo , F. Shimojo , P. Vashishta , R. Kalia , A. Nakano , C. S. Tiwary , P. M. Ajayan . Re doping in 2D transition metal dichalcogenides as a new route to tailor structural phases and induced magnetism. Adv. Mater., 2017, 29( 43): 1703754
CrossRef ADS Google scholar
[36]
S. Fu , K. Kang , K. Shayan , A. Yoshimura , S. Dadras , X. Wang , L. Zhang , S. Chen , N. Liu , A. Jindal , X. Li , A. N. Pasupathy , A. N. Vamivakas , V. Meunier , S. Strauf , E. H. Yang . Enabling room temperature ferromagnetism in monolayer MoS2 via in situ iron-doping. Nat. Commun., 2020, 11( 1): 2034
CrossRef ADS Google scholar
[37]
S. M. Hus , R. Ge , P. A. Chen , L. Liang , G. E. Donnelly , W. Ko , F. Huang , M. H. Chiang , A. P. Li , D. Akinwande . Observation of single-defect memristor in an MoS2 atomic sheet. Nat. Nanotechnol., 2021, 16( 1): 58
CrossRef ADS Google scholar
[38]
S. Wang , A. Robertson , J. H. Warner . Atomic structure of defects and dopants in 2D layered transition metal dichalcogenides. Chem. Soc. Rev., 2018, 47( 17): 6764
CrossRef ADS Google scholar
[39]
J. Y. Noh , H. Kim , M. Park , Y. S. Kim . Deep-to-shallow level transition of Re and Nb dopants in monolayer MoS2 with dielectric environments. Phys. Rev. B, 2015, 92( 11): 115431
CrossRef ADS Google scholar
[40]
S. Chen , S. Wang , C. Wang , Z. Wang , Q. Liu . Latest advance on seamless metal−semiconductor contact with ultralow Schottky barrier in 2D-material-based devices. Nano Today, 2022, 42 : 101372
CrossRef ADS Google scholar
[41]
Y. Wang , M. Chhowalla . Making clean electrical contacts on 2D transition metal dichalcogenides. Nat. Rev. Phys., 2022, 4( 2): 101
CrossRef ADS Google scholar
[42]
X. Zhang , B. Liu , L. Gao , H. Yu , X. Liu , J. Du , J. Xiao , Y. Liu , L. Gu , Q. Liao , Z. Kang , Z. Zhang , Y. Zhang . Near-ideal van der Waals rectifiers based on all-two-dimensional Schottky junctions. Nat. Commun., 2021, 12( 1): 1522
CrossRef ADS Google scholar
[43]
X. Zheng , A. Calò , E. Albisetti , X. Liu , A. S. M. Alharbi , G. Arefe , X. Liu , M. Spieser , W. J. Yoo , T. Taniguchi , K. Watanabe , C. Aruta , A. Ciarrocchi , A. Kis , B. S. Lee , M. Lipson , J. Hone , D. Shahrjerdi , E. Riedo . Patterning metal contacts on monolayer MoS2 with vanishing Schottky barriers using thermal nanolithography. Nat. Electron., 2019, 2( 1): 17
CrossRef ADS Google scholar
[44]
S. Manzeli D. Ovchinnikov D. Pasquier O. V. Yazyev A. Kis, 2D transition metal dichalcogenides, Nat. Rev. Mater. 2(8), 17033 ( 2017)
[45]
Y. Liu , N. O. Weiss , X. Duan , H. C. Cheng , Y. Huang , X. Duan . Van der Waals heterostructures and devices. Nat. Rev. Mater., 2016, 1( 9): 16042
CrossRef ADS Google scholar
[46]
G. Fiori , F. Bonaccorso , G. Iannaccone , T. Palacios , D. Neumaier , A. Seabaugh , S. K. Banerjee , L. Colombo . Electronics based on two-dimensional materials. Nat. Nanotechnol., 2014, 9( 10): 768
CrossRef ADS Google scholar
[47]
A. M. van der Zande , P. Y. Huang , D. A. Chenet , T. C. Berkelbach , Y. M. You , G. H. Lee , T. F. Heinz , D. R. Reichman , D. A. Muller , J. C. Hone . Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater., 2013, 12( 6): 554
CrossRef ADS Google scholar
[48]
T. H. Ly , D. J. Perello , J. Zhao , Q. M. Deng , H. Kim , G. H. Han , S. H. Chae , H. Y. Jeong , Y. H. Lee . Misorientation-angle-dependent electrical transport across molybdenum disulfide grain boundaries. Nat. Commun., 2016, 7( 1): 10426
CrossRef ADS Google scholar
[49]
