Asymmetric nonlinear-mode-conversion in an optical waveguide withPT symmetry

Changdong Chen, Youwen Liu, Lina Zhao, Xiaopeng Hu, Yangyang Fu

PDF(4809 KB)
PDF(4809 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 52504. DOI: 10.1007/s11467-022-1177-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Asymmetric nonlinear-mode-conversion in an optical waveguide withPT symmetry

Author information +
History +

Abstract

Asymmetric mode transformation in waveguide is of great significance for on-chip integrated devices with one-way effect, while it is challenging to achieve asymmetric nonlinear-mode-conversion (NMC) due to the limitations imposed by phase-matching. In this work, we theoretically proposed a new scheme for realizing asymmetric NMC by combining frequency-doubling process and periodic PT symmetric modulation in an optical waveguide. By engineering the one-way momentum from PT symmetric modulation, we have demonstrated the unidirectional conversion from pump to second harmonic with desired guided modes. Our findings offer new opportunities for manipulating nonlinear optical fields with PT symmetry, which could further boost more exploration on on-chip nonlinear devices assisted by non-Hermitian optics.

Graphical abstract

Keywords

nonlinear mode conversion / meta-grating / PT symmetry / optical waveguide

Cite this article

Download citation ▾
Changdong Chen, Youwen Liu, Lina Zhao, Xiaopeng Hu, Yangyang Fu. Asymmetric nonlinear-mode-conversion in an optical waveguide withPT symmetry. Front. Phys., 2022, 17(5): 52504 https://doi.org/10.1007/s11467-022-1177-y

