HSH-carbon: A novel sp2−sp3 carbon allotrope with an ultrawide energy gap

Jia-Qi Liu, Qian Gao, Zhen-Peng Hu

PDF(9740 KB)
PDF(9740 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (6) : 63505. DOI: 10.1007/s11467-022-1187-9
RESEARCH ARTICLE
RESEARCH ARTICLE

HSH-carbon: A novel sp2−sp3 carbon allotrope with an ultrawide energy gap

Author information +
History +

Abstract

An sp2-sp3 hybrid carbon allotrope named HSH-carbon is proposed by the first-principles calculations. The structure of HSH-carbon can be regarded as a template polymerization of [1.1.1]propellane molecules in a hexagonal lattice, as well as, an AA stacking of recently reported HSH-C10 consisting of carbon trigonal bipyramids. Based on calculations, the stability of this structure is demonstrated in terms of the cohesive energy, phonon dispersion, Born−Huang stability criteria, and ab initio molecular dynamics. HSH-carbon is predicted to be a semiconductor with an indirect energy gap of 3.56 eV at the PBE level or 4.80 eV at the HSE06 level. It is larger than the gap of Si and close to the gap of c-diamond, which indicates HSH-carbon is potentially an ultrawide bandgap semiconductor. The effective masses of carriers in the VB and CB edge are comparable with wide bandgap semiconductors such as GaN and ZnO. The elastic behavior of HSH-carbon such as bulk modulus, Young’s modulus and shear modulus is comparable with that of T-carbon and much smaller than that of c-diamond, which suggests that HSH-carbon would be much easier to be processed than c-diamond in practice.

Graphical abstract

Keywords

first-principles calculation / novel carbon allotropes / pentagonal ring

Cite this article

Download citation ▾
Jia-Qi Liu, Qian Gao, Zhen-Peng Hu. HSH-carbon: A novel sp2−sp3 carbon allotrope with an ultrawide energy gap. Front. Phys., 2022, 17(6): 63505 https://doi.org/10.1007/s11467-022-1187-9

References

[1]
R.Eastmond, T.R. Johnson, D.R. M. Walton. Silylation as a protective method for terminal alkynes in oxidative couplings: A general synthesis of the parent polyynes H(C≡C)nH (n = 4–10, 12). Tetrahedron , 1972, 28( 17): 4601
CrossRef ADS Google scholar
[2]
A.Karpfen. Ab initio studies on polymers (I): The linear infinite polyyne. J. Phys. C , 1979, 12( 16): 3227
CrossRef ADS Google scholar
[3]
D.D. L. Chung. Review graphite. J. Mater. Sci. , 2002, 37( 8): 1475
CrossRef ADS Google scholar
[4]
K.S. Novoselov, A.K. Geim, S.V. Morozov, D.Jiang, Y.Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov. Electric field effect in atomically thin carbon films. Science , 2004, 306( 5696): 666
CrossRef ADS Google scholar
[5]
H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley. C60: Buckminsterfullerene. Nature , 1985, 318( 6042): 162
CrossRef ADS Google scholar
[6]
S.Iijima. Helical microtubules of graphitic carbon. Nature , 1991, 354( 6348): 56
CrossRef ADS Google scholar
[7]
Z.S. Zhao, B.Xu, X.F. Zhou, L.M. Wang, B.Wen, J.L. He, Z.Y. Liu, H.T. Wang, Y.J. Tian. Novel superhard carbon: C-centered orthorhombic C8. Phys. Rev. Lett. , 2011, 107( 21): 215502
CrossRef ADS Google scholar
[8]
M.M. Haley, S.C. Brand, J.J. Pak. Carbon networks based on dehydrobenzoannulenes: Synthesis of graphdiyne substructures. Angew. Chem. Int. Ed. Engl. , 1997, 36( 8): 836
CrossRef ADS Google scholar
[9]
Y.J. Li, L.Xu, H.B. Liu, Y.L. Li. Graphdiyne and graphyne: From theoretical predictions to practical construction. Chem. Soc. Rev. , 2014, 43( 8): 2572
CrossRef ADS Google scholar
[10]
F.Diederich, M.Kivala. All-carbon scaffolds by rational design. Adv. Mater. , 2010, 22( 7): 803
CrossRef ADS Google scholar
[11]
R.S. Zhang, J.W. Jiang. The art of designing carbon allotropes. Front. Phys. , 2019, 14( 1): 13401
CrossRef ADS Google scholar
[12]
W.Tong, Q.Wei, H.Y. Yan, M.G. Zhang, X.M. Zhu. Accelerating inverse crystal structure prediction by machine learning: A case study of carbon allotropes. Front. Phys. , 2020, 15( 6): 63501
CrossRef ADS Google scholar
[13]
N.Zhang, J.Y. Wu, T.Y. Yu, J.Q. Lv, H.Liu, X.P. Xu. Theory, preparation, properties and catalysis application in 2D graphynes-based materials. Front. Phys. , 2021, 16( 2): 23201
CrossRef ADS Google scholar
[14]
X.L. Sheng, Q.B. Yan, F.Ye, Q.R. Zheng, G.Su. T-carbon: A novel carbon allotrope. Phys. Rev. Lett. , 2011, 106( 15): 155703
CrossRef ADS Google scholar
[15]
G.Z. Qin, K.R. Hao, Q.B. Yan, M.Hu, G.Su. Exploring T-carbon for energy applications. Nanoscale , 2019, 11( 13): 5798
CrossRef ADS Google scholar
[16]
L.C. Bai, P.P. Sun, B.Liu, Z.S. Liu, K.Zhou. Mechanical behaviors of T-carbon: A molecular dynamics study. Carbon , 2018, 138 : 357
CrossRef ADS Google scholar
[17]
X.W. Yi, Z.Zhang, Z.W. Liao, X.J. Dong, J.Y. You, G.Su. T-carbon: Experiments, properties, potential applications and derivatives. Nano Today , 2022, 42 : 101346
CrossRef ADS Google scholar
[18]
S.H. Zhang, J.Zhou, Q.Wang, X.S. Chen, Y.Kawazoe, P.Jena. Penta-graphene: A new carbon allotrope. Proc. Natl Acad. Sci. , 2015, 112( 8): 2372
CrossRef ADS Google scholar
[19]
C.P. Ewels, X.Rocquefelte, H.W. Kroto, M.J. Rayson, P.R. Briddon, M.I. Heggie. Predicting experimentally stable allotropes: Instability of penta-graphene. Proc. Natl Acad. Sci. USA , 2015, 112( 51): 15609
CrossRef ADS Google scholar
[20]
Y.Fujii, M.Maruyama, N.T. Cuong, S.Okada. Pentadiamond: A hard carbon allotrope of a pentagonal network of sp2 and sp3 C atoms. Phys. Rev. Lett. , 2020, 125( 1): 016001
CrossRef ADS Google scholar
[21]
V.V. Brazhkin M.V. Kondrin A.G. Kvashnin E.Mazhnik A.R. Oganov, Comment on “Pentadiamond: A hard carbon allotrope of a pentagonal network of sp2 and sp3 atoms” , arXiv: 2007.08912 ( 2020)
[22]
Q.Gao, L.Zhang, C.Zheng, S.Lei, S.Li, Z.Hu. HSH-C10: A new quasi-2D carbon allotrope with a honeycomb-star-honeycomb lattice. Chin. Chem. Lett. , 2022, 33( 8): 3941
CrossRef ADS Google scholar
[23]
G.Kresse, J.Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B , 1996, 54( 16): 11169
CrossRef ADS Google scholar
[24]
P.E. Blöchl. Projector augmented-wave method. Phys. Rev. B , 1994, 50( 24): 17953
CrossRef ADS Google scholar
[25]
J.P. Perdew, K.Burke, M.Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett. , 1996, 77( 18): 3865
CrossRef ADS Google scholar
[26]
A.Togo, I.Tanaka. First principles phonon calculations in materials science. Scr. Mater. , 2015, 108 : 1
CrossRef ADS Google scholar
[27]
J.Y. Zhang, R.Wang, X.Zhu, A.F. Pan, C.X. Han, X.Li, Z.Dan, C.S. Ma, W.J. Wang, H.B. Su, C.M. Niu. Pseudo-topotactic conversion of carbon nanotubes to T-carbon nanowires under picosecond laser irradiation in methanol. Nat. Commun. , 2017, 8( 1): 683
CrossRef ADS Google scholar
[28]
M.Born, K.Huang. Dynamical theory of crystal lattices. Am. J. Phys. , 1955, 23( 7): 474
CrossRef ADS Google scholar
[29]
M.Born. On the stability of crystal lattices (I). Math. Proc. Cambridge Philos. Soc. , 2008, 36( 2): 160
CrossRef ADS Google scholar
[30]
L.M. Wang. Relationship between intrinsic breakdown field and bandgap of materials. 25th International Conference on Microelectronics , 2006, 576
CrossRef ADS Google scholar
[31]
F.Nava, C.Canali, C.Jacoboni, L.Reggiani, S.F. Kozlov. Electron effective masses and lattice scattering in natural diamond. Solid State Commun. , 1980, 33( 4): 475
CrossRef ADS Google scholar
[32]
Y.N. Xu, W.Y. Ching. Electronic, optical, and structural properties of some wurtzite crystals. Phys. Rev. B , 1993, 48( 7): 4335
CrossRef ADS Google scholar
[33]
D.H. Chung. Elastic moduli of single crystal and polycrystalline MgO. Phil. Mag. , 1963, 8( 89): 833
CrossRef ADS Google scholar
[34]
O.L. Anderson. A simplified method for calculating the debye temperature from elastic constants. J. Phys. Chem. Solids , 1963, 24( 7): 909
CrossRef ADS Google scholar
[35]
A.Marmier, Z.A. D. Lethbridge, R.I. Walton, C.W. Smith, S.C. Parker, K.E. Evans. ElAM: A computer program for the analysis and representation of anisotropic elastic properties. Comput. Phys. Commun. , 2010, 181( 12): 2102
CrossRef ADS Google scholar
[36]
Hongzhiwei Technology, Device Studio, Version 2021A (2021), www.hzwtech.com/en/software-prosubsub/221.html

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12134019 and 21773124), the Fundamental Research Funds for the Central Universities Nankai University (Nos. 63221346 and 63213042), the Supercomputing Center of Nankai University (NKSC), and the Prop plan from Hongzhiwei Technology.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(9740 KB)

Accesses

Citations

Detail

Sections
Recommended

/