Bose−Einstein condensates with tunable spin−orbit coupling in the two-dimensional harmonic potential: The ground-state phases, stability phase diagram and collapse dynamics
Chen Jiao, Jun-Cheng Liang, Zi-Fa Yu, Yan Chen, Ai-Xia Zhang, Ju-Kui Xue
Bose−Einstein condensates with tunable spin−orbit coupling in the two-dimensional harmonic potential: The ground-state phases, stability phase diagram and collapse dynamics
We study the ground-state phases, the stability phase diagram and collapse dynamics of Bose−Einstein condensates (BECs) with tunable spin−orbit (SO) coupling in the two-dimensional harmonic potential by variational analysis and numerical simulation. Here we propose the theory that the collapse stability and collapse dynamics of BECs in the external trapping potential can be manipulated by the periodic driving of Raman coupling (RC), which can be realized experimentally. Through the high-frequency approximation, an effective time-independent Floquet Hamiltonian with two-body interaction in the harmonic potential is obtained, which results in a tunable SO coupling and a new effective two-body interaction that can be manipulated by the periodic driving strength. Using the variational method, the phase transition boundary and collapse boundary of the system are obtained analytically, where the phase transition between the spin-nonpolarized phase with zero momentum (zero momentum phase) and spin-polarized phase with non-zero momentum (plane wave phase) can be manipulated by the external driving and sensitive to the strong external trapping potential. Particularly, it is revealed that the collapsed BECs can be stabilized by periodic driving of RC, and the mechanism of collapse stability manipulated by periodic driving of RC is clearly revealed. In addition, we find that the collapse velocity and collapse time of the system can be manipulated by periodic driving strength, which also depends on the RC, SO coupling strength and external trapping potential. Finally, the variational approximation is confirmed by numerical simulation of Gross−Pitaevskii equation. Our results show that the periodic driving of RC provides a platform for manipulating the ground-state phases, collapse stability and collapse dynamics of the SO coupled BECs in an external harmonic potential, which can be realized easily in current experiments.
spin−orbit coupled Bose−Einstein condensates / stability / collapse dynamics
[1] |
M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell. Observation of Bose−Einstein condensation in a dilute atomic vapor. Science , 1995, 269( 5221): 198
CrossRef
ADS
Google scholar
|
[2] |
K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W.Ketterle. Bose−Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. , 1995, 75( 22): 3969
CrossRef
ADS
Google scholar
|
[3] |
R.Rajan, P.R. Babu, K.Senthilnathan. Photon condensation: A new paradigm for Bose–Einstein condensation. Front. Phys. , 2016, 11( 5): 110502
CrossRef
ADS
Google scholar
|
[4] |
B.DeMarco, D.S. Jin. Onset of Fermi degeneracy in a trapped atomic gas. Science , 1999, 285( 5434): 1703
CrossRef
ADS
Google scholar
|
[5] |
P.J. Wang, J.Zhang. Spin-orbit coupling in Bose−Einstein condensate and degenerate Fermi gases. Front. Phys. , 2014, 9( 5): 598
CrossRef
ADS