H. G. Ji , Y. C. Lin , K. Nagashio , M. Maruyama , P. Solís-Fernández , A. Sukma Aji , V. Panchal , S. Okada , K. Suenaga , H. Ago . Hydrogen-assisted epitaxial growth of monolayer tungsten disulfide and seamless grain stitching. Chem. Mater., 2018, 30( 2): 403
CrossRef ADS Google scholar
[50]
T. Wu , X. Zhang , Q. Yuan , J. Xue , G. Lu , Z. Liu , H. Wang , H. Wang , F. Ding , Q. Yu , X. Xie , M. Jiang . Fast growth of inch-sized single-crystalline graphene from a controlled single nucleus on Cu−Ni alloys. Nat. Mater., 2016, 15( 1): 43
CrossRef ADS Google scholar
[51]
J. H. Lee , E. K. Lee , W. J. Joo , Y. Jang , B. S. Kim , J. Y. Lim , S. H. Choi , S. J. Ahn , J. R. Ahn , M. H. Park , C. W. Yang , B. L. Choi , S. W. Hwang , D. Whang . Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science, 2014, 344( 6181): 286
CrossRef ADS Google scholar
[52]
M. Huang , P. V. Bakharev , Z. J. Wang , M. Biswal , Z. Yang , S. Jin , B. Wang , H. J. Park , Y. Li , D. Qu , Y. Kwon , X. Chen , S. H. Lee , M. G. Willinger , W. J. Yoo , Z. Lee , R. S. Ruoff . Large-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/Ni(111) foil. Nat. Nanotechnol., 2020, 15( 4): 289
CrossRef ADS Google scholar
[53]
M. Wang , M. Huang , D. Luo , Y. Li , M. Choe , W. K. Seong , M. Kim , S. Jin , M. Wang , S. Chatterjee , Y. Kwon , Z. Lee , R. S. Ruoff . Single-crystal, large-area, fold-free monolayer graphene. Nature, 2021, 596( 7873): 519
CrossRef ADS Google scholar
[54]
J. S. Lee , S. H. Choi , S. J. Yun , Y. I. Kim , S. Boandoh , J. H. Park , B. G. Shin , H. Ko , S. H. Lee , Y. M. Kim , Y. H. Lee , K. K. Kim , S. M. Kim . Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science, 2018, 362( 6416): 817
CrossRef ADS Google scholar
[55]
L. Wang , X. Xu , L. Zhang , R. Qiao , M. Wu , Z. Wang , S. Zhang , J. Liang , Z. Zhang , Z. Zhang , W. Chen , X. Xie , J. Zong , Y. Shan , Y. Guo , M. Willinger , H. Wu , Q. Li , W. Wang , P. Gao , S. Wu , Y. Zhang , Y. Jiang , D. Yu , E. Wang , X. Bai , Z. J. Wang , F. Ding , K. Liu . Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature, 2019, 570( 7759): 91
CrossRef ADS Google scholar
[56]
T. A. Chen , C. P. Chuu , C. C. Tseng , C. K. Wen , H. S. P. Wong , S. Pan , R. Li , T. A. Chao , W. C. Chueh , Y. Zhang , Q. Fu , B. I. Yakobson , W. H. Chang , L. J. Li . Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu(111). Nature, 2020, 579( 7798): 219
CrossRef ADS Google scholar
[57]
L. Zhang , J. Dong , F. Ding . Strategies, status, and challenges in wafer scale single crystalline two-dimensional materials synthesis. Chem. Rev., 2021, 121( 11): 6321
CrossRef ADS Google scholar
[58]
X. Xu , Y. Pan , S. Liu , B. Han , P. Gu , S. Li , W. Xu , Y. Peng , Z. Han , J. Chen , P. Gao , Y. Ye . Seeded 2D epitaxy of large-area single-crystal films of the van der Waals semiconductor 2H MoTe2. Science, 2021, 372( 6538): 195
CrossRef ADS Google scholar
[59]
S. Cho , S. Kim , J. H. Kim , J. Zhao , J. Seok , D. H. Keum , J. Baik , D. H. Choe , K. J. Chang , K. Suenaga , S. W. Kim , Y. H. Lee , H. Yang . Phase patterning for ohmic homojunction contact in MoTe2. Science, 2015, 349( 6248): 625
CrossRef ADS Google scholar
[60]
J. H. Sung , H. Heo , S. Si , Y. H. Kim , H. R. Noh , K. Song , J. Kim , C. S. Lee , S. Y. Seo , D. H. Kim , H. K. Kim , H. W. Yeom , T. H. Kim , S. Y. Choi , J. S. Kim , M. H. Jo . Coplanar semiconductor–metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy. Nat. Nanotechnol., 2017, 12( 11): 1064
CrossRef ADS Google scholar
[61]
L. Chen , B. Liu , M. Ge , Y. Ma , A. N. Abbas , C. Zhou . Step-edge-guided nucleation and growth of aligned WSe2 on sapphire via a layer-over-layer growth mode. ACS Nano, 2015, 9( 8): 8368
