Asymmetric nonlinear-mode-conversion in an optical waveguide withPT symmetry

Changdong Chen , Youwen Liu , Lina Zhao , Xiaopeng Hu , Yangyang Fu

Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 52504

PDF (4809KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 52504 DOI: 10.1007/s11467-022-1177-y
RESEARCH ARTICLE

Asymmetric nonlinear-mode-conversion in an optical waveguide withPT symmetry

Author information +
History +
PDF (4809KB)

Abstract

Asymmetric mode transformation in waveguide is of great significance for on-chip integrated devices with one-way effect, while it is challenging to achieve asymmetric nonlinear-mode-conversion (NMC) due to the limitations imposed by phase-matching. In this work, we theoretically proposed a new scheme for realizing asymmetric NMC by combining frequency-doubling process and periodic PT symmetric modulation in an optical waveguide. By engineering the one-way momentum from PT symmetric modulation, we have demonstrated the unidirectional conversion from pump to second harmonic with desired guided modes. Our findings offer new opportunities for manipulating nonlinear optical fields with PT symmetry, which could further boost more exploration on on-chip nonlinear devices assisted by non-Hermitian optics.

Graphical abstract

Keywords

nonlinear mode conversion / meta-grating / PT symmetry / optical waveguide

Cite this article

Download citation ▾
Changdong Chen, Youwen Liu, Lina Zhao, Xiaopeng Hu, Yangyang Fu. Asymmetric nonlinear-mode-conversion in an optical waveguide withPT symmetry. Front. Phys., 2022, 17(5): 52504 DOI:10.1007/s11467-022-1177-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. M. Bender , S. Boettcher . Real spectra in Non-Hermitian Hamiltonians Having PT symmetry. Phys. Rev. Lett., 1998, 80( 24): 5243

[2]

G. Y. Sun , J. C. Tang , S. P. Kou . Biorthogonal quantum criticality in non-Hermitian many-body systems. Front. Phys., 2022, 17( 3): 33502

[3]

R. El-Ganainy , K. G. Makris , M. Khajavikhan , Z. H. Musslimani , S. Rotter , D. N. Christodoulides . Non-Hermitian physics and PT symmetry. Nat. Phys., 2018, 14( 1): 11

[4]

M. A. Miri , A. Alu . Exceptional points in optics and photonics. Science, 2019, 363( 6422): eaar7709

[5]

A. Guo , G. J. Salamo , D. Duchesne , R. Morandotti , M. Volatier-Ravat , V. Aimez , G. A. Siviloglou , D. N. Christodoulides . Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett., 2009, 103( 9): 093902

[6]

Y. Fu , Y. Xu , H. Chen . Zero index metamaterials with PT symmetry in a waveguide system. Opt. Express, 2016, 24( 2): 1648

[7]

A. Laha , S. Dey , H. K. Gandhi , A. Biswas , S. Ghosh . Exceptional point and toward mode-selective optical isolation. ACS Photonics, 2020, 7( 4): 967

[8]

H. Hodaei , M. A. Miri , M. Heinrich , D. N. Christodoulides , M. Khajavikhan . Parity−time-symmetric microring lasers. Science, 2014, 346( 6212): 975

[9]

B. Peng , S. K. Ozdemir , M. Liertzer , W. J. Chen , J. Kramer , H. Yilmaz , J. Wiersig , S. Rotter , L. Yang . Chiral modes and directional lasing at exceptional points. Proc. Natl. Acad. Sci. USA, 2016, 113( 25): 6845

[10]

N. Zhang , Z. Y. Gu , K. Y. Wang , M. Li , L. Ge , S. M. Xiao , Q. H. Song . Quasiparity−time symmetric microdisk laser. Laser Photonics Rev., 2017, 11( 5): 1700052

[11]

L. Chang , X. S. Jiang , S. Y. Hua , C. Yang , J. M. Wen , L. Jiang , G. Y. Li , G. Z. Wang , M. Xiao . Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators. Nat. Photonics, 2014, 8( 7): 524

[12]

B. Peng , S. K. Ozdemir , F. C. Lei , F. Monifi , M. Gianfreda , G. L. Long , S. H. Fan , F. Nori , C. M. Bender , L. Yang . Parity–time-symmetric whispering-gallery microcavities. Nat. Phys., 2014, 10( 5): 394

[13]

C. D. Chen , L. N. Zhao . The effect of thermal-induced noise on doubly-coupled-ring optical gyroscope sensor around exceptional point. Opt. Commun., 2020, 474 : 126108

[14]

C. D. Chen , Y. J. Xie , S. W. Huang . Nanophotonic optical gyroscope with sensitivity enhancement around “mirrored” exceptional points. Opt. Commun., 2021, 483 : 126674

[15]

M. Chen , Z. F. Li , X. Tong , X. D. Wang , F. H. Yang . Manipulating the critical gain level of spectral singularity in active hybridized metamaterials. Opt. Express, 2020, 28( 12): 17966

[16]

Y. Liang , Q. Gaimard , V. Klimov , A. Uskov , H. Benisty , A. Ramdane , A. Lupu . Coupling of nanoantennas in loss-gain environment for application in active tunable metasurfaces. Phys. Rev. B, 2021, 103( 4): 045419

[17]