Google scholar
|
[6] |
P.Hauke, F.M. Cucchietti, L.Tagliacozzo, I.Deutsch, M.Lewenstein. Can one trust quantum simulators. Rep. Prog. Phys. , 2012, 75( 8): 082401
CrossRef
ADS
Google scholar
|
[7] |
M.Ueda, A.J. Leggett. Macroscopic quantum tunneling of a Bose−Einstein condensate with attractive interaction. Phys. Rev. Lett. , 1998, 80( 8): 1576
CrossRef
ADS
Google scholar
|
[8] |
H.Saito, M.Ueda. Dynamically stabilized bright solitons in a two-dimensional Bose−Einstein condensate. Phys. Rev. Lett. , 2003, 90( 4): 040403
CrossRef
ADS
Google scholar
|
[9] |
P.Pedri, L.Santos. Two-dimensional bright solitons in dipolar Bose−Einstein condensates. Phys. Rev. Lett. , 2005, 95( 20): 200404
CrossRef
ADS
Google scholar
|
[10] |
G.D. Montesinos, V.M. Perez-Garćia, H.Michinel. Stabilized two-dimensional vector solitons. Phys. Rev. Lett. , 2004, 92( 13): 133901
CrossRef
ADS
Google scholar
|
[11] |
F.Dalfovo, S.Giorgini, L.P. Pitaevskii, S.Stringari. Theory of Bose−Einstein condensation in trapped gases. Rev. Mod. Phys. , 1999, 71( 3): 463
CrossRef
ADS
Google scholar
|
[12] |
T.Koch, T.Lahaye, J.Metz, B.Fröhlich, A.Griesmaier, T.Pfau. Stabilization of a purely dipolar quantum gas against collapse. Nat. Phys. , 2008, 4( 3): 218
CrossRef
ADS
Google scholar
|
[13] |
C.Chin, R.Grimm, P.Julienne, E.Tiesinga. Feshbach resonances in ultracold gases. Rev. Mod. Phys. , 2010, 82( 2): 1225
CrossRef
ADS
Google scholar
|
[14] |
P.G. Kevrekidis, G.Theocharis, D.J. Frantzeskakis, B.A. Malomed. Feshbach resonance management for Bose−Einstein condensates. Phys. Rev. Lett. , 2003, 90( 23): 230401
CrossRef
ADS
Google scholar
|
[15] |
R.Horchani. Laser cooling of internal degrees of freedom of molecules. Front. Phys. , 2016, 11( 4): 113301
CrossRef
ADS
Google scholar
|
[16] |
F.Kh. Abdullaev, J.G. Caputo, R.A. Kraenkel, B.A. Malomed. Controlling collapse in Bose−Einstein condensates by temporal modulation of the scattering length. Phys. Rev. A , 2003, 67( 1): 013605
CrossRef
ADS
Google scholar
|
[17] |
S.L. Cornish, N.R. Claussen, J.L. Roberts, E.A. Cornell, C.E. Wieman. Stable 85Rb Bose−Einstein condensates with widely tunable interactions. Phys. Rev. Lett. , 2000, 85( 9): 1795
CrossRef
ADS
Google scholar
|
[18] |
S.Sabari, B.Dey. Stabilization of trapless dipolar Bose−Einstein condensates by temporal modulation of the contact interaction. Phys. Rev. E , 2018, 98( 4): 042203
CrossRef
ADS
Google scholar
|
[19] |
P.M. Lushnikov. Collapse of Bose−Einstein condensates with dipde−dipole interactions. Phys. Rev. A , 2002,
|
[20] |
Y.J. Lin, R.L. Compton, K.Jiménez-García, J.V. Porto, I.B. Spielman. Synthetic magnetic fields for ultracold neutral atoms. Nature , 2009, 462( 7273): 628
CrossRef
ADS
Google scholar
|
[21] |
Y.J. Lin R.L. Compton K.Jimnez-Garca W.D. Phillip J. V. Porto I.B. Spielman, A synthetic electric force acting on neutral atoms, Nat. Phys . 7(7), 531 ( 2011)
|
[22] |
Y.J. Lin, K.Jiménez-García, I.B. Spielman. Spin–orbit-coupled Bose–Einstein condensates. Nature , 2011, 471( 7336): 83
CrossRef
ADS
Google scholar
|
[23] |
P.Wang, Z.Q. Yu, Z.Fu, J.Miao, L.Huang, S.Chai, H.Zhai, J.Zhang. Spin−orbit coupled degenerate Fermi gases. Phys. Rev. Lett. , 2012, 109( 9): 095301
CrossRef
ADS
Google scholar
|
[24] |