CrossRef ADS Google scholar
[62]
T. Li , W. Guo , L. Ma , W. Li , Z. Yu , Z. Han , S. Gao , L. Liu , D. Fan , Z. Wang , Y. Yang , W. Lin , Z. Luo , X. Chen , N. Dai , X. Tu , D. Pan , Y. Yao , P. Wang , Y. Nie , J. Wang , Y. Shi , X. Wang . Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol., 2021, 16( 11): 1201
CrossRef ADS Google scholar
[63]
H. Yu , M. Liao , W. Zhao , G. Liu , X. Zhou , Z. Wei , X. Xu , K. Liu , Z. Hu , K. Deng , S. Zhou , J. A. Shi , L. Gu , C. Shen , T. Zhang , L. Du , L. Xie , J. Zhu , W. Chen , R. Yang , D. Shi , G. Zhang . Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano, 2017, 11( 12): 12001
CrossRef ADS Google scholar
[64]
K. K. H. Smithe , S. V. Suryavanshi , M. Muñoz Rojo , A. D. Tedjarati , E. Pop . Low variability in synthetic monolayer MoS2 devices. ACS Nano, 2017, 11( 8): 8456
CrossRef ADS Google scholar
[65]
R. Dong , X. Gong , J. Yang , Y. Sun , L. Ma , J. Wang . The intrinsic thermodynamic difficulty and a step-guided mechanism for the epitaxial growth of uniform multilayer MoS2 with controllable thickness. Adv. Mater., 2022, 34( 20): 2201402
CrossRef ADS Google scholar
[66]
L. Liu , T. Li , L. Ma , W. Li , S. Gao , W. Sun , R. Dong , X. Zou , D. Fan , L. Shao , C. Gu , N. Dai , Z. Yu , X. Chen , X. Tu , Y. Nie , P. Wang , J. Wang , Y. Shi , X. Wang . Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature, 2022, 605( 7908): 69
CrossRef ADS Google scholar
[67]
J. Wang , X. Xu , T. Cheng , L. Gu , R. Qiao , Z. Liang , D. Ding , H. Hong , P. Zheng , Z. Zhang , Z. Zhang , S. Zhang , G. Cui , C. Chang , C. Huang , J. Qi , J. Liang , C. Liu , Y. Zuo , G. Xue , X. Fang , J. Tian , M. Wu , Y. Guo , Z. Yao , Q. Jiao , L. Liu , P. Gao , Q. Li , R. Yang , G. Zhang , Z. Tang , D. Yu , E. Wang , J. Lu , Y. Zhao , S. Wu , F. Ding , K. Liu . Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire. Nat. Nanotechnol., 2022, 17( 1): 33
CrossRef ADS Google scholar
[68]
P. Yang , S. Zhang , S. Pan , B. Tang , Y. Liang , X. Zhao , Z. Zhang , J. Shi , Y. Huan , Y. Shi , S. J. Pennycook , Z. Ren , G. Zhang , Q. Chen , X. Zou , Z. Liu , Y. Zhang . Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au(111). ACS Nano, 2020, 14( 4): 5036
CrossRef ADS Google scholar
[69]
A. Aljarb , Z. Cao , H. Tang , J. Huang , M. Li , W. Hu , L. Cavallo , L. Li . Substrate lattice-guided seed formation controls the orientation of 2D transition-metal dichalcogenides. ACS Nano, 2017, 11( 9): 9215
CrossRef ADS Google scholar
[70]
M. Chubarov , T. H. Choudhury , D. R. Hickey , S. Bachu , T. Zhang , A. Sebastian , A. Bansal , H. Zhu , N. Trainor , S. Das , M. Terrones , N. Alem , J. M. Redwing . Wafer-scale epitaxial growth of unidirectional WS2 monolayers on sapphire. ACS Nano, 2021, 15( 2): 2532
CrossRef ADS Google scholar
[71]
T. Shinada , S. Okamoto , T. Kobayashi , I. Ohdomari . Enhancing semiconductor device performance using ordered dopant arrays. Nature, 2005, 437( 7062): 1128
CrossRef ADS Google scholar
[72]
S. Y. Seo , G. Moon , O. F. N. Okello , M. Y. Park , C. Han , S. Cha , H. Choi , H. W. Yeom , S. Y. Choi , J. Park , M. H. Jo . Reconfigurable photo-induced doping of two-dimensional van der Waals semiconductors using different photon energies. Nat. Electron., 2021, 4( 1): 38
CrossRef ADS Google scholar
[73]
Y. H. Chen , R. R. Tamming , K. Chen , Z. Zhang , F. Liu , Y. Zhang , J. M. Hodgkiss , R. J. Blaikie , B. Ding , M. Qiu . Bandgap control in two-dimensional semiconductors via coherent doping of plasmonic hot electrons. Nat. Commun., 2021, 12( 1): 4332
