Design of heterojunction with components in different dimensions for electrocatalysis applications

Qingquan Kong, Xuguang An, Jing Zhang, Weitang Yao, Chenghua Sun

PDF(4531 KB)
PDF(4531 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (4) : 43601. DOI: 10.1007/s11467-022-1183-0
VIEW & PERSPECTIVE
VIEW & PERSPECTIVE

Design of heterojunction with components in different dimensions for electrocatalysis applications

Author information +
History +

Abstract

Searching for high-performance and cost-effective catalysts is of particular importance for the practical electrocatalysis applications. The heterojunctions with components in different dimensions show unique physical and chemical properties, which can offer large space for rational design of electrocatalysts. In this paper, we firstly reviewed recently related works, and then proposed a few perspectives on exploring heterojunction for electrocatalysis applications.

Graphical abstract

Keywords

heterojunction / electrocatalysis / multiple dimension

Cite this article

Download citation ▾
Qingquan Kong, Xuguang An, Jing Zhang, Weitang Yao, Chenghua Sun. Design of heterojunction with components in different dimensions for electrocatalysis applications. Front. Phys., 2022, 17(4): 43601 https://doi.org/10.1007/s11467-022-1183-0

References

[1]
A. Eftekhari . Electrocatalysts for hydrogen evolution reaction. Int. J. Hydrogen Energy, 2017, 42( 16): 11053
CrossRef ADS Google scholar
[2]
A. Eftekhari . Tuning the electrocatalysts for oxygen evolution reaction. Mater. Today Energy, 2017, 5 : 37
CrossRef ADS Google scholar
[3]
X. Yan , D. L. Liu , H. H. Cao , F. Hou , J. Liang , S. X. Dou . Nitrogen reduction to ammonia on atomic-scale active sites under mild conditions. Small Methods, 2019, 3( 9): 1800501
CrossRef ADS Google scholar
[4]
X. Wang , Y. Zheng , W. Sheng , Z. J. Xu , M. Jaroniec , S. Z. Qiao . Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Mater. Today, 2020, 36 : 125
CrossRef ADS Google scholar
[5]
J. Song C. Wei Z. F. Huang C. Liu L. Zeng X. Wang Z. J. Xu, A review on fundamentals for designing oxygen evolution electrocatalysts, Chem. Soc. Rev. 49(7), 2196 ( 2020)
[6]
D. Voiry , H. S. Shin , K. P. Loh , M. Chhowalla . Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nat. Rev. Chem., 2018, 2 : 0105
CrossRef ADS Google scholar
[7]
C. Liu , Z. Dai , J. Zhang , Y. Jin , D. Li , C. Sun . Two-dimensional boron sheets as metal-free catalysts for hydrogen evolution reaction. J. Phys. Chem. C, 2018, 122( 33): 19051
CrossRef ADS Google scholar
[8]
Y. Shi , Y. Zhou , D. R. Yang , W. X. Xu , C. Wang , F. B. Wang , J. J. Xu , X. H. Xia , H. Y. Chen . Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction. J. Am. Chem. Soc., 2017, 139( 43): 15479
CrossRef ADS Google scholar
[9]
J. Zhang , X. Tian , M. Liu , H. Guo , J. Zhou , Q. Fang , Z. Liu , Q. Wu , J. Lou . Cobalt modulated Mo-dinitrogen interaction in MoS2 for catalyzing ammonia synthesis. J. Am. Chem. Soc., 2019, 141( 49): 19269
CrossRef ADS Google scholar
[10]