References

[1]
C. M. Bender , S. Boettcher . Real spectra in Non-Hermitian Hamiltonians Having PT symmetry. Phys. Rev. Lett., 1998, 80( 24): 5243
CrossRef ADS Google scholar
[2]
G. Y. Sun , J. C. Tang , S. P. Kou . Biorthogonal quantum criticality in non-Hermitian many-body systems. Front. Phys., 2022, 17( 3): 33502
CrossRef ADS Google scholar
[3]
R. El-Ganainy , K. G. Makris , M. Khajavikhan , Z. H. Musslimani , S. Rotter , D. N. Christodoulides . Non-Hermitian physics and PT symmetry. Nat. Phys., 2018, 14( 1): 11
CrossRef ADS Google scholar
[4]
M. A. Miri , A. Alu . Exceptional points in optics and photonics. Science, 2019, 363( 6422): eaar7709
CrossRef ADS Google scholar
[5]
A. Guo , G. J. Salamo , D. Duchesne , R. Morandotti , M. Volatier-Ravat , V. Aimez , G. A. Siviloglou , D. N. Christodoulides . Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett., 2009, 103( 9): 093902
CrossRef ADS Google scholar
[6]
Y. Fu , Y. Xu , H. Chen . Zero index metamaterials with PT symmetry in a waveguide system. Opt. Express, 2016, 24( 2): 1648
CrossRef ADS Google scholar
[7]
A. Laha , S. Dey , H. K. Gandhi , A. Biswas , S. Ghosh . Exceptional point and toward mode-selective optical isolation. ACS Photonics, 2020, 7( 4): 967
CrossRef ADS Google scholar
[8]
H. Hodaei , M. A. Miri , M. Heinrich , D. N. Christodoulides , M. Khajavikhan . Parity−time-symmetric microring lasers. Science, 2014, 346( 6212): 975
CrossRef ADS Google scholar
[9]
B. Peng , S. K. Ozdemir , M. Liertzer , W. J. Chen , J. Kramer , H. Yilmaz , J. Wiersig , S. Rotter , L. Yang . Chiral modes and directional lasing at exceptional points. Proc. Natl. Acad. Sci. USA, 2016, 113( 25): 6845
CrossRef ADS Google scholar
[10]
N. Zhang , Z. Y. Gu , K. Y. Wang , M. Li , L. Ge , S. M. Xiao , Q. H. Song . Quasiparity−time symmetric microdisk laser. Laser Photonics Rev., 2017, 11( 5): 1700052
CrossRef ADS Google scholar
[11]
L. Chang , X. S. Jiang , S. Y. Hua , C. Yang , J. M. Wen , L. Jiang , G. Y. Li , G. Z. Wang , M. Xiao . Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators. Nat. Photonics, 2014, 8( 7): 524
CrossRef ADS Google scholar
[12]
B. Peng , S. K. Ozdemir , F. C. Lei , F. Monifi , M. Gianfreda , G. L. Long , S. H. Fan , F. Nori , C. M. Bender , L. Yang . Parity–time-symmetric whispering-gallery microcavities. Nat. Phys., 2014, 10( 5): 394
CrossRef ADS Google scholar
[13]
C. D. Chen , L. N. Zhao . The effect of thermal-induced noise on doubly-coupled-ring optical gyroscope sensor around exceptional point. Opt. Commun., 2020, 474 : 126108
CrossRef ADS Google scholar
[14]
C. D. Chen , Y. J. Xie , S. W. Huang . Nanophotonic optical gyroscope with sensitivity enhancement around “mirrored” exceptional points. Opt. Commun., 2021, 483 : 126674
CrossRef ADS Google scholar
[15]
M. Chen , Z. F. Li , X. Tong , X. D. Wang , F. H. Yang . Manipulating the critical gain level of spectral singularity in active hybridized metamaterials. Opt. Express, 2020, 28( 12): 17966
CrossRef ADS Google scholar
[16]
Y. Liang , Q. Gaimard , V. Klimov , A. Uskov , H. Benisty , A. Ramdane , A. Lupu . Coupling of nanoantennas in loss-gain environment for application in active tunable metasurfaces. Phys. Rev. B, 2021, 103( 4): 045419
CrossRef ADS Google scholar
[17]
Y. Cao , Y. Fu , Q. Zhou , Y. Xu , L. Gao , H. Chen . Giant Goos−Hänchen shift induced by bounded states in opticalPT-symmetric bilayer structures. Opt. Express, 2019, 27( 6): 7857
CrossRef ADS Google scholar
[18]
Y. Fu , Y. Fei , D. Dong , Y. Liu . Photonic spin Hall effect in PT symmetric metamaterials. Front. Phys., 2019, 14( 6): 62601
CrossRef ADS Google scholar
[19]
L. Feng , R. El-Ganainy , L. Ge . Non-Hermitian photonics based on parity–time symmetry. Nat. Photonics, 2017, 11( 12): 752
CrossRef ADS Google scholar
[20]
M. Greenberg , M. Orenstein . Irreversible coupling by use of dissipative optics. Opt. Lett., 2004, 29( 5): 451
CrossRef ADS Google scholar
[21]
L. Feng , M. Ayache , J. Q. Huang , Y. L. Xu , M. H. Lu , Y. F. Chen , Y. Fainman , A. Scherer . Nonreciprocal light propagation in a silicon photonic circuit. Science, 2011, 333( 6043): 729
CrossRef ADS Google scholar
[22]
S. N. Ghosh , Y. D. Chong . Exceptional points and asymmetric mode conversion in quasi-guided dual-mode optical waveguides. Sci. Rep., 2016, 6( 1): 19837