CrossRef ADS Google scholar
[74]
J. Zhou , H. Zhu , Q. Song , Z. Ding , J. Mao , Z. Ren , G. Chen . Mobility enhancement in heavily doped semiconductors via electron cloaking. Nat. Commun., 2022, 13( 1): 2482
CrossRef ADS Google scholar
[75]
B. Li T. Xing M. Zhong L. Huang N. Lei J. Zhang J. Li Z. Wei, A two-dimensional Fe-doped SnS2 magnetic semiconductor , Nat. Commun. 8(1), 1958 ( 2017)
[76]
J. Zhou , J. Lin , H. Sims , C. Jiang , C. Cong , J. A. Brehm , Z. Zhang , L. Niu , Y. Chen , Y. Zhou , Y. Wang , F. Liu , C. Zhu , T. Yu , K. Suenaga , R. Mishra , S. T. Pantelides , Z. G. Zhu , W. Gao , Z. Liu , W. Zhou . Synthesis of Co-doped MoS2 monolayers with enhanced valley splitting. Adv. Mater., 2020, 32( 11): 1906536
CrossRef ADS Google scholar
[77]
Q. Li , X. Zhao , L. Deng , Z. Shi , S. Liu , Q. Wei , L. Zhang , Y. Cheng , L. Zhang , H. Lu , W. Gao , W. Huang , C. W. Qiu , G. Xiang , S. J. Pennycook , Q. Xiong , K. Loh , B. Peng . Enhanced valley Zeeman splitting in Fe-doped monolayer MoS2. ACS Nano, 2020, 14( 4): 4636
CrossRef ADS Google scholar
[78]
K. Zhang , S. Feng , J. Wang , A. Azcatl , N. Lu , R. Addou , N. Wang , C. Zhou , J. Lerach , V. Bojan , M. J. Kim , L. Q. Chen , R. M. Wallace , M. Terrones , J. Zhu , J. A. Robinson . Manganese doping of monolayer MoS2: The substrate is critical. Nano Lett., 2015, 15( 10): 6586
CrossRef ADS Google scholar
[79]
H. Li , M. Cheng , P. Wang , R. Du , L. Song , J. He , J. Shi . Reducing contact resistance and boosting device performance of monolayer MoS2 by in situ Fe doping. Adv. Mater., 2022, 34( 18): 2200885
CrossRef ADS Google scholar
[80]
D. Lee , J. J. Lee , Y. S. Kim , Y. H. Kim , J. C. Kim , W. Huh , J. Lee , S. Park , H. Y. Jeong , Y. D. Kim , C. H. Lee . Remote modulation doping in van der Waals heterostructure transistors. Nat. Electron., 2021, 4( 9): 664
CrossRef ADS Google scholar
[81]
Y. Wang , J. Xiao , H. Zhu , Y. Li , Y. Alsaid , K. Y. Fong , Y. Zhou , S. Wang , W. Shi , Y. Wang , A. Zettl , E. J. Reed , X. Zhang . Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature, 2017, 550( 7677): 487
CrossRef ADS Google scholar
[82]
S. Song , Y. Sim , S. Y. Kim , J. H. Kim , I. Oh , W. Na , D. H. Lee , J. Wang , S. Yan , Y. Liu , J. Kwak , J. H. Chen , H. Cheong , J. W. Yoo , Z. Lee , S. Y. Kwon . Wafer-scale production of patterned transition metal ditelluride layers for two-dimensional metal−semiconductor contacts at the Schottky−Mott limit. Nat. Electron., 2020, 3( 4): 207
CrossRef ADS Google scholar
[83]
Y. Jung , M. S. Choi , A. Nipane , A. Borah , B. Kim , A. Zangiabadi , T. Taniguchi , K. Watanabe , W. J. Yoo , J. Hone , J. T. Teherani . Transferred via contacts as a platform for ideal two-dimensional transistors. Nat. Electron., 2019, 2( 5): 187
CrossRef ADS Google scholar
[84]
W. Liu . Transition metal ditellurides make for better 2D contacts. Nat. Electron., 2020, 3( 4): 187
CrossRef ADS Google scholar
[85]
A. Allain , J. Kang , K. Banerjee , A. Kis . Electrical contacts to two-dimensional semiconductors. Nat. Mater., 2015, 14( 12): 1195
CrossRef ADS Google scholar
[86]
R. T. Tung . The physics and chemistry of the Schottky barrier height. Appl. Phys. Rev., 2014, 1( 1): 011304
CrossRef ADS Google scholar
[87]
X. Liu , M. S. Choi , E. Hwang , W. J. Yoo , J. Sun . Fermi level pinning dependent 2D semiconductor devices: Challenges and prospects. Adv. Mater., 2022, 34( 15): 2108425
CrossRef ADS Google scholar
[88]