Z.Wu, L.Zhang, W.Sun, X.T. Xu, B.Z. Wang, S.C. Ji, Y.Deng, S.Chen, X.J. Liu, J.W. Pan. Realization of two-dimensional spin−orbit coupling for Bose−Einstein condensates. Science , 2016, 354( 6308): 83
CrossRef
ADS
Google scholar
|
[25] |
L.Huang, Z.Meng, P.Wang, P.Peng, S.L. Zhang, L.Chen, D.Li, Q.Zhou, J.Zhang. Experimental realization of two-dimensional synthetic spin–orbit coupling in ultracold Fermi gases. Nat. Phys. , 2016, 12( 6): 540
CrossRef
ADS
Google scholar
|
[26] |
D.Zhang, T.Gao, P.Zou, L.Kong, R.Li, X.Shen, X.L. Chen, S.G. Peng, M.Zhan, H.Pu, K.Jiang. Ground-state phase diagram of a spin−orbital−angular−momentum coupled Bose−Einstein condensate. Phys. Rev. Lett. , 2019, 122( 11): 110402
CrossRef
ADS
Google scholar
|
[27] |
W.Han, G.Juzeliūnas, W.Zhang, W.M. Liu. Supersolid with nontrivial topological spin textures in spin−orbit-coupled Bose gases. Phys. Rev. A , 2015, 91( 1): 013607
CrossRef
ADS
Google scholar
|
[28] |
Y.Zhang, M.E. Mossman, T.Busch, P.Engels, C.Zhang. Properties of spin–orbit-coupled Bose–Einstein condensates. Front. Phys. , 2016, 11( 3): 118103
CrossRef
ADS
Google scholar
|
[29] |
S.W. Song, L.Wen, C.F. Liu, S.C. Gou, W.M. Liu. Ground states, solitons and spin textures in spin-1 Bose−Einstein condensates. Front. Phys. , 2013, 8( 3): 302
CrossRef
ADS
Google scholar
|
[30] |
Y.K. Liu, H.X. Yue, L.L. Xu, S.J. Yang. Vortex-pair states in spin−orbit-coupled Bose–Einstein condensates with coherent coupling. Front. Phys. , 2018, 13( 5): 130316
CrossRef
ADS
Google scholar
|
[31] |
H.Sakaguchi, B.Li, B.A. Malomed. Creation of two-dimensional composite solitons in spin−orbit-coupled self-attractive Bose−Einstein condensates in free space. Phys. Rev. E , 2014, 89( 3): 032920
CrossRef
ADS
Google scholar
|
[32] |
Y.C. Zhang, Z.W. Zhou, B.A. Malomed, H.Pu. Stable solitons in three dimensional free space without the ground state: self-trapped Bose−Einstein condensates with spin−orbit coupling. Phys. Rev. Lett. , 2015, 115( 25): 253902
CrossRef
ADS
Google scholar
|
[33] |
V.Achilleos, D.J. Frantzeskakis, P.G. Kevrekidis, D.E. Pelinovsky. Matter-wave bright solitons in spin−orbit coupled Bose−Einstein condensates. Phys. Rev. Lett. , 2013, 110( 26): 264101
CrossRef
ADS
Google scholar
|
[34] |
S.Mardonov, E.Ya. Sherman, J.G. Muga, H.W. Wang, Y.Ban, X.Chen. Collapse of spin−orbit-coupled Bose−Einstein condensates. Phys. Rev. A , 2015, 91( 4): 043604
CrossRef
ADS
Google scholar
|
[35] |
Z.F. Yu, A.X. Zhang, R.A. Tang, H.P. Xu, J.M. Gao, J.K. Xue. Spin−orbit-coupling stabilization of a collapsing binary Bose−Einstein condensate. Phys. Rev. A , 2017, 95( 3): 033607
CrossRef
ADS
Google scholar
|
[36] |
T.Ozawa, G.Baym. Stability of ultracold atomic Bose condensates with Rashba spin−orbit coupling against quantum and thermal fluctuations. Phys. Rev. Lett. , 2012, 109( 2): 025301
CrossRef
ADS
Google scholar
|
[37] |
R.X. Zhong, Z.P. Chen, C.Q. Huang, Z.H. Luo, H.S. Tan, B.A. Malomed, Y.Y. Li. Self-trapping under two-dimensional spin−orbit coupling and spatially growing repulsive nonlinearity. Front. Phys. , 2018, 13( 4): 130311
CrossRef
ADS
Google scholar
|
[38] |
Y.X. Yang, P.Gao, L.C. Zhao, Z.Y. Yang. Kink-like breathers in Bose−Einstein condensates with helicoidal spin−orbit coupling. Front. Phys. , 2022, 17( 3): 32503
CrossRef
ADS
Google scholar
|
[39] |
