Bioinspired mineral MXene hydrogels for tensile strain sensing and radionuclide adsorption applications

Xin Li, Guangcun Shan, Ruguang Ma, Chan-Hung Shek, Hongbin Zhao, Seeram Ramakrishna

PDF(4421 KB)
PDF(4421 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (6) : 63501. DOI: 10.1007/s11467-022-1181-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Bioinspired mineral MXene hydrogels for tensile strain sensing and radionuclide adsorption applications

Author information +
History +

Abstract

MXene-based hydrogels have drawn considerable attention as flexible and wearable sensors. However, the application of MXene-based hydrogels after sensing failure has rarely been investigated, which is of great significance for expanding their engineering application. In this work, multifunctional mineral MXene hydrogels (MMHs) were synthesized via a simple method inspired by biomineralization. The prepared MMHs were stretchable, self-healable and conductive, and can be used to fabricate wearable tensile strain sensors showing a super-wide sensing range with excellent sensitivity. MMHs-based strain sensors were designed to be directly attached to the skin surface to detect tiny and large human motions. In addition, with the advantages of a large specific area, excellent hydrophilicity and abundant active adsorption sites for MXene nanosheets and hydrogels, dehydrated MMHs were used as highly efficient adsorbents for the removal of strontium ions from aqueous solutions. This work shows the great potential of MXene in promoting the development of next-generation functional materials.

Graphical abstract

Keywords

MXene / hydrogel / flexible sensor / adsorption

Cite this article

Download citation ▾
Xin Li, Guangcun Shan, Ruguang Ma, Chan-Hung Shek, Hongbin Zhao, Seeram Ramakrishna. Bioinspired mineral MXene hydrogels for tensile strain sensing and radionuclide adsorption applications. Front. Phys., 2022, 17(6): 63501 https://doi.org/10.1007/s11467-022-1181-2

References

[1]
F. Nudelman , N. A. J. M. Sommerdijk . Biomineralization as an inspiration for materials chemistry. Angew. Chem. Int. Ed., 2012, 51( 27): 6582
CrossRef ADS Google scholar
[2]
M. A. Meyers , J. McKittrick , P. Y. Chen . Structural biological materials: Critical mechanics-materials connections. Science, 2013, 339( 6121): 773
CrossRef ADS Google scholar
[3]
L. Addadi , S. Raz , S. Weiner . Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization. Adv. Mater., 2003, 15( 12): 959
CrossRef ADS Google scholar
[4]
S. Weiner , J. Mahamid , Y. Politi , Y. Ma , L. Addadi . Overview of the amorphous precursor phase strategy in biomineralization. Front. Mater. Sci. China, 2009, 3( 2): 104
CrossRef ADS Google scholar
[5]
S. Sun , L. B. Mao , Z. Lei , S. H. Yu , H. Cölfen . Hydrogels from amorphous calcium carbonate and polyacrylic acid: Bio-inspired materials for “mineral plastics”. Angew. Chem. Int. Ed., 2016, 55( 39): 11765
CrossRef ADS Google scholar
[6]
K. Y. Lee , D. J. Mooney . Hydrogels for tissue engineering. Chem. Rev., 2001, 101( 7): 1869
CrossRef ADS Google scholar
[7]
D. Buenger , F. Topuz , J. Groll . Hydrogels in sensing applications. Prog. Polym. Sci., 2012, 37( 12): 1678
CrossRef ADS Google scholar
[8]
Y. S. Zhang , A. Khademhosseini . Advances in engineering hydrogels. Science, 2017, 356( 6337): eaaf3627
CrossRef ADS Google scholar
[9]
Y. Tai M. Mulle I. Aguilar Ventura G. Lubineau, A highly sensitive, low-cost, wearable pressure sensor based on conductive hydrogel spheres, Nanoscale 7(35), 14766 ( 2015)
[10]
Z. Lei Q. Wang S. Sun W. Zhu P. Wu, A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing, Adv. Mater. 29(22), 1700321 ( 2017)
[11]
S. Lin , Y. Zhong , X. Zhao , T. Sawada , X. Li , W. Lei , M. Wang , T. Serizawa , H. Zhu . Synthetic multifunctional graphene composites with reshaping and self-healing features via a facile biomineralization-inspired process. Adv. Mater., 2018, 30( 34): 1803004
CrossRef ADS Google scholar
[12]
H. Zhang , J. Guo , Y. Wang , L. Sun , Y. Zhao . Stretchable and conductive composite structural color hydrogel films as bionic electronic skins. Adv. Sci. (Weinh. ), 2021, 8( 20): 2102156
CrossRef ADS Google scholar
[13]
C. Li . Towards conductive hydrogels in E-skins: A review on rational design and recent developments. RSC Advances, 2021, 11( 54): 33835
CrossRef ADS Google scholar
[14]
W. Li , F. Gao , X. Wang , N. Zhang , M. Ma . Strong and robust polyaniline-based supramolecular hydrogels for flexible supercapacitors. Angew. Chem., 2016, 128( 32): 9342
CrossRef ADS Google scholar
[15]
J. Zeng , L. Dong , W. Sha , L. Wei , X. Guo . Highly stretchable, compressible and arbitrarily deformable all-hydrogel soft supercapacitors. Chem. Eng. J., 2020, 383 : 123098
CrossRef ADS Google scholar
[16]
C. Chang , W. Chen , Y. Chen , Y. Chen , Y. Chen . . Recent progress on two-dimensional materials. Acta Phys. -Chim. Sin., 2021, 37( 12): 2108017
CrossRef ADS Google scholar
[17]
L. Jin-Cheng , Z. Xu , Z. Zhen . Recent advances in MXene: Preparation, properties, and applications. Front. Phys., 2015, 10 : 3
[18]
R. Qin , X. Li , M. Hu , G. Shan , R. Seeram , M. Yin . Preparation of high-performance MXene/PVA-based flexible pressure sensors with adjustable sensitivity and sensing range. Sens. Actuators A Phys., 2022, 338 : 113458
CrossRef ADS Google scholar
[19]
R. Qin , G. Shan , M. Hu , W. Huang . Two-dimensional transition metal carbides and/or nitrides (MXenes) and their applications in sensors. Mater. Today Phys., 2021, 21 : 100527
CrossRef ADS Google scholar
[20]
Q. Zhao Y. Jiang Z. Duan Z. Yuan J. Zha Z. Wu Q. Huang Z. Zhou H. Li F. He Y. Su C. Tan H. Tai, A Nb2CT x/sodium alginate-based composite film with neuron-like network for self-powered humidity sensing , Chem. Eng. J. 438, 135588 ( 2022)
[21]
M. R. Lukatskaya , S. Kota , Z. Lin , M. Q. Zhao , N. Shpigel , M. D. Levi , J. Halim , P. L. Taberna , M. W. Barsoum , P. Simon , Y. Gogotsi . Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy, 2017, 2( 8): 17105
CrossRef ADS Google scholar
[22]
M. Hu , N. Zhang , G. Shan , J. Gao , J. Liu , R. K. Y. Li . Two-dimensional materials: Emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber. Front. Phys., 2018, 13( 4): 138113
CrossRef ADS Google scholar
[23]
M. Naguib , M. Kurtoglu , V. Presser , J. Lu , J. Niu , M. Heon , L. Hultman , Y. Gogotsi , M. W. Barsoum . Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater., 2011, 23( 37): 4248
CrossRef ADS Google scholar
[24]
Y.-Z. Zhang , J. K. El-Demellawi , Q. Jiang , G. Ge , H. Liang , K. Lee , X. Dong , H. N. Alshareef . MXene hydrogels: Fundamentals and applications. Chem. Soc. Rev., 2020, 49 : 7229
CrossRef ADS Google scholar
[25]
K. H. Lee , Y. Z. Zhang , H. Kim , Y. Lei , S. Hong , S. Wustoni , A. Hama , S. Inal , H. N. Alshareef . Muscle fatigue sensor based on Ti3C2Tx MXene hydrogel. Small Methods, 2021, 5( 12): 2100819
CrossRef ADS Google scholar
[26]
Y. Zhang , K. Chen , Y. Li , J. Lan , B. Yan , L. Shi , R. Ran . MXene-containing composite hydrogel as a smart compression sensor. ACS Appl. Mater. Interfaces, 2019, 11( 50): 47350
CrossRef ADS Google scholar
[27]
Y. Cai , J. Shen , C. W. Yang , Y. Wan , H. L. Tang , A. A. Aljarb , C. Chen , J. H. Fu , X. Wei , K. W. Huang , Y. Han , S. J. Jonas , X. Dong , V. Tung . Mixed-dimensional MXene-hydrogel heterostructures for electronic skin sensors with ultrabroad working range. Sci. Adv., 2020, 6( 48): eabb5367
CrossRef ADS Google scholar
[28]
Y. Z. Zhang , K. H. Lee , D. H. Anjum , R. Sougrat , Q. Jiang , H. Kim , H. N. Alshareef . MXenes stretch hydrogel sensor performance to new limits. Sci. Adv., 2018, 4( 6): eaat0098
CrossRef ADS Google scholar
[29]
J. Huang , X. Huang , P. Wu . One stone for three birds: One-step engineering highly elastic and conductive hydrogel electronics with multilayer MXene as initiator, crosslinker and conductive filler simultaneously. Chem. Eng. J., 2022, 428 : 132515
CrossRef ADS Google scholar
[30]
S. K. Hwang , S. M. Kang , M. Rethinasabapathy , C. Roh , Y. S. Huh . MXene: An emerging two-dimensional layered material for removal of radioactive pollutants. Chem. Eng. J., 2020, 397 : 125428
CrossRef ADS Google scholar
[31]
L. Wang , W. Tao , L. Yuan , Z. Liu , Q. Huang , Z. Chai , J. K. Gibson , W. Shi . Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment. Chem. Commun. (Camb. ), 2017, 53( 89): 12084
CrossRef ADS Google scholar
[32]
B. M. Jun , C. M. Park , J. Heo , Y. Yoon . Adsorption of Ba2+ and Sr2+ on Ti3C2Tx MXene in model fracking wastewater. J. Environ. Manage., 2020, 256 : 109940
CrossRef ADS Google scholar
[33]
S. Li , L. Wang , J. Peng , M. Zhai , W. Shi . Efficient thorium (IV) removal by two-dimensional Ti2CTx MXene from aqueous solution. Chem. Eng. J., 2019, 366 : 192
CrossRef ADS Google scholar
[34]
M. Khan I. M. C. Lo, A holistic review of hydrogel applications in the adsorptive removal of aqueous pollutants: Recent progress, challenges, and perspectives, Water Res. 106, 259 ( 2016)
[35]
C. Zhao , L. Hu , C. Zhang , S. Wang , X. Wang , Z. Huo . Preparation of biochar-interpenetrated iron-alginate hydrogel as a PH-independent sorbent for removal of Cr(VI) and Pb(II). Environ. Pollut., 2021, 287 : 117303
CrossRef ADS Google scholar
[36]
Z. Wang , T. T. Li , H. K. Peng , H. T. Ren , C. W. Lou , J. H. Lin . Low-cost hydrogel adsorbent enhanced by trihydroxy melamine and β-cyclodextrin for the removal of Pb(II) and Ni(II) in water. J. Hazard. Mater., 2021, 411 : 125029
CrossRef ADS Google scholar
[37]
H. Mittal , A. Al Alili , S. M. Alhassan . Adsorption isotherm and kinetics of water vapors on novel superporous hydrogel composites. Microporous Mesoporous Mater., 2020, 299 : 110106
CrossRef ADS Google scholar
[38]
V. Van Tran , D. Park , Y. C. Lee . Hydrogel applications for adsorption of contaminants in water and wastewater treatment. Environ. Sci. Pollut. Res. Int., 2018, 25( 25): 24569
CrossRef ADS Google scholar
[39]
M. Le Flem , X. Liu , S. Doriot , T. Cozzika , I. Monnet . Irradiation damage in Ti3(Si, Al)C2: A TEM investigation. Int. J. Appl. Ceram. Technol., 2010, 7( 6): 766
CrossRef ADS Google scholar
[40]
C. Wang , T. Yang , S. Kong , J. Xiao , J. Xue , Q. Wang , C. Hu , Q. Huang , Y. Wang . Effects of He irradiation on Ti3AlC2: Damage evolution and behavior of He bubbles. J. Nucl. Mater., 2013, 440( 1-3): 606
CrossRef ADS Google scholar
[41]
H. Liu , X. Chen , Y. Zheng , D. Zhang , Y. Zhao , C. Wang , C. Pan , C. Liu , C. Shen . Lightweight, superelastic, and hydrophobic polyimide nanofiber/ MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications. Adv. Funct. Mater., 2021, 31( 13): 2008006
CrossRef ADS Google scholar
[42]
M. Tian X. Chen S. Sun D. Yang P. Wu, A bioinspired high-modulus mineral hydrogel binder for improving the cycling stability of microsized silicon particle-based lithium-ion battery, Nano Res. 12(5), 1121 ( 2019)
[43]
J. Yan , J. Zhu , M. Cui , J. Zhang , F. Ma , Y. Su , X. Han . Multifunctional mineral hydrogels: Potential in artificially intelligent skins and drug delivery. ACS Omega, 2019, 4( 21): 19145
CrossRef ADS Google scholar
[44]
D. Gebauer , P. N. Gunawidjaja , J. Y. P. Ko , Z. Bacsik , B. Aziz , L. Liu , Y. Hu , L. Bergström , C. W. Tai , T. K. Sham , M. Edén , N. Hedin . Proto-calcite and proto-vaterite in amorphous calcium carbonates. Angew. Chem. Int. Ed., 2010, 49( 47): 8889
CrossRef ADS Google scholar
[45]
J. Li , R. Qin , L. Yan , Z. Chi , Z. Yu , N. Li , M. Hu , H. Chen , G. Shan . Plasmonic light illumination creates a channel to achieve fast degradation of Ti3C2Tx nanosheets. Inorg. Chem., 2019, 58( 11): 7285
CrossRef ADS Google scholar
[46]
G. Cai , J. Wang , K. Qian , J. Chen , S. Li , P. S. Lee . Extremely stretchable strain sensors based on conductive self-healing dynamic cross-links hydrogels for human-motion detection. Adv. Sci. (Weinh.), 2017, 4( 2): 1600190
CrossRef ADS Google scholar
[47]
S. Lin , X. Zhao , X. Jiang , A. Wu , H. Ding , Y. Zhong , J. Li , J. Pan , B. Liu , H. Zhu . Highly stretchable, adaptable, and durable strain sensing based on a bioinspired dynamically cross-linked graphene/polymer composite. Small, 2019, 15( 19): 1900848
CrossRef ADS Google scholar
[48]
Y. J. Liu , W. T. Cao , M. G. Ma , P. Wan . Ultrasensitive wearable soft strain sensors of conductive, self-healing, and elastic hydrogels with synergistic “soft and hard” hybrid networks. ACS Appl. Mater. Interfaces, 2017, 9( 30): 25559
CrossRef ADS Google scholar
[49]
S. Lee , J. Kim , I. Yun , G. Y. Bae , D. Kim , S. Park , I. M. Yi , W. Moon , Y. Chung , K. Cho . An ultrathin conformable vibration-responsive electronic skin for quantitative vocal recognition. Nat. Commun., 2019, 10( 1): 2468
CrossRef ADS Google scholar
[50]
Y. H. Jung , S. K. Hong , H. S. Wang , J. H. Han , T. X. Pham , H. Park , J. Kim , S. Kang , C. D. Yoo , K. J. Lee . Flexible piezoelectric acoustic sensors and machine learning for speech processing. Adv. Mater., 2020, 32( 35): 1904020
CrossRef ADS Google scholar
[51]
R. Qin M. Hu X. Li T. Liang H. Tan J. Liu G. Shan, A new strategy for the fabrication of a flexible and highly sensitive capacitive pressure sensor, Microsyst. Nanoeng. 7(1), 100 ( 2021)
[52]
J. P. Simonin . On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J., 2016, 300 : 254
CrossRef ADS Google scholar
[53]
J. Liang , J. Li , X. Li , K. Liu , L. Wu , G. Shan . The sorption behavior of CHA-type zeolite for removing radioactive strontium from aqueous solutions. Separ. Purif. Tech., 2020, 230 : 115874
CrossRef ADS Google scholar
[54]
N. J. Coleman , D. S. Brassington , A. Raza , A. P. Mendham . Sorption of Co2+ and Sr2+ by waste-derived 11 Å tobermorite. Waste Manag., 2006, 26( 3): 260
CrossRef ADS Google scholar

Electronic supplementary materials

are available in the online version of this article at https://doi.org/10.1007/s11467-022-1181-2 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-022-1181-2 and are accessible for authorized users.

Declaration of competing interest

There are no conflicts of interest to declare.

Acknowledgements

This work was financially supported by the Fundamental Research Funds for Central Universities and also supported by the National Key R&D Program of China (Grant No. 2016YFC1402504).

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(4421 KB)

Accesses

Citations

Detail

Sections
Recommended

/