Y. Liu , J. Guo , E. Zhu , L. Liao , S. J. Lee , M. Ding , I. Shakir , V. Gambin , Y. Huang , X. Duan . Approaching the Schottky−Mott limit in van der Waals metal–semiconductor junctions. Nature, 2018, 557( 7707): 696
CrossRef ADS Google scholar
[89]
G. Kwon , Y. H. Choi , H. Lee , H. S. Kim , J. Jeong , K. Jeong , M. Baik , H. Kwon , J. Ahn , E. Lee , M. H. Cho . Interaction- and defect-free van der Waals contacts between metals and two-dimensional semiconductors. Nat. Electron., 2022, 5( 4): 241
CrossRef ADS Google scholar
[90]
P. C. Shen , C. Su , Y. Lin , A. S. Chou , C. C. Cheng , J. H. Park , M. H. Chiu , A. Y. Lu , H. L. Tang , M. M. Tavakoli , G. Pitner , X. Ji , Z. Cai , N. Mao , J. Wang , V. Tung , J. Li , J. Bokor , A. Zettl , C. I. Wu , T. Palacios , L. J. Li , J. Kong . Ultralow contact resistance between semimetal and monolayer semiconductors. Nature, 2021, 593( 7858): 211
CrossRef ADS Google scholar
[91]
J. Shi , X. Wang , S. Zhang , L. Xiao , Y. Huan , Y. Gong , Z. Zhang , Y. Li , X. Zhou , M. Hong , Q. Fang , Q. Zhang , X. Liu , L. Gu , Z. Liu , Y. Zhang . Two-dimensional metallic tantalum disulfide as a hydrogen evolution catalyst. Nat. Commun., 2017, 8( 1): 958
CrossRef ADS Google scholar
[92]
J. Shi , X. Chen , L. Zhao , Y. Gong , M. Hong , Y. Huan , Z. Zhang , P. Yang , Y. Li , Q. Zhang , Q. Zhang , L. Gu , H. Chen , J. Wang , S. Deng , N. Xu , Y. Zhang . Chemical vapor deposition grown wafer-scale 2D tantalum diselenide with robust charge-density-wave order. Adv. Mater., 2021, 30( 44): 1804616
CrossRef ADS Google scholar
[93]
J. Ge , T. Luo , Z. Lin , J. Shi , Y. Liu , P. Wang , Y. Zhang , W. Duan , J. Wang . Magnetic moments induced by atomic vacancies in transition metal dichalcogenide flakes. Adv. Mater., 2018, 33( 4): 2005465
CrossRef ADS Google scholar
[94]
M. Bonilla , S. Kolekar , Y. Ma , H. C. Diaz , V. Kalappattil , R. Das , T. Eggers , H. R. Gutierrez , M. H. Phan , M. Batzill . Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol., 2018, 13( 4): 289
CrossRef ADS Google scholar
[95]
K. Zhao , H. Lin , X. Xiao , W. Huang , W. Yao , M. Yan , Y. Xing , Q. Zhang , Z. X. Li , S. Hoshino , J. Wang , S. Zhou , L. Gu , M. S. Bahramy , H. Yao , N. Nagaosa , Q. K. Xue , K. T. Law , X. Chen , S. H. Ji . Disorder-induced multifractal superconductivity in monolayer niobium dichalcogenides. Nat. Phys., 2019, 15( 9): 904
CrossRef ADS Google scholar
[96]
Y. Xing , P. Yang , J. Ge , J. Yan , J. Luo , H. Ji , Z. Yang , Y. Li , Z. Wang , Y. Liu , F. Yang , P. Qiu , C. Xi , M. Tian , Y. Liu , X. Lin , J. Wang . Extrinsic and intrinsic anomalous metallic states in transition metal dichalcogenide Ising superconductors. Nano Lett., 2021, 21( 18): 7486
CrossRef ADS Google scholar
[97]
Z. Wang , Y. Y. Sun , I. Abdelwahab , L. Cao , W. Yu , H. Ju , J. Zhu , W. Fu , L. Chu , H. Xu , K. P. Loh . Surface-limited superconducting phase transition on 1T-TaS2. ACS Nano, 2018, 12( 12): 12619
CrossRef ADS Google scholar
[98]
J. Hall , N. Ehlen , J. Berges , E. van Loon , C. van Efferen , C. Murray , M. Rösner , J. Li , B. V. Senkovskiy , M. Hell , M. Rolf , T. Heider , M. C. Asensio , J. Avila , L. Plucinski , T. Wehling , A. Grüneis , T. Michely . Environmental control of charge density wave order in monolayer 2H-TaS2. ACS Nano, 2019, 13( 9): 10210
CrossRef ADS Google scholar
[99]
C. Zhu , Y. Chen , F. Liu , S. Zheng , X. Li , A. Chaturvedi , J. Zhou , Q. Fu , Y. He , Q. Zeng , H. J. Fan , H. Zhang , W. J. Liu , T. Yu , Z. Liu . Light-tunable 1T-TaS2 charge-density-wave oscillators. ACS Nano, 2018, 12( 11): 11203
CrossRef ADS Google scholar
[100]
