Formation of topological domain walls and quantum transport properties of zero-line modes in commensurate bilayer graphene systems

Junjie Zeng, Rui Xue, Tao Hou, Yulei Han, Zhenhua Qiao

PDF(14776 KB)
PDF(14776 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (6) : 63503. DOI: 10.1007/s11467-022-1185-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Formation of topological domain walls and quantum transport properties of zero-line modes in commensurate bilayer graphene systems

Author information +
History +

Abstract

We study theoretically the construction of topological conducting domain walls with a finite width between AB/BA stacking regions via finite element method in bilayer graphene systems with tunable commensurate twisting angles. We find that the smaller is the twisting angle, the more significant the lattice reconstruction would be, so that sharper domain boundaries declare their existence. We subsequently study the quantum transport properties of topological zero-line modes which can exist because of the said domain boundaries via Green’s function method and Landauer−Büttiker formalism, and find that in scattering regions with tri-intersectional conducting channels, topological zero-line modes both exhibit robust behavior exemplified as the saturated total transmissionGtot ≈ 2e2/h and obey a specific pseudospin-conserving current partition law among the branch transport channels. The former property is unaffected by Aharonov−Bohm effect due to a weak perpendicular magnetic field, but the latter is not. Results from our genuine bilayer hexagonal system suggest a twisting angle aroundθ ≈ 0.1° for those properties to be expected, consistent with the existing experimental reports.

Graphical abstract

Keywords

twistronics / lattice reconstruction / topological domain wall / zero-line mode / quantum transport

Cite this article

Download citation ▾
Junjie Zeng, Rui Xue, Tao Hou, Yulei Han, Zhenhua Qiao. Formation of topological domain walls and quantum transport properties of zero-line modes in commensurate bilayer graphene systems. Front. Phys., 2022, 17(6): 63503 https://doi.org/10.1007/s11467-022-1185-y

References

[1]
Y. Cao , V. Fatemi , S. Fang , K. Watanabe , T. Taniguchi , E. Kaxiras , P. Jarillo-Herrero . Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556( 7699): 43
CrossRef ADS Google scholar
[2]
H. C. Po , L. Zou , A. Vishwanath , T. Senthil . Origin of Mott insulating behavior and superconductivity in twisted bilayer graphene. Phys. Rev. X, 2018, 8( 3): 031089
CrossRef ADS Google scholar
[3]
E. Codecido , Q. Wang , R. Koester , S. Che , H. Tian , R. Lv , S. Tran , K. Watanabe , T. Taniguchi , F. Zhang , M. Bockrath , C. N. Lau . Correlated insulating and superconducting states in twisted bilayer graphene below the magic angle. Sci. Adv., 2019, 5( 9): eaaw9770
CrossRef ADS Google scholar
[4]
H. S. Arora , R. Polski , Y. Zhang , A. Thomson , Y. Choi , H. Kim , Z. Lin , I. Z. Wilson , X. Xu , J. H. Chu , K. Watanabe , T. Taniguchi , J. Alicea , S. Nadj-Perge . Superconductivity in metallic twisted bilayer graphene stabilized by WSe2. Nature, 2020, 583( 7816): 379
CrossRef ADS Google scholar
[5]
Z. Hao , A. M. Zimmerman , P. Ledwith , E. Khalaf , D. H. Najafabadi , K. Watanabe , T. Taniguchi , A. Vishwanath , P. Kim . Electric field–tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science, 2021, 371( 6534): 1133
CrossRef ADS Google scholar
[6]
Y. Cao , V. Fatemi , A. Demir , S. Fang , S. L. Tomarken , J. Y. Luo , J. D. Sanchez-Yamagishi , K. Watanabe , T. Taniguchi , E. Kaxiras , R. C. Ashoori , P. Jarillo-Herrero . Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 2018, 556( 7699): 80
CrossRef ADS Google scholar
[7]
M. J. Calderon , E. Bascones . Correlated states in magic angle twisted bilayer graphene under the optical conductivity scrutiny. npj Quantum Mater., 2020, 5 : 57
CrossRef ADS Google scholar
[8]
C. Zhang , C. P. Chuu , X. Ren , M. Y. Li , L. J. Li , C. Jin , M. Y. Chou , C. K. Shih , Interlayer couplings . Moiré patterns, and 2D electronic superlattices in MoS2 /WSe2 hetero-bilayers. Sci. Adv., 2017, 3( 1): e1601459
CrossRef ADS Google scholar
[9]
C. Jin , E. C. Regan , A. Yan , M. I. B. Utama , D. Wang , S. Zhao , Y. Qin , S. Yang , Z. Zheng , S. Shi , K. Watanabe , T. Taniguchi , S. Tongay , A. Zettl , F. Wang . Observation of Moiré excitons in WSe2/WS2 heterostructure superlattices. Nature, 2019, 567( 7746): 76
CrossRef ADS Google scholar
[10]
K. L. Seyler , P. Rivera , H. Yu , N. P. Wilson , E. L. Ray , D. G. Mandrus , J. Yan , W. Yao , X. Xu . Signatures of Moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature, 2019, 567( 7746): 66
CrossRef ADS Google scholar
[11]
K. Tran , G. Moody , F. Wu , X. Lu , J. Choi , K. Kim , A. Rai , D. A. Sanchez , J. Quan , A. Singh , J. Embley , A. Zepeda , M. Campbell , T. Autry , T. Taniguchi , K. Watanabe , N. Lu , S. K. Banerjee , K. L. Silverman , S. Kim , E. Tutuc , L. Yang , A. H. MacDonald , X. Li . Evidence for Moiré excitons in van der Waals heterostructures. Nature, 2019, 567( 7746): 71
CrossRef ADS Google scholar
[12]
H. Liu , Y. Zong , P. Wang , H. Wen , H. Wu , J. Xia , Z. Wei . Excitons in two-dimensional van der Waals heterostructures. J. Phys. D Appl. Phys., 2021, 54( 5): 053001
CrossRef ADS Google scholar
[13]
L. Zhang , Z. Zhang , F. Wu , D. Wang , R. Gogna , S. Hou , K. Watanabe , T. Taniguchi , K. Kulkarni , T. Kuo , S. R. Forrest , H. Deng . Twist-angle dependence of Moiré excitons in WS2/MoSe2 heterobilayers. Nat. Commun., 2020, 11( 1): 5888
CrossRef ADS Google scholar
[14]
S. Brem , C. Linderalv , P. Erhart , E. Malic . Tunable phases of Moiré excitons in van der Waals heterostructures. Nano Lett., 2020, 20( 12): 8534
CrossRef ADS Google scholar
[15]
Z. Song , Z. Wang , W. Shi , G. Li , C. Fang , B. A. Bernevig . All magic angles in twisted bilayer graphene are topological. Phys. Rev. Lett., 2019, 123( 3): 036401
CrossRef ADS Google scholar
[16]
K. P. Nuckolls , M. Oh , D. Wong , B. Lian , K. Watanabe , T. Taniguchi , B. A. Bernevig , A. Yazdani . Strongly correlated Chern insulators in magic-angle twisted bilayer graphene. Nature, 2020, 588( 7839): 610
CrossRef ADS Google scholar
[17]
S. Wu , Z. Zhang , K. Watanabe , T. Taniguchi , E. Y. Andrei . Chern insulators, van Hove singularities and topological flat bands in magic-angle twisted bilayer graphene. Nat. Mater., 2021, 20( 4): 488
CrossRef ADS Google scholar
[18]
P. Stepanov M. Xie T. Taniguchi K. Watanabe X. Lu A. H. MacDonald B. A. Bernevig D. K. Efetov, Competing zero-field Chern insulators in superconducting twisted bilayer graphene, arXiv: 2012.15126 (2020)
[19]
C. Repellin , T. Senthil . Chern bands of twisted bilayer graphene: Fractional Chern insulators and spin phase transition. Phys. Rev. Res., 2020, 2( 2): 023238
CrossRef ADS Google scholar
[20]
M. J. Park , Y. Kim , G. Y. Cho , S. B. Lee . Higher-order topological insulator in twisted bilayer graphene. Phys. Rev. Lett., 2019, 123( 21): 216803
CrossRef ADS Google scholar
[21]
B. Liu , L. Xian , H. Mu , G. Zhao , Z. Liu , A. Rubio , Z. F. Wang . Higher-order band topology in twisted Moiré superlattice. Phys. Rev. Lett., 2021, 126( 6): 066401
CrossRef ADS Google scholar
[22]
M. J. Park , S. Jeon , S. B. Lee , H. C. Park , Y. Kim . Higher-order topological corner state tunneling in twisted bilayer graphene. Carbon, 2021, 174 : 260
CrossRef ADS Google scholar
[23]
J. M. B. Lopes dos Santos , N. M. R. Peres , A. H. Castro Neto . Graphene bilayer with a twist: Electronic structure. Phys. Rev. Lett., 2007, 99( 25): 256802
CrossRef ADS Google scholar
[24]
R. Bistritzer , A. H. MacDonald . Moiré bands in twisted double-layer graphene. Proc. Natl. Acad. Sci. USA, 2011, 108( 30): 12233
CrossRef ADS Google scholar
[25]
S. Carr , S. Fang , Z. Zhu , E. Kaxiras . Exact continuum model for low-energy electronic states of twisted bilayer graphene. Phys. Rev. Res., 2019, 1( 1): 013001
CrossRef ADS Google scholar
[26]
L. Balents . General continuum model for twisted bilayer graphene and arbitrary smooth deformations. SciPost Phys., 2019, 7 : 048
CrossRef ADS Google scholar
[27]
F. Guinea , N. R. Walet . Continuum models for twisted bilayer graphene: Effect of lattice deformation and hopping parameters. Phys. Rev. B, 2019, 99( 20): 205134
CrossRef ADS Google scholar
[28]
V. T. Phong , E. J. Mele . Obstruction and interference in low-energy models for twisted bilayer graphene. Phys. Rev. Lett., 2020, 125( 17): 176404
CrossRef ADS Google scholar
[29]
M. Koshino , N. N. T. Nam . Effective continuum model for relaxed twisted bilayer graphene and Moiré electron−phonon interaction. Phys. Rev. B, 2020, 101( 19): 195425
CrossRef ADS Google scholar
[30]
E. Y. Andrei , A. H. MacDonald . Graphene bilayers with a twist. Nat. Mater., 2020, 19( 12): 1265
CrossRef ADS Google scholar
[31]
N. N. T. Nam , M. Koshino . Lattice relaxation and energy band modulation in twisted bilayer graphene. Phys. Rev. B, 2017, 96( 7): 075311
CrossRef ADS Google scholar
[32]
V. Perebeinos , J. Tersoff , P. Avouris . Phonon-mediated interlayer conductance in twisted graphene bilayers. Phys. Rev. Lett., 2012, 109( 23): 236604
CrossRef ADS Google scholar
[33]
G. Trambly de Laissardière , D. Mayou , L. Magaud . Numerical studies of confined states in rotated bilayers of graphene. Phys. Rev. B, 2012, 86( 12): 125413
CrossRef ADS Google scholar
[34]
P. Moon , M. Koshino . Energy spectrum and quantum Hall effect in twisted bilayer graphene. Phys. Rev. B, 2012, 85( 19): 195458
CrossRef ADS Google scholar
[35]
M. Anđelković , L. Covaci , F. M. Peeters . DC conductivity of twisted bilayer graphene: Angle-dependent transport properties and effects of disorder. Phys. Rev. Mater., 2018, 2( 3): 034004
CrossRef ADS Google scholar
[36]
H. C. Po , L. Zou , T. Senthil , A. Vishwanath . Faithful tight-binding models and fragile topology of magic-angle bilayer graphene. Phys. Rev. B, 2019, 99( 19): 195455
CrossRef ADS Google scholar
[37]
F. Gargiulo , O. V Yazyev . Structural and electronic transformation in low-angle twisted bilayer grapheme. 2D Mater., 2017, 5 : 015019
CrossRef ADS Google scholar
[38]
W. Yan , W. Y. He , Z. D. Chu , M. Liu , L. Meng , R. F. Dou , Y. Zhang , Z. Liu , J. C. Nie , L. He . Strain and curvature induced evolution of electronic band structures in twisted graphene bilayer. Nat. Commun., 2013, 4( 1): 2159
CrossRef ADS Google scholar
[39]
H. Yoo , R. Engelke , S. Carr , S. Fang , K. Zhang , P. Cazeaux , S. H. Sung , R. Hovden , A. W. Tsen , T. Taniguchi , K. Watanabe , G. C. Yi , M. Kim , M. Luskin , E. B. Tadmor , E. Kaxiras , P. Kim . Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater., 2019, 18( 5): 448
CrossRef ADS Google scholar
[40]
H. Shi , Z. Zhan , Z. Qi , K. Huang , E. van Veen , J. Á. Silva-Guillén , R. Zhang , P. Li , K. Xie , H. Ji , M. I. Katsnelson , S. Yuan , S. Qin , Z. Zhang . Large-area, periodic, and tunable intrinsic pseudo-magnetic fields in low-angle twisted bilayer graphene. Nat. Commun., 2020, 11( 1): 371
CrossRef ADS Google scholar
[41]
Y. W. Liu , Y. Su , X. F. Zhou , L. J. Yin , C. Yan , S. Y. Li , W. Yan , S. Han , Z. Q. Fu , Y. Zhang , Q. Yang , Y. N. Ren , L. He . Tunable lattice reconstruction, triangular network of chiral one-dimensional states, and bandwidth of flat bands in magic angle twisted bilayer graphene. Phys. Rev. Lett., 2020, 125( 23): 236102
CrossRef ADS Google scholar
[42]
K. Uchida , S. Furuya , J. I. Iwata , A. Oshiyama . Atomic corrugation and electron localization due to Moiré patterns in twisted bilayer graphenes. Phys. Rev. B, 2014, 90( 15): 155451
CrossRef ADS Google scholar
[43]
S. K Jain , V. Juričić , G. T Barkema . Structure of twisted and buckled bilayer grapheme. 2D Mater., 2016, 4 : 015018
CrossRef ADS Google scholar
[44]
S. Dai , Y. Xiang , D. J. Srolovitz . Twisted bilayer graphene: Moiré with a twist. Nano Lett., 2016, 16( 9): 5923
CrossRef ADS Google scholar
[45]
M. M. van Wijk , A. Schuring , M. I. Katsnelson , A. Fasolino . Relaxation of Moiré patterns for slightly misaligned identical lattices: Graphene on graphite. 2D Mater., 2015, 2 : 034010
CrossRef ADS Google scholar
[46]
H. Goldstein C. Poole J. Safko, Classical Mechanics, 3rd Ed., Higher Education Press, Beijing, 2005
[47]
X. Lin , H. Zhu , J. Ni . Pressure-induced gap modulation and topological transitions in twisted bilayer and twisted double bilayer graphene. Phys. Rev. B, 2020, 101( 15): 155405
CrossRef ADS Google scholar
[48]
P. San-Jose , A. Gutierrez-Rubio , M. Sturla , F. Guinea . Spontaneous strains and gap in graphene on boron nitride. Phys. Rev. B, 2014, 90( 7): 075428
CrossRef ADS Google scholar
[49]
P. San-Jose , A. Gutierrez-Rubio , M. Sturla , F. Guinea . Electronic structure of spontaneously strained graphene on hexagonal boron nitride. Phys. Rev. B, 2014, 90( 11): 115152
CrossRef ADS Google scholar
[50]
H. Suzuura , T. Ando . Phonons and electron−phonon scattering in carbon nanotubes. Phys. Rev. B, 2002, 65( 23): 235412
CrossRef ADS Google scholar
[51]
R. Jackiw , C. Rebbi . Solitons with fermion number 1/2. Phys. Rev. D, 1976, 13( 12): 3398
CrossRef ADS Google scholar
[52]
S. Q. Shen, Topological Insulators: Dirac Equation in Condensed Matter, 2nd Ed., Springer-Verlag GmbH, Singapore, 2017
[53]
L. J. Yin , H. Jiang , J. B. Qiao , L. He . Direct imaging of topological edge states at a bilayer graphene domain wall. Nat. Commun., 2016, 7( 1): 11760
CrossRef ADS Google scholar
[54]
T. Hou , G. Cheng , W. K. Tse , C. Zeng , Z. Qiao . Topological zero-line modes in folded bilayer graphene. Phys. Rev. B, 2018, 98( 24): 245417
CrossRef ADS Google scholar
[55]
Y. Ren , Z. Qiao , Q. Niu . Topological phases in two-dimensional materials: A review. Rep. Prog. Phys., 2016, 79( 6): 066501
CrossRef ADS Google scholar
[56]
Y. T. Zhang , Z. Qiao , Q. F. Sun . Detecting zero-line mode in bilayer graphene via the quantum Hall effect. Phys. Rev. B, 2013, 87( 23): 235405
CrossRef ADS Google scholar
[57]
L. Ju , Z. Shi , N. Nair , Y. Lv , C. Jin , J. Jr Velasco , C. Ojeda-Aristizabal , H. A. Bechtel , M. C. Martin , A. Zettl , J. Analytis , F. Wang . Topological valley transport at bilayer graphene domain walls. Nature, 2015, 520( 7549): 650
CrossRef ADS Google scholar
[58]
X. Bi , J. Jung , Z. Qiao . Role of geometry and topological defects in the one-dimensional zero-line modes of graphene. Phys. Rev. B, 2015, 92( 23): 235421
CrossRef ADS Google scholar
[59]
J. Li , K. Wang , K. J. McFaul , Z. Zern , Y. Ren , K. Watanabe , T. Taniguchi , Z. Qiao , J. Zhu . Gate-controlled topological conducting channels in bilayer graphene. Nat. Nanotechnol., 2016, 11( 12): 1060
CrossRef ADS Google scholar
[60]
K. Wang , Y. Ren , X. Deng , S. A. Yang , J. Jung , Z. Qiao . Gate-tunable current partition in graphene-based topological zero lines. Phys. Rev. B, 2017, 95( 24): 245420
CrossRef ADS Google scholar
[61]
Y. Ren , J. Zeng , K. Wang , F. Xu , Z. Qiao . Tunable current partition at zero-line intersection of quantum anomalous Hall topologies. Phys. Rev. B, 2017, 96( 15): 155445
CrossRef ADS Google scholar
[62]
K. Wang , T. Hou , Y. Ren , Z. Qiao . Enhanced robustness of zero-line modes in graphene via magnetic field. Front. Phys., 2019, 14( 2): 23501
CrossRef ADS Google scholar
[63]
T. Hou , Y. Ren , Y. Quan , J. Jung , W. Ren , Z. Qiao . Metallic network of topological domain walls. Phys. Rev. B, 2020, 101( 20): 201403
CrossRef ADS Google scholar
[64]
T. Hou , Y. Ren , Y. Quan , J. Jung , W. Ren , Z. Qiao . Valley current splitter in minimally twisted bilayer graphene. Phys. Rev. B, 2020, 102( 8): 085433
CrossRef ADS Google scholar
[65]
Z. Qiao , J. Jung , C. Lin , Y. Ren , A. H. MacDonald , Q. Niu . Current partition at topological channel intersections. Phys. Rev. Lett., 2014, 112( 20): 206601
CrossRef ADS Google scholar
[66]
Z. Yan , T. Hou , Y. Han , X. Xu , Z. Qiao . Electronic properties of zero-line modes in bilayer graphene: An ab initio study. Phys. Rev. B, 2022, 105( 3): 035425
CrossRef ADS Google scholar
[67]
M. Kim , J. H. Choi , S. H. Lee , K. Watanabe , T. Taniguchi , S. H. Jhi , H. J. Lee . Valley-symmetry-preserved transport in ballistic graphene with gate-defined carrier guiding. Nat. Phys., 2016, 12( 11): 1022
CrossRef ADS Google scholar
[68]
M. A. Bhatti, Advanced Topics in Finite Element Analysis of Structures: With Mathematica and MATLAB Computations, John Wiley & Sons, 2006
[69]
A. Logg K. A. Mardal G. Wells, Automated Solution of Differential Equations by the Finite Element Method, 1st Ed., Springer-Verlag GmbH, Berlin Heidelberg, 2012
[70]
O. C. Zienkiewicz R. L. Taylor J. Z. Zhu, The Finite Element Method: Its Basis and Fundamentals, 7th Ed., Butterworth-Heinemann Elsevier, Amsterdam, 2013
[71]
J. N. Reddy, An Introduction to Nonlinear Finite Element Analysis: With Applications to Heat Transfer, Fluid Mechanics, and Solid Mechanics, 1st Ed., Oxford University Press, Oxford, 2014
[72]
D. Logan, A First Course in the Finite Element Method, 1st Ed., Cengage Learning, Boston, MA, 2017
[73]
S. T. Carr, Moire Patterns in 2D Materials, PHD thesis, Harvard University, 2020
[74]
K. V. Zakharchenko , M. I. Katsnelson , A. Fasolino . Finite temperature lattice properties of graphene beyond the quasiharmonic approximation. Phys. Rev. Lett., 2009, 102( 4): 046808
CrossRef ADS Google scholar
[75]
J. Jung , A. M. DaSilva , A. H. MacDonald , S. Adam . Origin of band gaps in graphene on hexagonal boron nitride. Nat. Commun., 2015, 6( 1): 6308
CrossRef ADS Google scholar
[76]
A. M. Popov , I. V. Lebedeva , A. A. Knizhnik , Y. E. Lozovik , B. V. Potapkin . Commensurate-incommensurate phase transition in bilayer graphene. Phys. Rev. B, 2011, 84( 4): 045404
CrossRef ADS Google scholar
[77]
I. V. Lebedeva , A. A. Knizhnik , A. M. Popov , Y. E. Lozovik , B. V. Potapkin . Interlayer interaction and relative vibrations of bilayer graphene. Phys. Chem. Chem. Phys., 2011, 13( 13): 5687
CrossRef ADS Google scholar
[78]
J. C. Slater , G. F. Koster . Simplified LCAO method for the periodic potential problem. Phys. Rev., 1954, 94( 6): 1498
CrossRef ADS Google scholar
[79]
S. Datta, Electronic Transport in Mesoscopic Systems, 1st Ed., World Publishing Corporation, Beijing, 2004
[80]
S. Datta, Quantum Transport: Atom to Transistor, 1st Ed., Beijing World Publishing Corporation, Beijing, 2007
[81]
Z. Qiao, Charge and spin transport in two-dimensional mesoscopic systems, PHD thesis, University of Hong Kong, 2009
[82]
D. K. Ferry S. M. Goodnick J. Bird, Transport in Nanostructures, 2nd Ed., Cambridge University Press, Cambridge, 2009
[83]
K. Hirose, Quantum Transport Calculations for Nanosystems, 1st Ed., CRC Press, Boca Raton, 2014
[84]
M. D. Ventra, Electrical Transport in Nanoscale Systems, 1st Ed., Cambridge University Press, Cambridge, 2016
[85]
D. Ryndyk, Theory of Quantum Transport at Nanoscale, 1st Ed., Springer-Verlag GmbH, Switzerland, 2015
[86]
M. P. L. Sancho , J. M. L. Sancho , J. Rubio . Quick iterative scheme for the calculation of transfer matrices: Application to Mo(100). J. Phys. F Met. Phys., 1984, 14( 5): 1205
CrossRef ADS Google scholar
[87]
M. P. L. Sancho , J. M. L. Sancho , J. M. L. Sancho , J. Rubio . Highly convergent schemes for the calculation of bulk and surface Green functions. J. Phys. F Met. Phys., 1985, 15( 4): 851
CrossRef ADS Google scholar
[88]
Z. Z. Yu , G. H. Xiong , L. F. Zhang . A brief review of thermal transport in mesoscopic systems from nonequilibrium Green’s function approach. Front. Phys., 2021, 16( 4): 43201
CrossRef ADS Google scholar
[89]
Z. Qiao , J. Wang . A variant transfer matrix method suitable for transport through multi-probe systems. Nanotechnology, 2007, 18( 43): 435402
CrossRef ADS Google scholar
[90]
R. Peierls . Zur Theorie des Diamagnetismus von Leitungselektronen. Z. Phys., 1933, 80 : 763
CrossRef ADS Google scholar
[91]
G. H. Wannier . Dynamics of band electrons in electric and magnetic fields. Rev. Mod. Phys., 1962, 34( 4): 645
CrossRef ADS Google scholar
[92]
E. I. Blount . Bloch electrons in a magnetic field. Phys. Rev., 1962, 126( 5): 1636
CrossRef ADS Google scholar
[93]
W. Kohn . Theory of Bloch electrons in a magnetic field: The effective Hamiltonian. Phys. Rev., 1959, 115( 6): 1460
CrossRef ADS Google scholar
[94]
J. M. Luttinger . The effect of a magnetic field on electrons in a periodic potential. Phys. Rev., 1951, 84( 4): 814
CrossRef ADS Google scholar
[95]
D. R. Hofstadter . Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B, 1976, 14( 6): 2239
CrossRef ADS Google scholar
[96]
R. P. Feynman R. B. Leighton M. Sands, The Feynman Lectures on Physics, The New Millennium Ed., Basic Books, New York, 2011

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51672171, 51861145315, 11804216, and 11974327). The supercomputing services from AM-HPC, the Chinese Scholarship Council, Fundamental Research Funds for the Central Universities (Nos. WK3510000010 and WK2030020032), Anhui Initiative in Quantum Information Technologies. We also thank the supercomputing service of AM-HPC and the Supercomputing Center of University of Science and Technology of China for providing the high performance computing resources.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(14776 KB)

Accesses

Citations

Detail

Sections
Recommended

/