Design of heterojunction with components in different dimensions for electrocatalysis applications

Qingquan Kong , Xuguang An , Jing Zhang , Weitang Yao , Chenghua Sun

Front. Phys. ›› 2022, Vol. 17 ›› Issue (4) : 43601

PDF (4531KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (4) : 43601 DOI: 10.1007/s11467-022-1183-0
VIEW & PERSPECTIVE

Design of heterojunction with components in different dimensions for electrocatalysis applications

Author information +
History +
PDF (4531KB)

Abstract

Searching for high-performance and cost-effective catalysts is of particular importance for the practical electrocatalysis applications. The heterojunctions with components in different dimensions show unique physical and chemical properties, which can offer large space for rational design of electrocatalysts. In this paper, we firstly reviewed recently related works, and then proposed a few perspectives on exploring heterojunction for electrocatalysis applications.

Graphical abstract

Keywords

heterojunction / electrocatalysis / multiple dimension

Cite this article

Download citation ▾
Qingquan Kong, Xuguang An, Jing Zhang, Weitang Yao, Chenghua Sun. Design of heterojunction with components in different dimensions for electrocatalysis applications. Front. Phys., 2022, 17(4): 43601 DOI:10.1007/s11467-022-1183-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. Eftekhari . Electrocatalysts for hydrogen evolution reaction. Int. J. Hydrogen Energy, 2017, 42( 16): 11053

[2]

A. Eftekhari . Tuning the electrocatalysts for oxygen evolution reaction. Mater. Today Energy, 2017, 5 : 37

[3]

X. Yan , D. L. Liu , H. H. Cao , F. Hou , J. Liang , S. X. Dou . Nitrogen reduction to ammonia on atomic-scale active sites under mild conditions. Small Methods, 2019, 3( 9): 1800501

[4]

X. Wang , Y. Zheng , W. Sheng , Z. J. Xu , M. Jaroniec , S. Z. Qiao . Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Mater. Today, 2020, 36 : 125

[5]

J. Song C. Wei Z. F. Huang C. Liu L. Zeng X. Wang Z. J. Xu, A review on fundamentals for designing oxygen evolution electrocatalysts, Chem. Soc. Rev. 49(7), 2196 ( 2020)

[6]

D. Voiry , H. S. Shin , K. P. Loh , M. Chhowalla . Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nat. Rev. Chem., 2018, 2 : 0105

[7]

C. Liu , Z. Dai , J. Zhang , Y. Jin , D. Li , C. Sun . Two-dimensional boron sheets as metal-free catalysts for hydrogen evolution reaction. J. Phys. Chem. C, 2018, 122( 33): 19051

[8]

Y. Shi , Y. Zhou , D. R. Yang , W. X. Xu , C. Wang , F. B. Wang , J. J. Xu , X. H. Xia , H. Y. Chen . Energy level engineering of MoS2 by transition-metal doping for accelerating hydrogen evolution reaction. J. Am. Chem. Soc., 2017, 139( 43): 15479

[9]

J. Zhang , X. Tian , M. Liu , H. Guo , J. Zhou , Q. Fang , Z. Liu , Q. Wu , J. Lou . Cobalt modulated Mo-dinitrogen interaction in MoS2 for catalyzing ammonia synthesis. J. Am. Chem. Soc., 2019, 141( 49): 19269

[10]

J. Hu , L. Yu , J. Deng , Y. Wang , K. Cheng , C. Ma , Q. Zhang , W. Wen , S. Yu , Y. Pan , J. Yang , H. Ma , F. Qi , Y. Wang , Y. Zheng , M. Chen , R. Huang , S. Zhang , Z. Zhao , J. Mao , X. Meng , Q. Ji , G. Hou , X. Han , X. Bao , Y. Wang , D. Deng . Sulfur vacancy-rich MoS2 as a catalyst for the hydrogenation of CO2 to methanol. Nat. Catal., 2021, 4( 3): 242

[11]

J. Li , G. Zheng . One-dimensional earth-abundant nanomaterials for water-splitting electrocatalysts. Adv. Sci. (Weinh. ), 2017, 4( 3): 1600380

[12]

Z. Zeng , Y. Yan , J. Chen , P. Zan , Q. Tian , P. Chen . Boosting the photocatalytic ability of Cu2O nanowires for CO2 conversion by MXene quantum dots. Adv. Funct. Mater., 2019, 29( 2): 1806500

[13]

Y. Li , L. Ding , Y. Guo , Z. Liang , H. Cui , J. Tian . Boosting the photocatalytic ability of g-C3N4 for hydrogen production by Ti3C2 MXene quantum dots. ACS Appl. Mater. Interfaces, 2019, 11( 44): 41440

[14]

X. K. Kong , Z. M. Peng . Low-dimensional materials for alkaline oxygen evolution electrocatalysis. Mater. Today Chem., 2019, 11 : 119

[15]

Y. Tong , H. N. Mao , Y. L. Xu , J. Y. Liu . Oxygen vacancies confined in Co3O4 quantum dots for promoting oxygen evolution electrocatalysis. Inorg. Chem. Front., 2019, 6( 8): 2055

[16]

W. A. Saidi . Oxygen reduction electrocatalysis using N-doped graphene quantum-dots. J. Phys. Chem. Lett., 2013, 4( 23): 4160

[17]

Z. Jin , C. Liu , Z. Liu , J. Han , Y. Fang , Y. Han , Y. Niu , Y. Wu , C. Sun , Y. Xu . Rational design of hydroxyl‐rich Ti3C2Tx MXene quantum dots for high-performance electrochemical N2 reduction. Adv. Energy Mater., 2020, 10( 22): 2000797