J. Bekaert , E. Khestanova , D. G. Hopkinson , J. Birkbeck , N. Clark , M. Zhu , D. A. Bandurin , R. Gorbachev , S. Fairclough , Y. Zou , M. Hamer , D. J. Terry , J. J. P. Peters , A. M. Sanchez , B. Partoens , S. J. Haigh , M. V. Milošević , I. V. Grigorieva . Enhanced superconductivity in few-layer TaS2 due to healing by oxygenation. Nano Lett., 2020, 20( 5): 3808
CrossRef ADS Google scholar
[101]
Y. Chen , L. Wu , H. Xu , C. Cong , S. Li , S. Feng , H. Zhang , C. Zou , J. Shang , S. A. Yang , K. P. Loh , W. Huang , T. Yu . Visualizing the anomalous charge density wave states in graphene/NbSe2 heterostructures. Adv. Mater., 2020, 32( 45): 2003746
CrossRef ADS Google scholar
[102]
Q. Dong , J. Pan , S. Li , Y. Fang , T. Lin , S. Liu , B. Liu , Q. Li , F. Huang , B. Liu . Record-high superconductivity in transition metal dichalcogenides emerged in compressed 2H-TaS2. Adv. Mater., 2022, 34( 9): 2103168
CrossRef ADS Google scholar
[103]
W. Zhang , L. Zhang , P. K. J. Wong , J. Yuan , G. Vinai , P. Torelli , G. van der Laan , Y. P. Feng , A. T. S. Wee . Magnetic transition in monolayer VSe2 via interface hybridization. ACS Nano, 2019, 13( 8): 8997
CrossRef ADS Google scholar
[104]
H. Liu , L. Bao , Z. Zhou , B. Che , R. Zhang , C. Bian , R. Ma , L. Wu , H. Yang , J. Li , C. Gu , C. M. Shen , S. Du , H. J. Gao . Quasi-2D transport and weak antilocalization effect in few-layered VSe2. Nano Lett., 2019, 19( 7): 4551
CrossRef ADS Google scholar
[105]
R. Chua , J. Henke , S. Saha , Y. Huang , J. Gou , X. He , T. Das , J. van Wezel , A. Soumyanarayanan , A. T. S. Wee . Coexisting charge-ordered states with distinct driving mechanisms in monolayer VSe2. ACS Nano, 2022, 16( 1): 783
CrossRef ADS Google scholar
[106]
W. Yu , J. Li , T. S. Herng , Z. Wang , X. Zhao , X. Chi , W. Fu , I. Abdelwahab , J. Zhou , J. Dan , Z. Chen , Z. Chen , Z. Li , J. Lu , S. J. Pennycook , Y. P. Feng , J. Ding , K. P. Loh . Chemically exfoliated VSe2 monolayers with room-temperature ferromagnetism. Adv. Mater., 2019, 31( 40): 1903779
CrossRef ADS Google scholar
[107]
Y. Wen , Z. Liu , Y. Zhang , C. Xia , B. Zhai , X. Zhang , G. Zhai , C. Shen , P. He , R. Cheng , L. Yin , Y. Yao , M. Getaye Sendeku , Z. Wang , X. Ye , C. Liu , C. Jiang , C. Shan , Y. Long , J. He . Tunable room-temperature ferromagnetism in two-dimensional Cr2Te3. Nano Lett., 2020, 20( 5): 3130
CrossRef ADS Google scholar
[108]
Y. Zhang , J. Chu , L. Yin , T. A. Shifa , Z. Cheng , R. Cheng , F. Wang , Y. Wen , X. Zhan , Z. Wang , J. He . Ultrathin magnetic 2D single-crystal CrSe. Adv. Mater., 2019, 31( 19): 1900056
CrossRef ADS Google scholar
[109]
X. Zhang , Z. Luo , P. Yu , Y. Cai , Y. Du , D. Wu , S. Gao , C. Tan , Z. Li , M. Ren , T. Osipowicz , S. Chen , Z. Jiang , J. Li , Y. Huang , J. Yang , Y. Chen , C. Y. Ang , Y. Zhao , P. Wang , L. Song , X. Wu , Z. Liu , A. Borgna , H. Zhang . Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution. Nat. Catal., 2018, 1( 6): 460
CrossRef ADS Google scholar
[110]
Y. Liu , J. Wu , K. P. Hackenberg , J. Zhang , Y. M. Wang , Y. Yang , K. Keyshar , J. Gu , T. Ogitsu , R. Vajtai , J. Lou , P. M. Ajayan , B. C. Wood , B. I. Yakobson . Self-optimizing, highly surface-active layered metal dichalcogenide catalysts for hydrogen evolution. Nat. Energy, 2017, 2( 9): 17127
CrossRef ADS Google scholar
[111]
J. Yang , A. R. Mohmad , Y. Wang , R. Fullon , X. Song , F. Zhao , I. Bozkurt , M. Augustin , E. J. G. Santos , H. S. Shin , W. Zhang , D. Voiry , H. Y. Jeong , M. Chhowalla . Ultrahigh-current-density niobium disulfide catalysts for hydrogen evolution. Nat. Mater., 2019, 18( 12): 1309
CrossRef ADS Google scholar
[112]
M. Yan , X. Pan , P. Wang , F. Chen , L. He , G. Jiang , J. Wang , J. Z. Liu , X. Xu , X. Liao , J. Yang , L. Mai . Field-effect tuned adsorption dynamics of VSe2 nanosheets for enhanced hydrogen evolution reaction. Nano Lett., 2017, 17( 7): 4109
CrossRef ADS Google scholar
[113]
Z. L. Liu , B. Lei , Z. L. Zhu , L. Tao , J. Qi , D. L. Bao , X. Wu , L. Huang , Y. Y. Zhang , X. Lin , Y. L. Wang , S. Du , S. T. Pantelides , H. J. Gao . Spontaneous formation of 1D pattern in monolayer VSe2 with dispersive adsorption of Pt atoms for HER catalysis. Nano Lett., 2019, 19( 8): 4897
CrossRef ADS Google scholar
[114]
I. S. Kwon , I. H. Kwak , T. T. Debela , J. Y. Kim , S. J. Yoo , J. G. Kim , J. Park , H. S. Kang . Phase-transition Mo1–xVxSe2 alloy nanosheets with rich V-Se vacancies and their enhanced catalytic performance of hydrogen evolution reaction. ACS Nano, 2021, 15( 9): 14672
CrossRef ADS Google scholar
[115]
Y. Huan , J. Shi , X. Zou , Y. Gong , C. Xie , Z. Yang , Z. Zhang , Y. Gao , Y. Shi , M. Li , P. Yang , S. Jiang , M. Hong , L. Gu , Q. Zhang , X. Yan , Y. Zhang . Scalable production of two-dimensional metallic transition metal dichalcogenide nanosheet powders using NaCl templates toward electrocatalytic applications. J. Am. Chem. Soc., 2019, 141( 47): 18694
CrossRef ADS Google scholar
[116]
C. Yang , J. Feng , F. Lv , J. Zhou , C. Lin , K. Wang , Y. Zhang , Y. Yang , W. Wang , J. Li , S. Guo . Metallic graphene-like VSe2 ultrathin nanosheets: Superior potassium-ion storage and their working mechanism. Adv. Mater., 2018, 30( 27): 1800036
CrossRef ADS Google scholar
[117]
F. Ming , H. Liang , Y. Lei , W. Zhang , H. N. Alshareef . Solution synthesis of VSe2 nanosheets and their alkali metal ion storage performance. Nano Energy, 2018, 53 : 11
CrossRef ADS Google scholar
[118]
Q. Yu Z. Zhang S. Qiu Y. Luo Z. Liu F. Yang H. Liu S. Ge X. Zou B. Ding W. Ren H. M. Cheng C. Sun B. Liu, A Ta-TaS2 monolith catalyst with robust and metallic interface for superior hydrogen evolution , Nat. Commun. 12(1), 6051 ( 2021)
[119]
J. Feng , X. Sun , C. Wu , L. Peng , C. Lin , S. Hu , J. Yang , Y. Xie . Metallic few-layered VS2 ultrathin nanosheets: High two-dimensional conductivity for in-plane supercapacitors. J. Am. Chem. Soc., 2011, 133( 44): 17832
CrossRef ADS Google scholar
[120]
P. He , M. Yan , G. Zhang , R. Sun , L. Chen , Q. An , L. Mai . Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv. Energy Mater., 2017, 7( 11): 1601920
CrossRef ADS Google scholar
[121]
J. Zhou , L. Wang , M. Yang , J. Wu , F. Chen , W. Huang , N. Han , H. Ye , F. Zhao , Y. Li , Y. Li . Hierarchical VS2 nanosheet assemblies: A universal host material for the reversible storage of alkali metal ions. Adv. Mater., 2017, 29( 35): 1702061
CrossRef ADS Google scholar
[122]
H. Liang , H. Shi , D. Zhang , F. Ming , R. Wang , J. Zhuo , Z. Wang . Solution growth of vertical VS2 nanoplate arrays for electrocatalytic hydrogen evolution. Chem. Mater., 2016, 28( 16): 5587
CrossRef ADS Google scholar
[123]
S. Zhang , J. Wang , N. L. Torad , W. Xia , M. A. Aslam , Y. V. Kaneti , Z. Hou , Z. Ding , B. Da , A. Fatehmulla , A. M. Aldhafiri , W. A. Farooq , J. Tang , Y. Bando , Y. Yamauchi . Rational design of nanoporous MoS2/VS2 heteroarchitecture for ultrahigh performance ammonia sensors. Small, 2020, 16( 12): 1901718
CrossRef ADS Google scholar
[124]
Y. Zhou , Q. Xu , T. Ge , X. Zheng , L. Zhang , P. Yan . Accurate control of VS2 nanosheets for coexisting high photoluminescence and photothermal conversion efficiency. Angew. Chem. Int. Ed., 2020, 59( 8): 3322
