HSH-carbon: A novel sp2−sp3 carbon allotrope with an ultrawide energy gap
Jia-Qi Liu, Qian Gao, Zhen-Peng Hu
HSH-carbon: A novel sp2−sp3 carbon allotrope with an ultrawide energy gap
An sp2-sp3 hybrid carbon allotrope named HSH-carbon is proposed by the first-principles calculations. The structure of HSH-carbon can be regarded as a template polymerization of [1.1.1]propellane molecules in a hexagonal lattice, as well as, an AA stacking of recently reported HSH-C10 consisting of carbon trigonal bipyramids. Based on calculations, the stability of this structure is demonstrated in terms of the cohesive energy, phonon dispersion, Born−Huang stability criteria, and ab initio molecular dynamics. HSH-carbon is predicted to be a semiconductor with an indirect energy gap of 3.56 eV at the PBE level or 4.80 eV at the HSE06 level. It is larger than the gap of Si and close to the gap of c-diamond, which indicates HSH-carbon is potentially an ultrawide bandgap semiconductor. The effective masses of carriers in the VB and CB edge are comparable with wide bandgap semiconductors such as GaN and ZnO. The elastic behavior of HSH-carbon such as bulk modulus, Young’s modulus and shear modulus is comparable with that of T-carbon and much smaller than that of c-diamond, which suggests that HSH-carbon would be much easier to be processed than c-diamond in practice.
first-principles calculation / novel carbon allotropes / pentagonal ring
[1] |
R.Eastmond, T.R. Johnson, D.R. M. Walton. Silylation as a protective method for terminal alkynes in oxidative couplings: A general synthesis of the parent polyynes H(C≡C)nH (n = 4–10, 12). Tetrahedron , 1972, 28( 17): 4601
CrossRef
ADS
Google scholar
|
[2] |
A.Karpfen. Ab initio studies on polymers (I): The linear infinite polyyne. J. Phys. C , 1979, 12( 16): 3227
CrossRef
ADS
Google scholar
|
[3] |
D.D. L. Chung. Review graphite. J. Mater. Sci. , 2002, 37( 8): 1475
CrossRef
ADS
Google scholar
|
[4] |
K.S. Novoselov, A.K. Geim, S.V. Morozov, D.Jiang, Y.Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov. Electric field effect in atomically thin carbon films. Science , 2004, 306( 5696): 666
CrossRef
ADS
Google scholar
|
[5] |
H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley. C60: Buckminsterfullerene. Nature , 1985, 318( 6042): 162
CrossRef
ADS
Google scholar
|
[6] |
S.Iijima. Helical microtubules of graphitic carbon. Nature , 1991, 354( 6348): 56
CrossRef
ADS
Google scholar
|
[7] |
Z.S. Zhao, B.Xu, X.F. Zhou, L.M. Wang, B.Wen, J.L. He, Z.Y. Liu, H.T. Wang, Y.J. Tian. Novel superhard carbon: C-centered orthorhombic C8. Phys. Rev. Lett. , 2011, 107( 21): 215502
CrossRef
ADS
Google scholar
|
[8] |
M.M. Haley, S.C. Brand, J.J. Pak. Carbon networks based on dehydrobenzoannulenes: Synthesis of graphdiyne substructures. Angew. Chem. Int. Ed. Engl. , 1997, 36( 8): 836
CrossRef
ADS
Google scholar
|
[9] |
Y.J. Li, L.Xu, H.B. Liu, Y.L. Li. Graphdiyne and graphyne: From theoretical predictions to practical construction. Chem. Soc. Rev. , 2014, 43( 8): 2572
CrossRef
ADS
Google scholar
|
[10] |
F.Diederich, M.Kivala. All-carbon scaffolds by rational design. Adv. Mater. , 2010, 22( 7): 803
CrossRef
ADS
Google scholar
|
[11] |
R.S. Zhang, J.W. Jiang. The art of designing carbon allotropes. Front. Phys. , 2019, 14( 1): 13401
CrossRef
ADS
Google scholar
|
[12] |
W.Tong, Q.Wei, H.Y. Yan, M.G. Zhang, X.M. Zhu. Accelerating inverse crystal structure prediction by machine learning: A case study of carbon allotropes. Front. Phys. , 2020, 15( 6): 63501
CrossRef
ADS
Google scholar
|
[13] |
N.Zhang, J.Y. Wu, T.Y. Yu, J.Q. Lv, H.Liu, X.P. Xu. Theory, preparation, properties and catalysis application in 2D graphynes-based materials. Front. Phys. , 2021, 16( 2): 23201
CrossRef
ADS
Google scholar
|
[14] |
X.L. Sheng, Q.B. Yan, F.Ye, Q.R. Zheng, G.Su. T-carbon: A novel carbon allotrope. Phys. Rev. Lett. , 2011, 106( 15): 155703
CrossRef
ADS
Google scholar
|
[15] |
G.Z. Qin, K.R. Hao, Q.B. Yan, M.Hu, G.Su. Exploring T-carbon for energy applications. Nanoscale , 2019, 11( 13): 5798
CrossRef
ADS
Google scholar
|
[16] |
L.C. Bai, P.P. Sun, B.Liu, Z.S. Liu, K.Zhou. Mechanical behaviors of T-carbon: A molecular dynamics study. Carbon , 2018, 138 : 357
CrossRef
ADS
Google scholar
|
[17] |
X.W. Yi, Z.Zhang, Z.W. Liao, X.J. Dong, J.Y. You, G.Su. T-carbon: Experiments, properties, potential applications and derivatives. Nano Today , 2022, 42 : 101346
CrossRef
ADS
Google scholar
|
[18] |
S.H. Zhang, J.Zhou, Q.Wang, X.S. Chen, Y.Kawazoe, P.Jena. Penta-graphene: A new carbon allotrope. Proc. Natl Acad. Sci. , 2015, 112( 8): 2372
CrossRef
ADS
Google scholar
|
[19] |
C.P. Ewels, X.Rocquefelte, H.W. Kroto, M.J. Rayson, P.R. Briddon, M.I. Heggie. Predicting experimentally stable allotropes: Instability of penta-graphene. Proc. Natl Acad. Sci. USA , 2015, 112( 51): 15609
CrossRef
ADS
Google scholar
|
[20] |
Y.Fujii, M.Maruyama, N.T. Cuong, S.Okada. Pentadiamond: A hard carbon allotrope of a pentagonal network of sp2 and sp3 C atoms. Phys. Rev. Lett. , 2020, 125( 1): 016001
CrossRef
ADS
Google scholar
|
[21] |
V.V. Brazhkin M.V. Kondrin A.G. Kvashnin E.Mazhnik A.R. Oganov, Comment on “Pentadiamond: A hard carbon allotrope of a pentagonal network of sp2 and sp3 atoms” , arXiv: 2007.08912 ( 2020)
|
[22] |
Q.Gao, L.Zhang, C.Zheng, S.Lei, S.Li, Z.Hu. HSH-C10: A new quasi-2D carbon allotrope with a honeycomb-star-honeycomb lattice. Chin. Chem. Lett. , 2022, 33( 8): 3941
CrossRef
ADS
Google scholar
|
[23] |
G.Kresse, J.Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B , 1996, 54( 16): 11169
CrossRef
ADS
Google scholar
|
[24] |
P.E. Blöchl. Projector augmented-wave method. Phys. Rev. B , 1994, 50( 24): 17953
CrossRef
ADS
Google scholar
|
[25] |
J.P. Perdew, K.Burke, M.Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett. , 1996, 77( 18): 3865
CrossRef
ADS
Google scholar
|
[26] |
A.Togo, I.Tanaka. First principles phonon calculations in materials science. Scr. Mater. , 2015, 108 : 1
CrossRef
ADS
Google scholar
|
[27] |
J.Y. Zhang, R.Wang, X.Zhu, A.F. Pan, C.X. Han, X.Li, Z.Dan, C.S. Ma, W.J. Wang, H.B. Su, C.M. Niu. Pseudo-topotactic conversion of carbon nanotubes to T-carbon nanowires under picosecond laser irradiation in methanol. Nat. Commun. , 2017, 8( 1): 683
CrossRef
ADS
Google scholar
|
[28] |
M.Born, K.Huang. Dynamical theory of crystal lattices. Am. J. Phys. , 1955, 23( 7): 474
CrossRef
ADS
Google scholar
|
[29] |
M.Born. On the stability of crystal lattices (I). Math. Proc. Cambridge Philos. Soc. , 2008, 36( 2): 160
CrossRef
ADS
Google scholar
|
[30] |
L.M. Wang. Relationship between intrinsic breakdown field and bandgap of materials. 25th International Conference on Microelectronics , 2006,
CrossRef
ADS
Google scholar
|
[31] |
F.Nava, C.Canali, C.Jacoboni, L.Reggiani, S.F. Kozlov. Electron effective masses and lattice scattering in natural diamond. Solid State Commun. , 1980, 33( 4): 475
CrossRef
ADS
Google scholar
|
[32] |
Y.N. Xu, W.Y. Ching. Electronic, optical, and structural properties of some wurtzite crystals. Phys. Rev. B , 1993, 48( 7): 4335
CrossRef
ADS
Google scholar
|
[33] |
D.H. Chung. Elastic moduli of single crystal and polycrystalline MgO. Phil. Mag. , 1963, 8( 89): 833
CrossRef
ADS
Google scholar
|
[34] |
O.L. Anderson. A simplified method for calculating the debye temperature from elastic constants. J. Phys. Chem. Solids , 1963, 24( 7): 909
CrossRef
ADS
Google scholar
|
[35] |
A.Marmier, Z.A. D. Lethbridge, R.I. Walton, C.W. Smith, S.C. Parker, K.E. Evans. ElAM: A computer program for the analysis and representation of anisotropic elastic properties. Comput. Phys. Commun. , 2010, 181( 12): 2102
CrossRef
ADS
Google scholar
|
[36] |
Hongzhiwei Technology, Device Studio, Version 2021A (2021), www.hzwtech.com/en/software-prosubsub/221.html
|
/
〈 | 〉 |