[18]

L. Tian , Z. Li , P. Wang , X. H. Zhai , X. Wang , T. X. Li . Carbon quantum dots for advanced electrocatalysis. J. Energy Chem., 2021, 55 : 279

[19]

C. Tsai , F. Abild-Pedersen , J. K. Nørskov . Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Lett., 2014, 14( 3): 1381

[20]

L. Ju , M. Bie , X. Zhang , X. Chen , L. Kou . Two-dimensional Janus van der Waals heterojunctions: A review of recent research progresses. Front. Phys., 2021, 16( 1): 13201

[21]

Y. Y. Wang , F. P. Li , W. Wei , B. B. Huang , Y. Dai . Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides. Front. Phys., 2021, 16( 1): 13501

[22]

S. Xiao , X. Li , W. Zhang , Y. Xiang , T. Li , X. Niu , J. S. Chen , Q. Yan . Bilateral interfaces in In2Se3− CoIn2−CoSe2 heterostructures for high-rate reversible sodium storage. ACS Nano, 2021, 15( 8): 13307

[23]

M. A. Ahsan , T. W. He , J. C. Noveron , K. Reuter , A. R. Puente-Santiago , R. Luque . Low-dimensional heterostructures for advanced electrocatalysis: An experimental and computational perspective. Chem. Soc. Rev., 2022, 15( 3): 812

[24]

T. Wang , A. Dong , X. Zhang , R. K. Hocking , C. Sun . Theoretical study of K3Sb/graphene heterostructure for electrochemical nitrogen reduction reaction. Front. Phys., 2022, 17( 2): 23501

[25]

Y. Liu , P. Deng , R. Wu , R. A. Geioushy , Y. Li , Y. Liu , F. Zhou , H. Li , C. Sun . BiVO4/TiO2 heterojunction with rich oxygen vacancies for enhanced electrocatalytic nitrogen reduction reaction. Front. Phys., 2021, 16( 5): 53503

[26]

Q. Li , S. Qiu , B. Jia . Theoretical investigation of CoTa2O6/graphene heterojunctions for oxygen evolution reaction. Front. Phys., 2021, 16( 1): 13503

[27]

W. J. Yin , X. L. Zeng , B. Wen , Q. X. Ge , Y. Xu , G. Teobaldi , L. M. Liu . The unique carrier mobility of Janus MoSSe/GaN heterostructures. Front. Phys., 2021, 16( 3): 33501

[28]

Y. Luo , L. Tang , U. Khan , Q. Yu , H. M. Cheng , X. Zou , B. Liu . Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density. Nat. Commun., 2019, 10( 1): 269

[29]

Z. Cui , W. Du , C. Xiao , Q. Li , R. Sa , C. Sun , Z. Ma . Enhancing hydrogen evolution of MoS2 basal planes by combining single-boron catalyst and compressive strain. Front. Phys., 2020, 15( 6): 63502

[30]

Q. Yu , Y. Luo , S. Qiu , Q. Li , Z. Cai , Z. Zhang , J. Liu , C. Sun , B. Liu . Tuning the hydrogen evolution performance of metallic 2D tantalum disulfide by interfacial engineering. ACS Nano, 2019, 13( 10): 11874

[31]

K. Chu , Y. Liu , Y. Li , H. Zhang , Y. Tian . Efficient electrocatalytic N2 reduction on CoO quantum dots. J. Mater. Chem. A, 2019, 7( 9): 4389

[32]

H. Liu , X. Zhang , Y. Zhu , B. Cao , Q. Zhu , P. Zhang , B. Xu , F. Wu , R. Chen . Electrostatic self-assembly of 0D–2D SnO2 quantum dots/Ti3C2Tx MXene hybrids as anode for lithium-ion batteries. Nano-Micro Lett., 2019, 11( 1): 65

[33]

X. Y. Zhang , W. W. Fu , W. Tian , J. Wan , H. Zhang , Y. Wang . Distorted quantum dots enhance the efficiency of alkaline oxygen electrocatalysis. J. Mater. Chem. A, 2020, 8( 40): 21173

[34]

Q. Kong X. An L. Huang X. Wang W. Feng S. Qiu Q. Wang C. Sun, A DFT study of Ti3C2O2 MXenes quantum dots supported on single layer graphene: Electronic structure and hydrogen evolution performance , Front. Phys. 16(5), 53506 ( 2021)

[35]

J. Zhang , T. Zhu , Y. Wang , J. Cui , J. Sun , J. Yan , Y. Qin , X. Shu , Y. Zhang , J. Wu , C. S. Tiwary , P. M. Ajayan , Y. Wu . Self-assembly of 0D/2D homostructure for enhanced hydrogen evolution. Mater. Today, 2020, 36 : 83

[36]

L. Fu , Y. Sun , N. Wu , R. G. Mendes , L. Chen , Z. Xu , T. Zhang , M. H. Rümmeli , B. Rellinghaus , D. Pohl , L. Zhuang , L. Fu . Direct growth of MoS2/h-BN heterostructures via a sulfide-resistant alloy. ACS Nano, 2016, 10( 2): 2063

[37]

A. R. Puente Santiago , T. He , O. Eraso , M. A. Ahsan , A. N. Nair , V. S. N. Chava , T. Zheng , S. Pilla , O. Fernandez-Delgado , A. Du , S. T. Sreenivasan , L. Echegoyen . Tailoring the interfacial interactions of van der Waals 1T-MoS2/C60 heterostructures for high-performance hydrogen evolution reaction electrocatalysis. J. Am. Chem. Soc., 2020, 142( 42): 17923

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4531KB)

1191

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/