CrossRef ADS Google scholar
[23]
D. Chatzidimitriou , A. Pitilakis , T. Yioultsis , E. E. Kriezis . Breaking reciprocity in a non-Hermitian photonic coupler with saturable absorption. Phys. Rev. A, 2021, 103( 5): 053503
CrossRef ADS Google scholar
[24]
A. Pitilakis , D. Chatzidimitriou , T. V. Yioultsis , E. E. Kriezis . Asymmetric Si-slot coupler with nonreciprocal response based on graphene saturable absorption. IEEE J. Quantum Electron., 2021, 57( 3): 8400210
CrossRef ADS Google scholar
[25]
Z. Lin , H. Ramezani , T. Eichelkraut , T. Kottos , H. Cao , D. N. Christodoulides . Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett., 2011, 106( 21): 213901
CrossRef ADS Google scholar
[26]
L. Feng , Y. L. Xu , W. S. Fegadolli , M. H. Lu , J. E. B. Oliveira , V. R. Almeida , Y. F. Chen , A. Scherer . Experimental demonstration of a unidirectional reflectionless parity−time metamaterial at optical frequencies. Nat. Mater., 2013, 12( 2): 108
CrossRef ADS Google scholar
[27]
Y. F. Jia , Y. X. Yan , S. V. Kesava , E. D. Gomez , N. C. Giebink . Passive parity−time symmetry in organic thin film waveguides. ACS Photonics, 2015, 2( 2): 319
CrossRef ADS Google scholar
[28]
X. Y. Zhu , Y. L. Xu , Y. Zou , X. C. Sun , C. He , M. H. Lu , X. P. Liu , Y. F. Chen . Asymmetric diffraction based on a passive parity−time grating. Appl. Phys. Lett., 2016, 109( 11): 111101
CrossRef ADS Google scholar
[29]
H. Zhao , W. S. Fegadolli , J. K. Yu , Z. F. Zhang , L. Ge , A. Scherer , L. Feng . Metawaveguide for asymmetric interferometric light−light switching. Phys. Rev. Lett., 2016, 117( 19): 193901
CrossRef ADS Google scholar
[30]
W. Wang , L. Q. Wang , R. D. Xue , H. L. Chen , R. P. Guo , Y. M. Liu , J. Chen . Unidirectional excitation of radiative-loss-free surface plasmon polaritons in PT-symmetric systems. Phys. Rev. Lett., 2017, 119( 7): 077401
CrossRef ADS Google scholar
[31]
Y. Y. Fu , Y. D. Xu , H. Y. Chen . Negative refraction based on purely imaginary metamaterials. Front. Phys., 2018, 13( 4): 134206
CrossRef ADS Google scholar
[32]
L. Chang , Y. F. Li , N. Volet , L. Wang , J. Peters , J. E. Bowers . Thin film wavelength converters for photonic integrated circuits. Optica, 2016, 3( 5): 531
CrossRef ADS Google scholar
[33]
M. Jankowski , C. Langrock , B. Desiatov , A. Marandi , C. Wang , M. Zhang , C. R. Phillips , M. Loncar , M. M. Fejer . Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica, 2020, 7( 1): 40
CrossRef ADS Google scholar
[34]
D. H. Sun , Y. W. Zhang , D. Z. Wang , W. Song , X. Y. Liu , J. B. Pang , D. Q. Geng , Y. H. Sang , H. Liu . Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications. Light Sci. Appl., 2020, 9( 1): 197
CrossRef ADS Google scholar
[35]
R. Luo , Y. He , H. X. Liang , M. X. Li , Q. Lin . Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide. Optica, 2018, 5( 8): 1006
CrossRef ADS Google scholar
[36]
C. Wang , Z. Y. Li , M. H. Kim , X. Xiong , X. F. Ren , G. C. Guo , N. F. Yu , M. Loncar . Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nat. Commun., 2017, 8( 1): 2098
CrossRef ADS Google scholar
[37]
A. Rose , D. Huang , D. R. Smith . Controlling the second harmonic in a phase-matched negative-index metamaterial. Phys. Rev. Lett., 2011, 107( 6): 063902
CrossRef ADS Google scholar
[38]
A. Rose , D. R. Smith . Overcoming phase mismatch in nonlinear metamaterials. Opt. Mater. Express, 2011, 1( 7): 1232
CrossRef ADS Google scholar
[39]
H. Suchowski , K. O’Brien , Z. J. Wong , A. Salandrino , X. Yin , X. Zhang . Phase mismatch–free nonlinear propagation in optical zero-index materials. Science, 2013, 342( 6163): 1223
CrossRef ADS Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11904169 and 91950106), the Fundamental Research Funds for the Central Universities (Grant No. NE2022007), the Natural Science Foundation of Jiangsu Province (No. BK20190383), Postdoctoral Science Foundation of Jiangsu Province (No. 2020Z224), China Postdoctoral Science Foundation (No. 2020M681576), and the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions.

Disclosures

The authors declare no conflicts of interest.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(4809 KB)

Accesses

Citations

Detail

Sections
Recommended

/