CrossRef ADS Google scholar
[125]
Z. Zhang , Y. Gong , X. Zou , P. Liu , P. Yang , J. Shi , L. Zhao , Q. Zhang , L. Gu , Y. Zhang . Epitaxial growth of two-dimensional metal−semiconductor transition-metal dichalcogenide vertical stacks (VSe2/MX2) and their band alignments. ACS Nano, 2019, 13( 1): 885
CrossRef ADS Google scholar
[126]
J. Shi , Y. Huan , X. Zhao , P. Yang , M. Hong , C. Xie , S. Pennycook , Y. Zhang . Two-dimensional metallic vanadium ditelluride as a high-performance electrode material. ACS Nano, 2021, 15( 1): 1858
CrossRef ADS Google scholar
[127]
Z. Zhou , F. Yang , S. Wang , L. Wang , X. Wang , C. Wang , Y. Xie , Q. Liu . Emerging of two-dimensional materials in novel memristor. Front. Phys., 2022, 17( 2): 23204
CrossRef ADS Google scholar
[128]
L. Du , Z. Wang , G. Zhao . Novel intelligent devices: Two-dimensional materials based memristors. Front. Phys., 2022, 17( 2): 23602
CrossRef ADS Google scholar
[129]
H. Yu , A. Kutana , B. I. Yakobson . Carrier delocalization in two-dimensional coplanar p−n junctions of graphene and metal dichalcogenides. Nano Lett., 2016, 16( 8): 5032
CrossRef ADS Google scholar
[130]
Y. Zhang , L. Yin , J. Chu , T. A. Shifa , J. Xia , F. Wang , Y. Wen , X. Zhan , Z. Wang , J. He . Edge-epitaxial growth of 2D NbS2-WS2 lateral metal−semiconductor heterostructures. Adv. Mater., 2018, 30( 40): 1803665
CrossRef ADS Google scholar
[131]
Q. Fu , X. Wang , J. Zhou , J. Xia , Q. Zeng , D. Lv , C. Zhu , X. Wang , Y. Shen , X. Li , Y. Hua , F. Liu , Z. Shen , C. Jin , Z. Liu . One-step synthesis of metal/semiconductor heterostructure NbS2/MoS2. Chem. Mater., 2018, 30( 12): 4001
CrossRef ADS Google scholar
[132]
X. Wang , Z. Wang , J. Zhang , X. Wang , Z. Zhang , J. Wang , Z. Zhu , Z. Li , Y. Liu , X. Hu , J. Qiu , G. Hu , B. Chen , N. Wang , Q. He , J. Chen , J. Yan , W. Zhang , T. Hasan , S. Li , H. Li , H. Zhang , Q. Wang , X. Huang , W. Huang . Realization of vertical metal semiconductor heterostructures via solution phase epitaxy. Nat. Commun., 2018, 9( 1): 3611
CrossRef ADS Google scholar
[133]
X. Zhai , X. Xu , J. Peng , F. Jing , Q. Zhang , H. Liu , Z. Hu . Enhanced optoelectronic performance of CVD-grown metal−semiconductor NiTe2/MoS2 heterostructures. ACS Appl. Mater. Interfaces, 2020, 12( 21): 24093
CrossRef ADS Google scholar
[134]
W. S. Leong , Q. Ji , N. Mao , Y. Han , H. Wang , A. J. Goodman , A. Vignon , C. Su , Y. Guo , P. C. Shen , Z. Gao , D. A. Muller , W. A. Tisdale , J. Kong . Synthetic lateral metal−semiconductor heterostructures of transition metal disulfides. J. Am. Chem. Soc., 2018, 140( 39): 12354
CrossRef ADS Google scholar
[135]
J. Li , X. Yang , Y. Liu , B. Huang , R. Wu , Z. Zhang , B. Zhao , H. Ma , W. Dang , Z. Wei , K. Wang , Z. Lin , X. Yan , M. Sun , B. Li , X. Pan , J. Luo , G. Zhang , Y. Liu , Y. Huang , X. Duan , X. Duan . General synthesis of two-dimensional van der Waals heterostructure arrays. Nature, 2020, 579( 7799): 368
CrossRef ADS Google scholar

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant Nos. 2018YFA0703700 and 2021YFA1200800), the National Natural Science Foundation of China (Grant Nos. 91964203 and 92164103), the Beijing National Laboratory for Molecular Sciences (Grant No. BNLMS202001), and the Fundamental Research Funds for the Central Universities (Grant No. 2042021kf0029).

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(11622 KB)

Accesses

Citations

Detail

Sections
Recommended

/