High efficiency giant magnetoresistive device based on two-dimensional MXene (Mn2NO2)

Xiaolin Zhang , Pengwei Gong , Fangqi Liu , Kailun Yao , Jian Wu , Sicong Zhu

Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 53510

PDF (14633KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 53510 DOI: 10.1007/s11467-022-1184-z
RESEARCH ARTICLE

High efficiency giant magnetoresistive device based on two-dimensional MXene (Mn2NO2)

Author information +
History +
PDF (14633KB)

Abstract

Due to the unique electronic structure of half-metals, characterized by the conductivity of majority-spin and the band gap of minority-spin, these materials have emerged as suitable alternatives for the design of efficient giant magnetoresistive (GMR) devices. Based on the first-principles calculations, an excellent GMR device has been designed by using two-dimensional (2D) half-metal Mn2NO2. The results show that Mn2NO2 has sandwiched between the Au/nMn2NO2 (n = 1, 2, 3)/Au heterojunction and maintains its half-metallic properties. Due to the half-metallic characteristics of Mn2NO2, the total current of the monolayer device can reach up to 1500 nA in the ferromagnetic state. At low voltage, the maximum GMR is observed to be 1.15 × 1031 %. Further, by increasing the number of layers, the ultra-high GMR at low voltage is still maintained. The developed device is a spintronic device exhibiting the highest magnetoresistive ratio reported theoretically so far. Simultaneously, a significant negative differential resistance (NDR) effect is also observed in the heterojunction. Owing to its excellent half-metallic properties and 2D structure, Mn2NO2 is an ideal energy-saving GMR material.

Graphical abstract

Keywords

half-metals / Mn 2NO 2 / giant magnetoresistive

Cite this article

Download citation ▾
Xiaolin Zhang, Pengwei Gong, Fangqi Liu, Kailun Yao, Jian Wu, Sicong Zhu. High efficiency giant magnetoresistive device based on two-dimensional MXene (Mn2NO2). Front. Phys., 2022, 17(5): 53510 DOI:10.1007/s11467-022-1184-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Z.Wang, I.Gutiérrez-Lezama, N.Ubrig, M.Kroner, M.Gibertini, T.Taniguchi, K.Watanabe, A.Imamoğlu, E.Giannini, A.F. Morpurgo. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. , 2018, 9( 1): 2516

[2]

Y.Ni, K.L. Yao, C.Q. Tang, G.Y. Gao, H.H. Fu, S.C. Zhu. Perfect spin-filter, spin-valve, switching and negative differential resistance in an organic molecular device with graphene leads. RSC Adv. , 2014, 4( 36): 18522

[3]

L.N. Du, Z.C. Wang, G.Z. Zhao. Novel intelligent devices: Two-dimensional materials based memristors. Front. Phys. , 2022, 17( 2): 23602

[4]

Z.C. Zhou, F.Y. Yang, S.Wang, L.Wang, X.F. Wang, C.Wang, Y.Xie, Q.Liu. Emerging of two-dimensional materials in novel memristor. Front. Phys. , 2022, 17( 2): 23204

[5]

G.Y. Luo, X.Y. Lv, L.Wen, Z.Q. Li, Z.B. Dai. Strain induced topological transitions in twisted double bilayer graphene. Front. Phys. , 2022, 17( 2): 23502

[6]

L.Yin, X.C. Wang, W.B. Mi. Ferromagnetic, ferroelectric and optical modulated multiple resistance states in multiferroic tunnel junctions. ACS Appl. Mater. Interfaces , 2019, 11( 1): 1057

[7]

S.Yuasa, T.Nagahama, Y.Suzuki. Spin-polarized resonant tunneling in magnetic tunnel junctions. Science , 2002, 297( 5579): 234

[8]

M.F. Sun, X.C. Wang, W.B. Mi. Large magnetoresistance in Fe3O4/4, 4'-bipyridine/Fe3O4 organic magnetic tunnel junctions. J. Phys. Chem. C , 2018, 122( 5): 3115

[9]

D.Wijethunge, L.Zhang, C.Tang, A.J. Du. Tuning band alignment and optical properties of 2D van der Waals heterostructure via ferroelectric polarization switching. Front. Phys. , 2020, 15( 6): 63504

[10]

H.L. Yu, Z.G. Shao, Y.M. Tao, X.F. Jiang, Y.J. Dong, J.Zhang, Y.S. Liu, X.F. Yang, D.J. Chen. Tunable tunneling magnetoresistance in in-plane double barrier magnetic tunnel junctions based on B vacancy h-NB nanoribbons. Phys. Chem. Chem. Phys , 2022, 24 : 3451

[11]

J.W. Yan, S.Z. Wang, K.Xia, Y.Q. Ke. Anomalous spin-dependent tunneling statistics in Fe/MgO/Fe junctions induced by disorder at the interface. Phys. Rev. B , 2018, 97( 1): 014404

[12]

Y.Taniguchi, Y.Miura, K.Abe, M.Shirai. Theoretical studies on spin-dependent conductance in FePt/MgO/FePt(001) magnetic tunnel junctions. IEEE Trans. Magn. , 2008, 44( 11): 2585

[13]

Z.Yan, R.Q. Zhang, X.L. Dong, S.F. Qi, X.H. Xu. Significant tunneling magnetoresistance and excellent spin filtering effect in CrI3-based van der Waals magnetic tunnel junctions. Phys. Chem. Chem. Phys. , 2020, 22( 26): 14773

[14]

Y.L. Feng, X.M. Xu, G.Y. Gao. High tunnel magnetoresistance based on 2D Dirac spin gapless semiconductor VCl3. Appl. Phys. Lett. , 2020, 116( 2): 022402

[15]

F.F. Li, B.S. Yang, Y.Zhu, X.F. Han, Y.Yan. Ultrahigh tunneling magnetoresistance in van der Waals and lateral magnetic tunnel junctions formed by intrinsic ferromagnets Li0.5CrI3 and CrI3. Appl. Phys. Lett. , 2020, 117( 2): 022412

[16]

X.L. Zhang, P.W. Gong, F.Q. Liu, K.L. Yao, S.C. Zhu, Y.Lu. Half-metallic of non-metal-adsorbed AsP and multifunctional two-dimensional spintronic device of impure AsP from first-principles calculations. Physica E , 2022, 137 : 115016

[17]

C.D. Zheng, K.Jiang, K.L. Yao, S.C. Zhu, K.M. Wu. The electromagnetic performance of transition metal-substituted monolayer black arsenic-phosphorus. Phys. Chem. Chem. Phys. , 2021, 23( 43): 24570

[18]

S.C. Zhu, S.J. Peng, K.M. Wu, C.T. Yip, K.L. Yao, C.H. Lam. Negative differential resistance, perfect spin-filtering effect and tunnel magnetoresistance in vanadium-doped zigzag blue phosphorus nanoribbons. Phys. Chem. Chem. Phys. , 2018, 20( 32): 21105

[19]

E.Balcı, Ü.Ö. Akkus, S.Berber. Controlling topological electronic structure of multifunctional MXene layer. Appl. Phys. Lett. , 2018, 113( 8): 083107

[20]

E.Balcı, Ü.Ö. Akkus, S.Berber. Band gap modification in doped MXene: Sc2CF2. J. Mater. Chem. C , 2017, 5( 24): 5956

[21]

G.Wang, Y.Liao. Theoretical prediction of robust and intrinsic half-metallicity in Ni2N MXene with different types of surface terminations. Appl. Surf. Sci. , 2017, 07 : 249

[22]

S.Chen, J.Zhou, Z.M. Sun. Half-metallic ferromagnetism and surface functionalization-induced metal-insulator transition in graphene-like two-dimensional Cr2C crystals. ACS Appl. Mater. Interfaces , 2015, 7( 31): 17510

[23]

G.Wang. Theoretical prediction of the intrinsic half-metallicity in surface-oxygen-passivated Cr2N MXene. J. Phys. Chem. C , 2016, 120( 33): 18850

[24]

M.Naguib, O.Mashtalir, J.Carle, V.Presser, J.Lu, L.Hultman, Y.Gogotsi, M.W. Barsoum. Two-dimensional transition metal carbides. ACS Nano , 2012, 6( 2): 1322

[25]

M.Khazaei, A.Ranjbar, M.Arai, T.Sasaki, S.Yunoki. Electronic properties and applications of MXenes: A theoretical review. J. Mater. Chem. C , 2017, 5( 10): 2488

[26]

R.Qin, G.Shan, M.Hu, W.Huang. Two-dimensional transition metal carbides and/or nitrides (MXenes) and their applications in sensors. Mater. Today Phys. , 2021, 21 : 100527

[27]

R.Z. Qin, X.Li, M.J. Hu, G.C. Shan, R.Seeram, M.Yin. Preparation of high-performance MXene/PVA-based flexible pressure sensors with adjustable sensitivity and sensing range. Sens. Actuators A Phys. , 2022, 338 : 113458

[28]

Q.Q. Kong X.G. An L.Huang X.L. Wang W.Feng S.Y. Qiu Q.Y. Wang C.H. Sun, A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure and hydrogen evolution performance , Front. Phys. 16(5), 53506 ( 2021)

[29]

G.Wang, Y.Liao. Theoretical prediction of robust and intrinsic half-metallicity in Ni2N MXene with different types of surface terminations. Appl. Surf. Sci. , 2017, 426 : 804

[30]

H.Kumar, N.C. Frey, L.Dong, B.Anasori, Y.Gogotsi, V.B. Shenoy. Tunable magnetism and transport properties in nitride MXenes. ACS Nano , 2017, 11( 8): 7648

[31]

G.Y. Gao, G.Q. Ding, J.Li, K.L. Yao, M.H. Wu, M.C. Qian. Monolayer MXenes: Promising half-metals and spin gapless semiconductors. Nanoscale , 2016, 8( 16): 8986

[32]

Y.W. Son, M.L. Cohen, S.G. Louie. Half-metallic graphene nanoribbons. Nature , 2006, 444( 7117): 347

[33]

X.X. Li, X.J. Wu, J.L. Yang. Room-temperature half-metallicity in La (Mn,Zn)AsO alloy via element substitutions. J. Am. Chem. Soc. , 2014, 136( 15): 5664

[34]

J.J. He, P.Lyu, P.Nachtigall. New two-dimensional Mn-based MXenes with room-temperature ferromagnetism and half-metallicity. J. Mater. Chem. C , 2016, 4( 47): 11143

[35]

J.H. Yang, S.Z. Zhang, A.P. Wang, R.N. Wang, C.K. Wang, G.P. Zhang, L.Chen. High magnetoresistance in ultra-thin two-dimensional Cr-based MXenes. Nanoscale , 2018, 10( 41): 19492

[36]

J.Yang, S.Fang, Y.Peng, S.Liu, B.Wu, R.Quhe, S.Ding, C.Yang, J.Ma, B.Shi, L.Xu, X.Sun, G.Tian, C.Wang, J.Shi, J.Lu, J.Yang. Layer-dependent giant magnetoresistance in two-dimensional CrPS4 magnetic tunnel junctions. Phys. Rev. Appl. , 2021, 16( 2): 024011

[37]

L.F. Pan, L.Huang, M.Z. Zhong, X.W. Jiang, H.X. Deng, J.B. Li, J.B. Xia, Z.M. Wei. Large tunneling magnetoresistance in magnetic tunneling junctions based on two-dimensional CrX3 (X=Br, I) monolayers. Nanoscale , 2018, 10( 47): 22196

[38]

J.Taylor, H.Guo, J.Wang. Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B , 2001, 63( 24): 245407

[39]

E.Balcı, Ü.Ö. Akkus, S.Berber. High TMR in MXene-based Mn2CF2/Ti2CO2/Mn2CF2 magnetic tunneling junction. ACS Appl. Mater. Interfaces , 2019, 11( 3): 3609

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (14633KB)

Supplementary files

fop-21184-OF-zhusicong_suppl_1

1446

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/