Y. Cao , Y. Fu , Q. Zhou , Y. Xu , L. Gao , H. Chen . Giant Goos−Hänchen shift induced by bounded states in opticalPT-symmetric bilayer structures. Opt. Express, 2019, 27( 6): 7857

[18]

Y. Fu , Y. Fei , D. Dong , Y. Liu . Photonic spin Hall effect in PT symmetric metamaterials. Front. Phys., 2019, 14( 6): 62601

[19]

L. Feng , R. El-Ganainy , L. Ge . Non-Hermitian photonics based on parity–time symmetry. Nat. Photonics, 2017, 11( 12): 752

[20]

M. Greenberg , M. Orenstein . Irreversible coupling by use of dissipative optics. Opt. Lett., 2004, 29( 5): 451

[21]

L. Feng , M. Ayache , J. Q. Huang , Y. L. Xu , M. H. Lu , Y. F. Chen , Y. Fainman , A. Scherer . Nonreciprocal light propagation in a silicon photonic circuit. Science, 2011, 333( 6043): 729

[22]

S. N. Ghosh , Y. D. Chong . Exceptional points and asymmetric mode conversion in quasi-guided dual-mode optical waveguides. Sci. Rep., 2016, 6( 1): 19837

[23]

D. Chatzidimitriou , A. Pitilakis , T. Yioultsis , E. E. Kriezis . Breaking reciprocity in a non-Hermitian photonic coupler with saturable absorption. Phys. Rev. A, 2021, 103( 5): 053503

[24]

A. Pitilakis , D. Chatzidimitriou , T. V. Yioultsis , E. E. Kriezis . Asymmetric Si-slot coupler with nonreciprocal response based on graphene saturable absorption. IEEE J. Quantum Electron., 2021, 57( 3): 8400210

[25]

Z. Lin , H. Ramezani , T. Eichelkraut , T. Kottos , H. Cao , D. N. Christodoulides . Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett., 2011, 106( 21): 213901

[26]

L. Feng , Y. L. Xu , W. S. Fegadolli , M. H. Lu , J. E. B. Oliveira , V. R. Almeida , Y. F. Chen , A. Scherer . Experimental demonstration of a unidirectional reflectionless parity−time metamaterial at optical frequencies. Nat. Mater., 2013, 12( 2): 108

[27]

Y. F. Jia , Y. X. Yan , S. V. Kesava , E. D. Gomez , N. C. Giebink . Passive parity−time symmetry in organic thin film waveguides. ACS Photonics, 2015, 2( 2): 319

[28]

X. Y. Zhu , Y. L. Xu , Y. Zou , X. C. Sun , C. He , M. H. Lu , X. P. Liu , Y. F. Chen . Asymmetric diffraction based on a passive parity−time grating. Appl. Phys. Lett., 2016, 109( 11): 111101

[29]

H. Zhao , W. S. Fegadolli , J. K. Yu , Z. F. Zhang , L. Ge , A. Scherer , L. Feng . Metawaveguide for asymmetric interferometric light−light switching. Phys. Rev. Lett., 2016, 117( 19): 193901

[30]

W. Wang , L. Q. Wang , R. D. Xue , H. L. Chen , R. P. Guo , Y. M. Liu , J. Chen . Unidirectional excitation of radiative-loss-free surface plasmon polaritons in PT-symmetric systems. Phys. Rev. Lett., 2017, 119( 7): 077401

[31]

Y. Y. Fu , Y. D. Xu , H. Y. Chen . Negative refraction based on purely imaginary metamaterials. Front. Phys., 2018, 13( 4): 134206

[32]

L. Chang , Y. F. Li , N. Volet , L. Wang , J. Peters , J. E. Bowers . Thin film wavelength converters for photonic integrated circuits. Optica, 2016, 3( 5): 531

[33]

M. Jankowski , C. Langrock , B. Desiatov , A. Marandi , C. Wang , M. Zhang , C. R. Phillips , M. Loncar , M. M. Fejer . Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica, 2020, 7( 1): 40

[34]

D. H. Sun , Y. W. Zhang , D. Z. Wang , W. Song , X. Y. Liu , J. B. Pang , D. Q. Geng , Y. H. Sang , H. Liu . Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications. Light Sci. Appl., 2020, 9( 1): 197

[35]

R. Luo , Y. He , H. X. Liang , M. X. Li , Q. Lin . Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide. Optica, 2018, 5( 8): 1006

[36]

C. Wang , Z. Y. Li , M. H. Kim , X. Xiong , X. F. Ren , G. C. Guo , N. F. Yu , M. Loncar . Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nat. Commun., 2017, 8( 1): 2098

[37]

A. Rose , D. Huang , D. R. Smith . Controlling the second harmonic in a phase-matched negative-index metamaterial. Phys. Rev. Lett., 2011, 107( 6): 063902

[38]

A. Rose , D. R. Smith . Overcoming phase mismatch in nonlinear metamaterials. Opt. Mater. Express, 2011, 1( 7): 1232

[39]

H. Suchowski , K. O’Brien , Z. J. Wong , A. Salandrino , X. Yin , X. Zhang . Phase mismatch–free nonlinear propagation in optical zero-index materials. Science, 2013, 342( 6163): 1223

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (4809KB)

941

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/