Ferroelectricity in hBN intercalated double-layer graphene

Yibo Wang , Siqi Jiang , Jingkuan Xiao , Xiaofan Cai , Di Zhang , Ping Wang , Guodong Ma , Yaqing Han , Jiabei Huang , Kenji Watanabe , Takashi Taniguchi , Yanfeng Guo , Lei Wang , Alexander S. Mayorov , Geliang Yu

Front. Phys. ›› 2022, Vol. 17 ›› Issue (4) : 43504

PDF (2904KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (4) : 43504 DOI: 10.1007/s11467-022-1175-0
RESEARCH ARTICLE

Ferroelectricity in hBN intercalated double-layer graphene

Author information +
History +
PDF (2904KB)

Abstract

Van der Waals (vdW) assembly of two-dimensional materials has long been recognized as a powerful tool for creating unique systems with properties that cannot be found in natural compounds [Nature 499, 419 (2013)]. However, among the variety of vdW heterostructures and their various properties, only a few have revealed metallic and ferroelectric behaviour signatures [Sci. Adv. 5, eaax5080 (2019); Nature560, 336 (2018)]. Here we show ferroelectric semimetal made of double-gated double-layer graphene separated by an atomically thin crystal of hexagonal boron nitride. The structure demonstrates high room temperature mobility of the order of 10 m2·V−1·s−1 and exhibits ambipolar switching in response to the external electric field. The observed hysteresis is reversible and persists above room temperature. Our fabrication method expands the family of ferroelectric vdW compounds and offers a promising route for developing novel phase-changing devices. A possible microscopic model of ferroelectricity is discussed.

Graphical abstract

Keywords

double-layer graphene / ferroelectric metal / intercalation / dry transfer / high-mobility

Cite this article

Download citation ▾
Yibo Wang, Siqi Jiang, Jingkuan Xiao, Xiaofan Cai, Di Zhang, Ping Wang, Guodong Ma, Yaqing Han, Jiabei Huang, Kenji Watanabe, Takashi Taniguchi, Yanfeng Guo, Lei Wang, Alexander S. Mayorov, Geliang Yu. Ferroelectricity in hBN intercalated double-layer graphene. Front. Phys., 2022, 17(4): 43504 DOI:10.1007/s11467-022-1175-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. K. Geim , I. V. Grigorieva . Van der Waals heterostructures. Nature, 2013, 499 : 419

[2]

P. Sharma F. X. Xiang D. F. Shao D. Zhang E. Y. Tsymbal A. R. Hamilton J. Seidel, A room-temperature ferroelectric semimetal, Sci. Adv. 5, eaax5080 ( 2019)

[3]

Z. Fei , W. Zhao , T. A. Palomaki , B. Sun , M. K. Miller , Z. Zhao , J. Yan , X. Xu , D. H. Cobden . Ferroelectric switching of a two-dimensional metal. Nature, 2018, 560 : 336

[4]

X. Xi , L. Zhao , Z. Wang , H. Berger , L. Forró , J. Shan , K. F. Mak . Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotech., 2015, 10 : 765

[5]

W. X. Zhou , A. Ariando . Review on ferroelectric/polar metals. Jpn. J. Appl. Phys., 2020, 59 : SI0802

[6]

Y. Cao , Z. Wang , S. Y. Park , Y. Yuan , X. Liu , S. M. Nikitin , H. Akamatsu , M. Kareev , S. Middey , D. Meyers , P. Thompson , P. J. Ryan , P. Shafer , A. N’Diaye , E. Arenholz , V. Gopalan , Y. Zhu , K. M. Rabe , J. Chakhalian . Artificial two-dimensional polar metal at room temperature. Nat. Commun., 2018, 9 : 1547

[7]

Y. Shi Y. Guo X. Wang A. J. Princep D. Khalyavin P. Manuel Y. Michiue A. Sato K. Tsuda S. Yu M. Arai Y. Shirako M. Akaogi N. Wang K. Yamaura A. T. Boothroyd, A ferroelectric-like structural transition in a metal, Nat. Mater. 12, 1024 ( 2013)

[8]

X. Liu , Y. Yang , T. Hu , G. Zhao , C. Chen , W. Ren . Vertical ferroelectric switching by in-plane sliding of two-dimensional bilayer WTe2. Nanoscale, 2019, 11 : 18575

[9]

M . Si, A. K. Saha, S. Gao, G. Qiu, J. Qin, Y. Duan, J. Jian, C. Niu, H. Wang, W. Wu, S. K. Gupta, and P. D. Ye, A ferroelectric semiconductor field-effect transistor, Nat. Nanoelectron. 2, 580 (2019)

[10]

L. Wang , I. Mericp , Y. Huang , Q. Gao , Y. Gao , H. Tran , T. Taniguchi , K. Watanabe , L. M. Campos , D. A. Muller , J. Guo , P. Kim , J. Hone , K. L. Shepard , C. R. Dean . One-dimensional electrical contact to a two-dimensional material. Science, 2013, 342 : 614

[11]

C. R. Dean , A. F. Young , I. Meric , C. Lee , L. Wang , S. Sorgenfrei , K. Watanabe , T. Taniguchi , P. Kim , K. L. Shepard , J. Hone . Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol., 2010, 5 : 722

[12]

A. S. Mayorov , R. V. Gorbachev , S. V. Morozov , L. Britnell , R. Jalil , L. A. Ponomarenko , P. Blake , K. S. Novoselov , K. Watanabe , T. Taniguchi , A. K. Geim . Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett., 2011, 11 : 2396

[13]

A. H. Castro Neto , F. Guinea , N. M. R. Peres , K. S. Novoselov , A. K. Geim . The electronic properties of grapheme. Rev. Mod. Phys., 2009, 81 : 109

[14]

D. Puggioni , G. Giovannetti , M. Capone , J. M. Rondinelli . Design of a Mott multiferroic from a nonmagnetic polar metal. Phys. Rev. Lett., 2015, 115 : 087202

[15]

Z. Zheng , Q. Ma , Z. Bi , S. de la Barrera , M. H. Liu , N. Mao , Y. Zhang , N. Kiper , K. Watanabe , T. Taniguchi , J. Kong , W. A. Tisdale , R. Ashoori , N. Gedik , L. Fu , S. Y. Xu , P. Jarillo-Herrero . Unconventional ferroelectricity in moiré heterostructures. Nature, 2020, 588 : 71

[16]

A. V. Kretinin , Y. Cao , J. S. Tu , G. L. Yu , R. Jalil , K. S. Novoselov , S. J. Haigh , A. Gholinia , A. Mishchenko , M. Lozada , T. Georgiou , C. R. Woods , F. Withers , P. Blake , G. Eda , A. