Energy-resolved spin filtering effect and thermoelectric effect in topological-insulator junctions with anisotropic chiral edge states

Jia-En Yang, Hang Xie

PDF(9182 KB)
PDF(9182 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (6) : 63504. DOI: 10.1007/s11467-022-1189-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Energy-resolved spin filtering effect and thermoelectric effect in topological-insulator junctions with anisotropic chiral edge states

Author information +
History +

Abstract

Topological edge states have crucial applications in the future nano spintronics devices. In this work, circularly polarized light is applied on the zigzag silicene-like nanoribbons resulting in the anisotropic chiral edge modes. An energy-dependent spin filter is designed based on the topological-insulator (TI) junctions with anisotropic chiral edge states. The resonance transmission has been observed in the TI junctions by calculating the local current distributions. And some strong Fabry−Perot resonances are found leading to the sharp transmission peaks. Whereas, the weak and asymmetric resonance corresponds to the broad transmission peaks. In addition, a qualitative relation between the resonant energy separation TR and group velocity vf is derived: TRhvfn/L, that indicated TR is proportional to vf and inversely proportional to the length L of the conductor. The different TR between the spin-up and spin-down cases results in the energy-resolved spin filtering effect. Moreover, the intensity of the circularly polarized light can modulate the group velocity vf. Thus, the intensity of circularly polarized light, as well as the conductor-length, play very vital roles in designing the energy-dependent spin filter. Since the transmission gap root in the Fabry−Perot resonances, the thermoelectric (TE) property can be enhanced by adjusting the gap. A schedule to enhance the TE performance in the TI-junction is proposed by modulating the electric field (Ez). The TE dependence on Ez in the nanojunction is investigated, where the appropriate Ez leads to a very high spin thermopower and spin figure of merit. These TI junctions have potential usages in the nano spintronics and thermoelectric devices.

Graphical abstract

Keywords

electron transport / topological edge states / 2D materials / spintronics / thermoelectric effects

Cite this article

Download citation ▾
Jia-En Yang, Hang Xie. Energy-resolved spin filtering effect and thermoelectric effect in topological-insulator junctions with anisotropic chiral edge states. Front. Phys., 2022, 17(6): 63504 https://doi.org/10.1007/s11467-022-1189-7

References

[1]
C.C. Liu, W.X. Feng, Y.G. Yao. Quantum spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. , 2011, 107( 7): 076802
CrossRef ADS Google scholar
[2]
C.C. Liu, H.Jiang, Y.G. Yao. Low-energy effective Hamiltonian involving spin−orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B , 2011, 84( 19): 195430
CrossRef ADS Google scholar
[3]
L.Meng, Y.L. Wang, L.Z. Zhang, S.X. Du, R.T. Wu, L.F. Li, Y.Zhang, G.Li, H.T. Zhou, W.A. Hofer, H.J. Gao. Buckled silicene formation on Ir(111). Nano Lett. , 2013, 13( 2): 685
CrossRef ADS Google scholar
[4]
X.C. Zhai, J.W. Gu, R.Wen, R.W. Liu, M.Zhu, X.F. Zhou, L.Y. Gong, X.A. Li. Giant Seebeck magnetoresistance triggered by electric field and assisted by a valley through a ferromagnetic/antiferromagnetic junction in heavy group-IV monolayers. Phys. Rev. B , 2019, 99( 8): 085421
CrossRef ADS Google scholar
[5]
C.X. Zhao, J.F. Jia. Stanene: A good platform for topological insulator and topological superconductor. Front. Phys. , 2020, 15( 5): 53201
CrossRef ADS Google scholar
[6]
X.L. Lü, H.Xie. Spin filters and switchers in topological-insulator junctions. Phys. Rev. Appl. , 2019, 12( 6): 064040
CrossRef ADS Google scholar
[7]
H.Y. Tian, S.K. Wang, J.G. Hu, J.Wang. The chirality dependent spin filter design in the graphene-like junction. J. Phys.: Condens. Matter , 2015, 27( 12): 125005
CrossRef ADS Google scholar
[8]
J.E. Yang, X.L. Lu, H.Xie. Three-terminal spin/charge current router. J. Phys.: Condens. Matter , 2020, 32( 32): 325301
CrossRef ADS Google scholar
[9]
J.E. Yang, X.L. Lu, C.X. Zhang, H.Xie. Topological spin-valley filtering effects based on hybrid silicene-like nanoribbons. New J. Phys. , 2020, 22( 5): 053034
CrossRef ADS Google scholar
[10]
X.Zhai, R.Wen, X.Zhou, W.Chen, W.Yan, L.Y. Gong, Y.Pu, X.Li. Valley-mediated and electrically switched bipolar−unipolar transition of the spin-diode effect in heavy group-IV monolayers. Phys. Rev. Appl. , 2019, 11( 6): 064047
CrossRef ADS Google scholar
[11]
J.Zheng, F.Chi, Y.Guo. Spin-current diodes based on germanene and stanene subjected to local exchange fields. Appl. Phys. Lett. , 2018, 113( 11): 112404
CrossRef ADS Google scholar
[12]
J.Zheng, Y.Xiang, C.Li, R.Yuan, F.Chi, Y.Guo. All-optically controlled topological transistor based on Xenes. Phys. Rev. Appl. , 2020, 14( 3): 034027
CrossRef ADS Google scholar
[13]
J.Zheng, Y.Xiang, C.Li, R.Yuan, F.Chi, Y.Guo. Multichannel depletion-type field-effect transistor based on ferromagnetic germanene. Phys. Rev. Appl. , 2021, 16( 2): 024046
CrossRef ADS Google scholar
[14]
M.Ezawa. Monolayer topological insulators: Silicene, germanene, and stanene. J. Phys. Soc. Jpn. , 2015, 84( 12): 121003
CrossRef ADS Google scholar
[15]
C.C. Liu, H.Jiang, Y.Yao. Low-energy effective Hamiltonian involving spin−orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B , 2011, 84( 19): 195430
CrossRef ADS Google scholar
[16]
M.Ezawa. Valley-polarized metals and quantum anomalous Hall effect in silicene. Phys. Rev. Lett. , 2012, 109( 5): 055502
CrossRef ADS Google scholar
[17]
H.Pan, Z.S. Li, C.C. Liu, G.B. Zhu, Z.H. Qiao, Y.G. Yao. Valley-polarized quantum anomalous Hall effect in silicene. Phys. Rev. Lett. , 2014, 112( 10): 106802
CrossRef ADS Google scholar
[18]
J.Mei, L.Shao, H.Xu, X.Zhu, N.Xu. Photomodulated edge states and multiterminal transport in silicenelike nanoribbons. Phys. Rev. B , 2019, 99( 4): 045444
CrossRef ADS Google scholar
[19]
J.E. Yang, X.L. Lü, H.Xie. Current propagation behaviors and spin filtering effects in three-terminal topological-insulator junctions. New J. Phys. , 2020, 22( 10): 103018
CrossRef ADS Google scholar
[20]
J.Zheng, F.Chi, Y.Guo. Exchange and electric fields enhanced spin thermoelectric performance of germanene nano-ribbon. J. Phys.: Condens. Matter , 2015, 27( 29): 295302
CrossRef ADS Google scholar
[21]
M.W. Chuan, M.A. Riyadi, A.Hamzah, N.E. Alias, S.Mohamed Sultan, C.S. Lim, M.L. P. Tan. Impact of phonon scattering mechanisms on the performance of silicene nanoribbon field-effect transistors. Results Phys. , 2021, 29 : 104714
CrossRef ADS Google scholar
[22]
X.Qi, S.Zhang. Topological insulators and superconductors. Rev. Mod. Phys. , 2011, 83( 4): 1057
CrossRef ADS Google scholar
[23]
D.Qin, F.Pan, J.Zhou, Z.Xu, Y.Deng. High ZT and performance controllable thermoelectric devices based on electrically gated bismuth telluride thin films. Nano Energy , 2021, 89 : 106472
CrossRef ADS Google scholar
[24]
G.Solomon, E.Song, C.Gayner, J.A. Martinez, Y.Amouyal. Effects of microstructure and neodymium doping on Bi2Te3 nanostructures: Implications for thermoelectric performance. ACS Appl. Nano Mater. , 2021, 4( 5): 4419
CrossRef ADS Google scholar
[25]
T.H. Wang, H.T. Jeng. Topological insulator nanoribbons – A new paradigm for high thermoelectric performance. Nano Energy , 2019, 66 : 104092
CrossRef ADS Google scholar
[26]
N.X. Yang, Q.Yan, Q.F. Sun. Linear and nonlinear thermoelectric transport in a magnetic topological insulator nanoribbon with a domain wall. Phys. Rev. B , 2020, 102( 24): 245412
CrossRef ADS Google scholar
[27]
X.L. Lü, Y.Xie, H.Xie. Topological and magnetic phase transition in silicene-like zigzag nanoribbons. New J. Phys. , 2018, 20( 4): 043054
CrossRef ADS Google scholar
[28]
K.Jatiyanon, B.Soodchomshom. Spin-valley and layer polarizations induced by topological phase transitions in bilayer silicene. Superlatt. Microstruct. , 2018, 120 : 540
CrossRef ADS Google scholar
[29]
M.Wei, M.Zhou, B.Wang, Y.Xing. Thermoelectric transport properties of ferromagnetic graphene with CT-invariant quantum spin Hall effect. Phys. Rev. B , 2020, 102( 7): 075432
CrossRef ADS Google scholar
[30]
Z.Z. Yu G.H. Xiong L.F. Zhang, A brief review of thermal transport in mesoscopic systems from nonequilibrium Green’s function approach, Front. Phys. 16(4), 43201 ( 2021)
[31]
S.R. Power, M.R. Thomsen, A.P. Jauho, T.G. Pedersen. Electron trajectories and magnetotransport in nanopatterned graphene under commensurability conditions. Phys. Rev. B , 2017, 96( 7): 075425
CrossRef ADS Google scholar
[32]
T.Stegmann, N.Szpak. Current splitting and valley polarization in elastically deformed graphene. 2D Mater. , 2019, 6( 1): 015024
CrossRef ADS Google scholar
[33]
M.Calvo, F.de Juan, R.Ilan, E.Fox, A.Bestwick, M.Mühlbauer, J.Wang, C.Ames, P.Leubner, C.Brüne, S.C. Zhang, H.Buhmann, L.W. Molenkamp, D.Goldhaber-Gordon. Interplay of chiral and helical states in a quantum spin Hall insulator lateral junction. Phys. Rev. Lett. , 2017, 119( 22): 226401
CrossRef ADS Google scholar
[34]
B.Zhou, B.Zhou, X.Chen, W.Liao, G.Zhou. Symmetry-dependent spin-charge transport and thermopower through a ZSiNR-based FM/normal/FM junction. J. Phys.: Condens. Matter , 2015, 27( 46): 465301
CrossRef ADS Google scholar

Acknowledgements

This work was supported by the Starting Foundation of Chongqing College of Electronic Engineering (Grant No. 120727), the National Natural Science Foundation of China (No. 11847301), the Natural Science Foundation of Chongqing (No. cstc2020jcyj-msxmX0860), and the Fundamental Research Funds for the Central Universities of China (No. 2021CDJZYJH-003).

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(9182 KB)

Accesses

Citations

Detail

Sections
Recommended

/