J. Hu , L. Yu , J. Deng , Y. Wang , K. Cheng , C. Ma , Q. Zhang , W. Wen , S. Yu , Y. Pan , J. Yang , H. Ma , F. Qi , Y. Wang , Y. Zheng , M. Chen , R. Huang , S. Zhang , Z. Zhao , J. Mao , X. Meng , Q. Ji , G. Hou , X. Han , X. Bao , Y. Wang , D. Deng . Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol. Nat. Catal., 2021, 4( 3): 242
CrossRef ADS Google scholar
[11]
J. Li , G. Zheng . One-dimensional earth-abundant nanomaterials for water-splitting electrocatalysts. Adv. Sci. (Weinh. ), 2017, 4( 3): 1600380
CrossRef ADS Google scholar
[12]
Z. Zeng , Y. Yan , J. Chen , P. Zan , Q. Tian , P. Chen . Boosting the photocatalytic ability of Cu2O nanowires for CO2 conversion by MXene quantum dots. Adv. Funct. Mater., 2019, 29( 2): 1806500
CrossRef ADS Google scholar
[13]
Y. Li , L. Ding , Y. Guo , Z. Liang , H. Cui , J. Tian . Boosting the photocatalytic ability of g-C3N4 for hydrogen production by Ti3C2 MXene quantum dots. ACS Appl. Mater. Interfaces, 2019, 11( 44): 41440
CrossRef ADS Google scholar
[14]
X. K. Kong , Z. M. Peng . Low-dimensional materials for alkaline oxygen evolution electrocatalysis. Mater. Today Chem., 2019, 11 : 119
CrossRef ADS Google scholar
[15]
Y. Tong , H. N. Mao , Y. L. Xu , J. Y. Liu . Oxygen vacancies confined in Co3O4 quantum dots for promoting oxygen evolution electrocatalysis. Inorg. Chem. Front., 2019, 6( 8): 2055
CrossRef ADS Google scholar
[16]
W. A. Saidi . Oxygen reduction electrocatalysis using N-doped graphene quantum-dots. J. Phys. Chem. Lett., 2013, 4( 23): 4160
CrossRef ADS Google scholar
[17]
Z. Jin , C. Liu , Z. Liu , J. Han , Y. Fang , Y. Han , Y. Niu , Y. Wu , C. Sun , Y. Xu . Rational design of hydroxyl‐rich Ti3C2Tx MXene quantum dots for high-performance electrochemical N2 reduction. Adv. Energy Mater., 2020, 10( 22): 2000797
CrossRef ADS Google scholar
[18]
L. Tian , Z. Li , P. Wang , X. H. Zhai , X. Wang , T. X. Li . Carbon quantum dots for advanced electrocatalysis. J. Energy Chem., 2021, 55 : 279
CrossRef ADS Google scholar
[19]
C. Tsai , F. Abild-Pedersen , J. K. Nørskov . Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Lett., 2014, 14( 3): 1381
CrossRef ADS Google scholar
[20]
L. Ju , M. Bie , X. Zhang , X. Chen , L. Kou . Two-dimensional Janus van der Waals heterojunctions: A review of recent research progresses. Front. Phys., 2021, 16( 1): 13201
CrossRef ADS Google scholar
[21]
Y. Y. Wang , F. P. Li , W. Wei , B. B. Huang , Y. Dai . Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides. Front. Phys., 2021, 16( 1): 13501
CrossRef ADS Google scholar
[22]
S. Xiao , X. Li , W. Zhang , Y. Xiang , T. Li , X. Niu , J. S. Chen , Q. Yan . Bilateral interfaces in In2Se3− CoIn2−CoSe2 heterostructures for high-rate reversible sodium storage. ACS Nano, 2021, 15( 8): 13307
CrossRef ADS Google scholar
[23]
M. A. Ahsan , T. W. He , J. C. Noveron , K. Reuter , A. R. Puente-Santiago , R. Luque . Low-dimensional heterostructures for advanced electrocatalysis: An experimental and computational perspective. Chem. Soc. Rev., 2022, 15( 3): 812
CrossRef ADS Google scholar
[24]
T. Wang , A. Dong , X. Zhang , R. K. Hocking , C. Sun . Theoretical study of K3Sb/graphene heterostructure for electrochemical nitrogen reduction reaction. Front. Phys., 2022, 17( 2): 23501
CrossRef ADS Google scholar
[25]