Y.Han, X.Q. Luo, T.F. Li, W.Zhang. Analytical double-unitary-transformation approach for strongly and periodically driven three-level systems. Phys. Rev. A , 2020, 101( 2): 022108
CrossRef
ADS
Google scholar
|
[40] |
M.Bukova, LAlessioab, D.Polkovnikova. Universal high-frequency behavior of periodically driven systems: From dynamical stabilization to Floquet engineering. Adv. Phys. , 2015, 64 : 139
|
[41] |
A.Eckardt. Atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. , 2017, 89( 1): 011004
CrossRef
ADS
Google scholar
|
[42] |
Y.Zhang, G.Chen, C.Zhang. Tunable Spin-orbit Coupling and Quantum Phase Transition in a Trapped Bose-Einstein Condensate. Sci. Rep. , 2013, 3( 1): 1937
CrossRef
ADS
Google scholar
|
[43] |
K.Jiménez-García, L.J. LeBlanc, R.A. Williams, M.C. Beeler, C.Qu, M.Gong, C.Zhang, I.B. Spielman. Tunable spin−orbit coupling via strong driving in ultracold-atom systems. Phys. Rev. Lett. , 2015, 114( 12): 125301
CrossRef
ADS
Google scholar
|
[44] |
J.M. Gomez Llorente, J.Plata. Periodic driving control of Raman-induced spin−orbit coupling in Bose−Einstein condensates: The heating mechanisms. Phys. Rev. A , 2016, 93( 6): 063633
CrossRef
ADS
Google scholar
|
[45] |
M.Salerno, F.Kh. Abdullaev, A.Gammal, L.Tomio. Tunable spin−orbit-coupled Bose−Einstein condensates in deep optical lattices. Phys. Rev. A , 2016, 94( 4): 043602
CrossRef
ADS
Google scholar
|
[46] |
F.Kh. Abdullaev, M.Brtka, A.Gammal, L.Tomio. Solitons and Josephson-type oscillations in Bose−Einstein condensates with spin−orbit coupling and time-varying Raman frequency. Phys. Rev. A , 2018, 97( 5): 053611
CrossRef
ADS
Google scholar
|
[47] |
X.W. Luo, C.W. Zhang. Tunable spin−orbit coupling and magnetic superstripe phase in a Bose−Einstein condensate. Phys. Rev. A , 2019, 100( 6): 063606
CrossRef
ADS
Google scholar
|
[48] |
J.C. Liang, Y.C. Zhang, C.Jiao, A.X. Zhang, J.K. Xue. Ground-state phase and superfluidity of tunable spin−orbit-coupled Bose−Einstein condensates. Phys. Rev. E , 2021, 103( 2): 022204
CrossRef
ADS
Google scholar
|
[49] |
Z.Lin. Phase diagrams of periodically driven spin–orbit coupled 87Rb and 23Na Bose–Einstein condensates. Ann. Phys. , 2021, 533( 1): 2000194
CrossRef
ADS
Google scholar
|
[50] |
E.Kengne, W.M. Liu. Management of matter-wave solitons in Bose−Einstein condensates with time-dependent atomic scattering length in a time-dependent parabolic complex potential. Phys. Rev. E , 2018, 98( 1): 012204
CrossRef
ADS
Google scholar
|
[51] |
E.A. Donley, N.R. Claussen, S.L. Cornish, J.L. Roberts, E.A. Cornell, C.E. Wieman. Dynamics of collapsing and exploding Bose–Einstein condensates. Nature , 2001, 412( 6844): 295
CrossRef
ADS
Google scholar
|
[52] |
Y.C. Xiong, L.Yin. Self-bound quantum droplet with internal stripe structure in one-dimensional spin−orbit-coupled Bose gas. Chin. Phys. Lett. , 2021, 38( 7): 070301
CrossRef
ADS
Google scholar
|
[53] |
R.Sachdeva, M.N. Tengstrand, S.M. Reimann. Self-bound supersolid stripe phase in binary Bose−Einstein condensates. Phys. Rev. A , 2020, 102( 4): 043304
CrossRef
ADS
Google scholar
|
[54] |
J.Sanchez-Baena, J.Boronat, F.Mazzanti. Supersolid striped droplets in a Raman spin−orbit-coupled system. Phys. Rev. A , 2020, 102( 5): 053308
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |