High efficiency giant magnetoresistive device based on two-dimensional MXene (Mn2NO2)

Xiaolin Zhang, Pengwei Gong, Fangqi Liu, Kailun Yao, Jian Wu, Sicong Zhu

PDF(14633 KB)
PDF(14633 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 53510. DOI: 10.1007/s11467-022-1184-z
RESEARCH ARTICLE
RESEARCH ARTICLE

High efficiency giant magnetoresistive device based on two-dimensional MXene (Mn2NO2)

Author information +
History +

Abstract

Due to the unique electronic structure of half-metals, characterized by the conductivity of majority-spin and the band gap of minority-spin, these materials have emerged as suitable alternatives for the design of efficient giant magnetoresistive (GMR) devices. Based on the first-principles calculations, an excellent GMR device has been designed by using two-dimensional (2D) half-metal Mn2NO2. The results show that Mn2NO2 has sandwiched between the Au/nMn2NO2 (n = 1, 2, 3)/Au heterojunction and maintains its half-metallic properties. Due to the half-metallic characteristics of Mn2NO2, the total current of the monolayer device can reach up to 1500 nA in the ferromagnetic state. At low voltage, the maximum GMR is observed to be 1.15 × 1031 %. Further, by increasing the number of layers, the ultra-high GMR at low voltage is still maintained. The developed device is a spintronic device exhibiting the highest magnetoresistive ratio reported theoretically so far. Simultaneously, a significant negative differential resistance (NDR) effect is also observed in the heterojunction. Owing to its excellent half-metallic properties and 2D structure, Mn2NO2 is an ideal energy-saving GMR material.

Graphical abstract

Keywords

half-metals / Mn2NO2 / giant magnetoresistive

Cite this article

Download citation ▾
Xiaolin Zhang, Pengwei Gong, Fangqi Liu, Kailun Yao, Jian Wu, Sicong Zhu. High efficiency giant magnetoresistive device based on two-dimensional MXene (Mn2NO2). Front. Phys., 2022, 17(5): 53510 https://doi.org/10.1007/s11467-022-1184-z

References

[1]
Z.Wang, I.Gutiérrez-Lezama, N.Ubrig, M.Kroner, M.Gibertini, T.Taniguchi, K.Watanabe, A.Imamoğlu, E.Giannini, A.F. Morpurgo. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. , 2018, 9( 1): 2516
CrossRef ADS Google scholar
[2]
Y.Ni, K.L. Yao, C.Q. Tang, G.Y. Gao, H.H. Fu, S.C. Zhu. Perfect spin-filter, spin-valve, switching and negative differential resistance in an organic molecular device with graphene leads. RSC Adv. , 2014, 4( 36): 18522
CrossRef ADS Google scholar
[3]
L.N. Du, Z.C. Wang, G.Z. Zhao. Novel intelligent devices: Two-dimensional materials based memristors. Front. Phys. , 2022, 17( 2): 23602
CrossRef ADS Google scholar
[4]
Z.C. Zhou, F.Y. Yang, S.Wang, L.Wang, X.F. Wang, C.Wang, Y.Xie, Q.Liu. Emerging of two-dimensional materials in novel memristor. Front. Phys. , 2022, 17( 2): 23204
CrossRef ADS Google scholar
[5]
G.Y. Luo, X.Y. Lv, L.Wen, Z.Q. Li, Z.B. Dai. Strain induced topological transitions in twisted double bilayer graphene. Front. Phys. , 2022, 17( 2): 23502
CrossRef ADS Google scholar
[6]
L.Yin, X.C. Wang, W.B. Mi. Ferromagnetic, ferroelectric and optical modulated multiple resistance states in multiferroic tunnel junctions. ACS Appl. Mater. Interfaces , 2019, 11( 1): 1057
CrossRef ADS Google scholar
[7]
S.Yuasa, T.Nagahama, Y.Suzuki. Spin-polarized resonant tunneling in magnetic tunnel junctions. Science , 2002, 297( 5579): 234
CrossRef ADS Google scholar
[8]
M.F. Sun, X.C. Wang, W.B. Mi. Large magnetoresistance in Fe3O4/4, 4'-bipyridine/Fe3O4 organic magnetic tunnel junctions. J. Phys. Chem. C , 2018, 122( 5): 3115
CrossRef ADS Google scholar
[9]
D.Wijethunge, L.Zhang, C.Tang, A.J. Du. Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching. Front. Phys. , 2020, 15( 6): 63504
CrossRef ADS Google scholar
[10]
H.L. Yu, Z.G. Shao, Y.M. Tao, X.F. Jiang, Y.J. Dong, J.Zhang, Y.S. Liu, X.F. Yang, D.J. Chen. Tunable tunneling magnetoresistance in in-plane double barrier magnetic tunnel junctions based on B vacancy h-NB nanoribbons. Phys. Chem. Chem. Phys , 2022, 24 : 3451
CrossRef ADS Google scholar
[11]
J.W. Yan, S.Z. Wang, K.Xia, Y.Q. Ke. Anomalous spin-dependent tunneling statistics in Fe/MgO/Fe junctions induced by disorder at the interface. Phys. Rev. B , 2018, 97( 1): 014404
CrossRef ADS Google scholar
[12]
Y.Taniguchi, Y.Miura, K.Abe, M.Shirai. Theoretical studies on spin-dependent conductance in FePt/MgO/FePt(001) magnetic tunnel junctions. IEEE Trans. Magn. , 2008, 44( 11): 2585
CrossRef ADS Google scholar
[13]
Z.Yan, R.Q. Zhang, X.L. Dong, S.F. Qi, X.H. Xu. Significant tunneling magnetoresistance and excellent spin filtering effect in CrI3-based van der Waals magnetic tunnel junctions. Phys. Chem. Chem. Phys. , 2020, 22( 26): 14773
CrossRef ADS Google scholar
[14]
Y.L. Feng, X.M. Xu, G.Y. Gao. High tunnel magnetoresistance based on 2D Dirac spin gapless semiconductor VCl3. Appl. Phys. Lett. , 2020, 116( 2): 022402
CrossRef ADS Google scholar
[15]
F.F. Li, B.S. Yang, Y.Zhu, X.F. Han, Y.Yan. Ultrahigh tunneling magnetoresistance in van der Waals and lateral magnetic tunnel junctions formed by intrinsic ferromagnets Li0.5CrI3 and CrI3. Appl. Phys. Lett. , 2020, 117( 2): 022412
CrossRef ADS Google scholar
[16]
X.L. Zhang, P.W. Gong, F.Q. Liu, K.L. Yao, S.C. Zhu, Y.Lu. Half-metallic of non-metal-adsorbed AsP and multifunctional two-dimensional spintronic device of impure AsP from first-principles calculations. Physica E , 2022, 137 : 115016
CrossRef ADS Google scholar
[17]
C.D. Zheng, K.Jiang, K.L. Yao, S.C. Zhu, K.M. Wu. The electromagnetic performance of transition metal-substituted monolayer black arsenic-phosphorus. Phys. Chem. Chem. Phys. , 2021, 23( 43): 24570
CrossRef ADS Google scholar
[18]
S.C. Zhu, S.J. Peng, K.M. Wu, C.T. Yip, K.L. Yao, C.H. Lam. Negative differential resistance, perfect spin-filtering effect and tunnel magnetoresistance in vanadium-doped zigzag blue phosphorus nanoribbons. Phys. Chem. Chem. Phys. , 2018, 20( 32): 21105
CrossRef ADS Google scholar
[19]
E.Balcı, Ü.Ö. Akkus, S.Berber. Controlling topological electronic structure of multifunctional MXene layer. Appl. Phys. Lett. , 2018, 113( 8): 083107
CrossRef ADS Google scholar
[20]
E.Balcı, Ü.Ö. Akkus, S.Berber. Band gap modification in doped MXene: Sc2CF2. J. Mater. Chem. C , 2017, 5( 24): 5956
CrossRef ADS Google scholar
[21]
G.Wang, Y.Liao. Theoretical prediction of robust and intrinsic half-metallicity in Ni2N MXene with different types of surface terminations. Appl. Surf. Sci. , 2017, 07 : 249
[22]
S.Chen, J.Zhou, Z.M. Sun. Half-metallic ferromagnetism and surface functionalization-induced metal-insulator transition in graphene-like two-dimensional Cr2C crystals. ACS Appl. Mater. Interfaces , 2015, 7( 31): 17510
CrossRef ADS Google scholar
[23]
G.Wang. Theoretical prediction of the intrinsic half-metallicity in surface-oxygen-passivated Cr2N MXene. J. Phys. Chem. C , 2016, 120( 33): 18850
CrossRef ADS Google scholar
[24]
M.Naguib, O.Mashtalir, J.Carle, V.Presser, J.Lu, L.Hultman, Y.Gogotsi, M.W. Barsoum. Two-dimensional transition metal carbides. ACS Nano , 2012, 6( 2): 1322
CrossRef ADS Google scholar
[25]
M.Khazaei, A.Ranjbar, M.Arai, T.Sasaki, S.Yunoki. Electronic properties and applications of MXenes: A theoretical review. J. Mater. Chem. C , 2017, 5( 10): 2488
CrossRef ADS Google scholar
[26]
R.Qin, G.Shan, M.Hu, W.Huang. Two-dimensional transition metal carbides and/or nitrides (MXenes) and their applications in sensors. Mater. Today Phys. , 2021, 21 : 100527
CrossRef ADS Google scholar
[27]
R.Z. Qin, X.Li, M.J. Hu, G.C. Shan, R.Seeram, M.Yin. Preparation of high-performance MXene/PVA-based flexible pressure sensors with adjustable sensitivity and sensing range. Sens. Actuators A Phys. , 2022, 338 : 113458
CrossRef ADS Google scholar
[28]
Q.Q. Kong X.G. An L.Huang X.L. Wang W.Feng S.Y. Qiu Q.Y. Wang C.H. Sun, A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure and hydrogen evolution performance , Front. Phys. 16(5), 53506 ( 2021)
[29]
G.Wang, Y.Liao. Theoretical prediction of robust and intrinsic half-metallicity in Ni2N MXene with different types of surface terminations. Appl. Surf. Sci. , 2017, 426 : 804
CrossRef ADS Google scholar
[30]
H.Kumar, N.C. Frey, L.Dong, B.Anasori, Y.Gogotsi, V.B. Shenoy. Tunable magnetism and transport properties in nitride MXenes. ACS Nano , 2017, 11( 8): 7648
CrossRef ADS Google scholar
[31]
G.Y. Gao, G.Q. Ding, J.Li, K.L. Yao, M.H. Wu, M.C. Qian. Monolayer MXenes: Promising half-metals and spin gapless semiconductors. Nanoscale , 2016, 8( 16): 8986
CrossRef ADS Google scholar
[32]
Y.W. Son, M.L. Cohen, S.G. Louie. Half-metallic graphene nanoribbons. Nature , 2006, 444( 7117): 347
CrossRef ADS Google scholar
[33]
X.X. Li, X.J. Wu, J.L. Yang. Room-temperature half-metallicity in La (Mn,Zn)AsO alloy via element substitutions. J. Am. Chem. Soc. , 2014, 136( 15): 5664
CrossRef ADS Google scholar
[34]
J.J. He, P.Lyu, P.Nachtigall. New two-dimensional Mn-based MXenes with room-temperature ferromagnetism and half-metallicity. J. Mater. Chem. C , 2016, 4( 47): 11143
CrossRef ADS Google scholar
[35]
J.H. Yang, S.Z. Zhang, A.P. Wang, R.N. Wang, C.K. Wang, G.P. Zhang, L.Chen. High magnetoresistance in ultra-thin two-dimensional Cr-based MXenes. Nanoscale , 2018, 10( 41): 19492
CrossRef ADS Google scholar
[36]
J.Yang, S.Fang, Y.Peng, S.Liu, B.Wu, R.Quhe, S.Ding, C.Yang, J.Ma, B.Shi, L.Xu, X.Sun, G.Tian, C.Wang, J.Shi, J.Lu, J.Yang. Layer-dependent giant magnetoresistance in two-dimensional CrPS4 magnetic tunnel junctions. Phys. Rev. Appl. , 2021, 16( 2): 024011
CrossRef ADS Google scholar
[37]
L.F. Pan, L.Huang, M.Z. Zhong, X.W. Jiang, H.X. Deng, J.B. Li, J.B. Xia, Z.M. Wei. Large tunneling magnetoresistance in magnetic tunneling junctions based on two-dimensional CrX3 (X=Br, I) monolayers. Nanoscale , 2018, 10( 47): 22196
CrossRef ADS Google scholar
[38]
J.Taylor, H.Guo, J.Wang. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B , 2001, 63( 24): 245407
CrossRef ADS Google scholar
[39]
E.Balcı, Ü.Ö. Akkus, S.Berber. High TMR in MXene-based Mn2CF2/Ti2CO2/Mn2CF2 magnetic tunneling junction. ACS Appl. Mater. Interfaces , 2019, 11( 3): 3609
CrossRef ADS Google scholar

Electronic supplementary materials

are available in the online version of this article at https://doi.org/10.1007/s11467-022-1184-z and https://journal.hep.com.cn/fop/EN/10.1007/s11467-022-1184-z and are accessible for authorized users.

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (Grant Nos. 11704291 and 51875417), Hubei Province Key Laboratory of Systems Science in Metallurgical Process (Wuhan University of Science and Technology) (No. Y202101), and Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (No. 21YZ03). The work was supported by High-Performance Computing Center of Wuhan University of Science and Technology. We thank ShiXiao Wen from HZWTECH for help and discussions regarding this study.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(14633 KB)

Accesses

Citations

Detail

Sections
Recommended

/