Y. Liu , P. Deng , R. Wu , R. A. Geioushy , Y. Li , Y. Liu , F. Zhou , H. Li , C. Sun . BiVO4/TiO2 heterojunction with rich oxygen vacancies for enhanced electrocatalytic nitrogen reduction reaction. Front. Phys., 2021, 16( 5): 53503
CrossRef ADS Google scholar
[26]
Q. Li , S. Qiu , B. Jia . Theoretical investigation of CoTa2O6/graphene heterojunctions for oxygen evolution reaction. Front. Phys., 2021, 16( 1): 13503
CrossRef ADS Google scholar
[27]
W. J. Yin , X. L. Zeng , B. Wen , Q. X. Ge , Y. Xu , G. Teobaldi , L. M. Liu . The unique carrier mobility of Janus MoSSe/GaN heterostructures. Front. Phys., 2021, 16( 3): 33501
CrossRef ADS Google scholar
[28]
Y. Luo , L. Tang , U. Khan , Q. Yu , H. M. Cheng , X. Zou , B. Liu . Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat. Commun., 2019, 10( 1): 269
CrossRef ADS Google scholar
[29]
Z. Cui , W. Du , C. Xiao , Q. Li , R. Sa , C. Sun , Z. Ma . Enhancing hydrogen evolution of MoS2 basal planes by combining single-boron catalyst and compressive strain. Front. Phys., 2020, 15( 6): 63502
CrossRef ADS Google scholar
[30]
Q. Yu , Y. Luo , S. Qiu , Q. Li , Z. Cai , Z. Zhang , J. Liu , C. Sun , B. Liu . Tuning the hydrogen evolution performance of metallic 2D tantalum disulfide by interfacial engineering. ACS Nano, 2019, 13( 10): 11874
CrossRef ADS Google scholar
[31]
K. Chu , Y. Liu , Y. Li , H. Zhang , Y. Tian . Efficient electrocatalytic N2 reduction on CoO quantum dots. J. Mater. Chem. A, 2019, 7( 9): 4389
CrossRef ADS Google scholar
[32]
H. Liu , X. Zhang , Y. Zhu , B. Cao , Q. Zhu , P. Zhang , B. Xu , F. Wu , R. Chen . Electrostatic self-assembly of 0D–2D SnO2 quantum dots/Ti3C2Tx MXene hybrids as anode for lithium-ion batteries. Nano-Micro Lett., 2019, 11( 1): 65
CrossRef ADS Google scholar
[33]
X. Y. Zhang , W. W. Fu , W. Tian , J. Wan , H. Zhang , Y. Wang . Distorted quantum dots enhance the efficiency of alkaline oxygen electrocatalysis. J. Mater. Chem. A, 2020, 8( 40): 21173
CrossRef ADS Google scholar
[34]
Q. Kong X. An L. Huang X. Wang W. Feng S. Qiu Q. Wang C. Sun, A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure and hydrogen evolution performance , Front. Phys. 16(5), 53506 ( 2021)
[35]
J. Zhang , T. Zhu , Y. Wang , J. Cui , J. Sun , J. Yan , Y. Qin , X. Shu , Y. Zhang , J. Wu , C. S. Tiwary , P. M. Ajayan , Y. Wu . Self-assembly of 0D/2D homostructure for enhanced hydrogen evolution. Mater. Today, 2020, 36 : 83
CrossRef ADS Google scholar
[36]
L. Fu , Y. Sun , N. Wu , R. G. Mendes , L. Chen , Z. Xu , T. Zhang , M. H. Rümmeli , B. Rellinghaus , D. Pohl , L. Zhuang , L. Fu . Direct growth of MoS2/h-BN heterostructures via a sulfide-resistant alloy. ACS Nano, 2016, 10( 2): 2063
CrossRef ADS Google scholar
[37]
A. R. Puente Santiago , T. He , O. Eraso , M. A. Ahsan , A. N. Nair , V. S. N. Chava , T. Zheng , S. Pilla , O. Fernandez-Delgado , A. Du , S. T. Sreenivasan , L. Echegoyen . Tailoring the interfacial interactions of van der Waals 1T-MoS2/C60 heterostructures for high-performance hydrogen evolution reaction electrocatalysis. J. Am. Chem. Soc., 2020, 142( 42): 17923
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(4531 KB)

Accesses

Citations

Detail

Sections
Recommended

/