High Tc superconductivity in layered hydrides XH15 (X = Ca, Sr, Y, La) under high pressures

Yue Chen, Zhengtao Liu, Ziyue Lin, Qiwen Jiang, Mingyang Du, Zihan Zhang, Hao Song, Hui Xie, Tian Cui, Defang Duan

PDF(5939 KB)
PDF(5939 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (6) : 63502. DOI: 10.1007/s11467-022-1182-1
RESEARCH ARTICLE
RESEARCH ARTICLE

High Tc superconductivity in layered hydrides XH15 (X = Ca, Sr, Y, La) under high pressures

Author information +
History +

Abstract

The theoretical predictions and experimental synthesis of H3S and LaH10 superconductors with record high superconducting transition temperatures (Tc) have promoted the hydrogen-based superconducors to be a research hotspot in the field of solid-state physics. Here, we predict an unprecedented layered structure CaH15, with high Tc of 189 K at 200 GPa using ab initio calculations. As concerns the novel structure, one layer is made of a hydrogen nonagon, the other layer consists of a Ca atom and six H2 molecular units surrounding the Ca atom. This layered structure was also found in SrH15, YH15, and LaH15 at high pressures, each materials exhibit high Tc especially YH15 can reach above 200 K at 220 GPa. It represents the second class of layered superhydrides with high value of Tc after pentagraphene like HfH10.

Graphical abstract

Keywords

high pressure / hydrides / superconductivity / ab initio calculation

Cite this article

Download citation ▾
Yue Chen, Zhengtao Liu, Ziyue Lin, Qiwen Jiang, Mingyang Du, Zihan Zhang, Hao Song, Hui Xie, Tian Cui, Defang Duan. High Tc superconductivity in layered hydrides XH15 (X = Ca, Sr, Y, La) under high pressures. Front. Phys., 2022, 17(6): 63502 https://doi.org/10.1007/s11467-022-1182-1

References

[1]
J. M. McMahon , D. M. Ceperley . Ground-state structures of atomic metallic hydrogen. Phys. Rev. Lett., 2011, 106( 16): 165302
CrossRef ADS Google scholar
[2]
J. Sun , M. Martinez-Canales , D. D. Klug , C. J. Pickard , R. J. Needs . Stable all-nitrogen metallic salt at terapascal pressures. Phys. Rev. Lett., 2013, 111( 17): 175502
CrossRef ADS Google scholar
[3]
J. Sun , M. Martinez-Canales , D. D. Klug , C. J. Pickard , R. J. Needs . Persistence and eventual demise of oxygen molecules at terapascal pressures. Phys. Rev. Lett., 2012, 108( 4): 045503
CrossRef ADS Google scholar
[4]
L. Zhu , Z. Wang , Y. Wang , G. Zou , H. K. Mao , Y. Ma . Spiral chain O4 form of dense oxygen. Proc. Natl. Acad. Sci. USA, 2012, 109( 3): 751
CrossRef ADS Google scholar
[5]
D. Duan , Z. Liu , Z. Lin , H. Song , H. Xie , T. Cui , C. J. Pickard , M. Miao . Multistep dissociation of fluorine molecules under extreme compression. Phys. Rev. Lett., 2021, 126( 22): 225704
CrossRef ADS Google scholar
[6]
E. Wigner , H. B. Huntington . On the possibility of a metallic modification of hydrogen. J. Chem. Phys., 1935, 3( 12): 764
CrossRef ADS Google scholar
[7]
N. W. Ashcroft . Metallic hydrogen: A high-temperature superconductor. Phys. Rev. Lett., 1968, 21( 26): 1748
CrossRef ADS Google scholar
[8]
J. M. McMahon , D. M. Ceperley . High-temperature superconductivity in atomic metallic hydrogen. Phys. Rev. B, 2011, 84( 14): 144515
CrossRef ADS Google scholar
[9]
R. P. Dias , I. F. Silvera . Observation of the Wigner−Huntington transition to metallic hydrogen. Science, 2017, 355( 6326): 715
CrossRef ADS Google scholar
[10]
J. M. McMahon , D. M. Ceperley . Ground-state structures of atomic metallic hydrogen. Phys. Rev. Lett., 2011, 106( 16): 165302
CrossRef ADS Google scholar
[11]
N. W. Ashcroft . Hydrogen dominant metallic alloys: High temperature superconductors. Phys. Rev. Lett., 2004, 92( 18): 187002
CrossRef ADS Google scholar
[12]
L. Zhang , Y. Wang , J. Lv , Y. Ma . Materials discovery at high pressures. Nat. Rev. Mater., 2017, 2( 4): 17005
CrossRef ADS Google scholar
[13]
M. Du , W. Zhao , T. Cui , D. Duan . Compressed superhydrides: The road to room temperature superconductivity. J. Phys.: Condens. Matter, 2022, 34( 17): 173001
CrossRef ADS Google scholar
[14]
D. Duan , Y. Liu , Y. Ma , Z. Shao , B. Liu , T. Cui . Structure and superconductivity of hydrides at high pressures. Natl. Sci. Rev., 2017, 4( 1): 121
CrossRef ADS Google scholar
[15]
X. H. Xiao , D. F. Duan , Y. B. Ma , H. Xie , H. Song , D. Li , F. B. Tian , B. B. Liu , H. Y. Yu , T. Cui . Ab initio studies of copper hydrides under high pressure. Front. Phys., 2019, 14( 4): 1
CrossRef ADS Google scholar
[16]
L. P. Gor’kov , V. Z. Kresin . Colloquium: High pressure and road to room temperature superconductivity. Rev. Mod. Phys., 2018, 90( 1): 011001
CrossRef ADS Google scholar
[17]
E. Zurek . Hydrides of the alkali metals and alkaline earth metals under pressure. Comments Inorg. Chem., 2017, 37( 2): 78
CrossRef ADS Google scholar
[18]
Z. Zhang , T. Cui , M. J. Hutcheon , A. M. Shipley , H. Song , M. Du , V. Z. Kresin , D. Duan , C. J. Pickard , Y. Yao . Design principles for high-temperature superconductors with a hydrogen-based alloy backbone at moderate pressure. Phys. Rev. Lett., 2022, 128( 4): 047001
CrossRef ADS Google scholar
[19]
D. Duan , Y. Liu , F. Tian , D. Li , X. Huang , Z. Zhao , H. Yu , B. Liu , W. Tian , T. Cui . Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity. Sci. Rep., 2015, 4( 1): 6968
CrossRef ADS Google scholar
[20]
D. Duan , X. Huang , F. Tian , D. Li , H. Yu , Y. Liu , Y. Ma , B. Liu , T. Cui . Pressure-induced decomposition of solid hydrogen sulfide. Phys. Rev. B, 2015, 91( 18): 180502
CrossRef ADS Google scholar
[21]
H. Liu , I. I. Naumov , R. Hoffmann , N. W. Ashcroft , R. J. Hemley . Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure. Proc. Natl. Acad. Sci. USA, 2017, 114( 27): 6990
CrossRef ADS Google scholar
[22]
F. Peng , Y. Sun , C. J. Pickard , R. J. Needs , Q. Wu , Y. Ma . Hydrogen clathrate structures in rare earth hydrides at high pressures: Possible route to room-temperature superconductivity. Phys. Rev. Lett., 2017, 119( 10): 107001
CrossRef ADS Google scholar
[23]
A. P. Drozdov , M. I. Eremets , I. A. Troyan , V. Ksenofontov , S. I. Shylin . Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature, 2015, 525( 7567): 73
CrossRef ADS Google scholar
[24]
M. Einaga , M. Sakata , T. Ishikawa , K. Shimizu , M. I. Eremets , A. P. Drozdov , I. A. Troyan , N. Hirao , Y. Ohishi . Crystal structure of the superconducting phase of sulfur hydride. Nat. Phys., 2016, 12( 9): 835
CrossRef ADS Google scholar
[25]
A. P. Drozdov , P. P. Kong , V. S. Minkov , S. P. Besedin , M. A. Kuzovnikov , S. Mozaffari , L. Balicas , F. F. Balakirev , D. E. Graf , V. B. Prakapenka , E. Greenberg , D. A. Knyazev , M. Tkacz , M. I. Eremets . Superconductivity at 250 K in lanthanum hydride under high pressures. Nature, 2019, 569( 7757): 528
CrossRef ADS Google scholar
[26]
M. Somayazulu , M. Ahart , A. K. Mishra , Z. M. Geballe , M. Baldini , Y. Meng , V. V. Struzhkin , R. J. Hemley . Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett., 2019, 122( 2): 027001
CrossRef ADS Google scholar
[27]
Y. Li , J. Hao , H. Liu , J. Tse , Y. Wang , Y. Ma . Pressure-stabilized superconductive yttrium hydrides. Sci. Rep., 2015, 5( 1): 9948
CrossRef ADS Google scholar
[28]
H. Song , Z. Zhang , T. Cui , C. J. Pickard , V. Z. Kresin , D. Duan . High Tc superconductivity in heavy rare earth hydrides. Chin. Phys. Lett., 2021, 38( 10): 107401
CrossRef ADS Google scholar
[29]
X. Zhong Y. Sun T. Iitaka M. Xu H. Liu C. Chen Y. Ma, Potential room temperature superconductivity in clathrate lanthanide/actinides octadechydrides at extreme pressures, doi: 10.21203/rs.3.rs-1148583/v1 ( 2021)
[30]
H. Xie , Y. Yao , X. Feng , D. Duan , H. Song , Z. Zhang , S. Jiang , S. A. T. Redfern , V. Z. Kresin , C. J. Pickard , T. Cui . Hydrogen pentagraphenelike structure stabilized by hafnium: A high-temperature conventional superconductor. Phys. Rev. Lett., 2020, 125( 21): 217001
CrossRef ADS Google scholar
[31]
A. K. Mishra , T. Muramatsu , H. Liu , Z. M. Geballe , M. Somayazulu , M. Ahart , M. Baldini , Y. Meng , E. Zurek , R. J. Hemley . New calcium hydrides with mixed atomic and molecular hydrogen. J. Phys. Chem. C, 2018, 122( 34): 19370
CrossRef ADS Google scholar
[32]
G. Wu , X. Huang , H. Xie , X. Li , M. Liu , Y. Liang , Y. Huang , D. Duan , F. Li , B. Liu , T. Cui . Unexpected calcium polyhydride CaH4: A possible route to dissociation of hydrogen molecules. J. Chem. Phys., 2019, 150( 4): 044507
CrossRef ADS Google scholar
[33]
H. Wang , J. S. Tse , K. Tanaka , T. Iitaka , Y. Ma . Superconductive sodalite-like clathrate calcium hydride at high pressures. Proc. Natl. Acad. Sci. USA, 2012, 109( 17): 6463
CrossRef ADS Google scholar
[34]
L. Ma K. Wang Y. Xie X. Yang Y. Wang M. Zhou H. Liu G. Liu H. Wang Y. Ma, High- Tc superconductivity in clathrate calcium hydride CaH6, arXiv: 2103.16282 (2021)
[35]
Z. Shao , D. Duan , Y. Ma , H. Yu , H. Song , H. Xie , D. Li , F. Tian , B. Liu , T. Cui . Unique phase diagram and superconductivity of calcium hydrides at high pressures. Inorg. Chem., 2019, 58( 4): 2558
CrossRef ADS Google scholar
[36]
D. V. Semenok , D. Zhou , A. G. Kvashnin , X. Huang , M. Galasso , I. A. Kruglov , A. G. Ivanova , A. G. Gavriliuk , W. Chen , N. V. Tkachenko , A. I. Boldyrev , I. Troyan , A. R. Oganov , T. Cui . Novel strongly correlated europium superhydrides. J. Phys. Chem. Lett., 2021, 12( 1): 32
CrossRef ADS Google scholar
[37]
Y. Wang , H. Wang , J. S. Tse , T. Iitaka , Y. Ma . Structural morphologies of high-pressure polymorphs of strontium hydrides. Phys. Chem. Chem. Phys., 2015, 17( 29): 19379
CrossRef ADS Google scholar
[38]
W. Chen , D. V. Semenok , A. G. Kvashnin , X. Huang , I. A. Kruglov , M. Galasso , H. Song , D. Duan , A. F. Goncharov , V. B. Prakapenka , A. R. Oganov , T. Cui . Synthesis of molecular metallic barium superhydride: Pseudocubic BaH12. Nat. Commun., 2021, 12( 1): 273
CrossRef ADS Google scholar
[39]
C. J. Pickard R. J. Needs, Ab initio random structure searching , J. Phys.: Condens. Matter 23(5), 053201 ( 2011)
[40]
S. J. Clark , M. D. Segall , C. J. Pickard , P. J. Hasnip , M. J. Probert , K. Refson , M. C. Payne . First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater., 2005, 220( 5−6): 567
CrossRef ADS Google scholar
[41]
G. Kresse , J. Furthmuller . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54( 16): 11169
CrossRef ADS Google scholar
[42]
P. Giannozzi S. Baroni N. Bonini M. Calandra R. Car C. Cavazzoni D. Ceresoli G. L. Chiarotti M. Cococcioni I. Dabo A. Dal Corso S. de Gironcoli S. Fabris G. Fratesi R. Gebauer U. Gerstmann C. Gougoussis A. Kokalj M. Lazzeri L. Martin-Samos N. Marzari F. Mauri R. Mazzarello S. Paolini A. Pasquarello L. Paulatto C. Sbraccia S. Scandolo G. Sclauzero A. P. Seitsonen A. Smogunov P. Umari R. M. Wentzcovitch, QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter 21(39), 395502 ( 2009)
[43]
W. L. McMillan . Transition temperature of strong-coupled superconductors. Phys. Rev., 1968, 167( 2): 331
CrossRef ADS Google scholar
[44]
G. M. Eliashberg . Interactions between electrons and lattice vibrations in a superconductor. Sov. Phys. JETP, 1960, 11( 3): 696
[45]
C. J. Pickard , R. J. Needs . Structure of phase III of solid hydrogen. Nat. Phys., 2007, 3( 7): 473
CrossRef ADS Google scholar

Note:

This paper is dedicated to the 70th anniversary of the physics of Jilin University.

Electronic supplementary materials

are available in the online version of this article at https://doi.org/10.1007/s11467-022-1182-1 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-022-1182-1 and are accessible for authorized users. See Supplemental Material for the structural information, Bader charge analysis and band structures of CaH15, enthalpy difference curves of CaH12, structural information and crystal structure of CaH14, as well as convex hull diagram of Sr–H, Y–H and La–H system under high pressures.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12122405, 52072188, and 51632002), the National Key R&D Program of China (Grant No. 2018YFA0305900), and the Jilin Provincial Science and Technology Development Project (20210509038RQ). Parts of the calculations were performed in the High Performance Computing Center (HPCC) of Jilin University and TianHe-1(A) at the National Supercomputer Center in Tianjin.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(5939 KB)

Accesses

Citations

Detail

Sections
Recommended

/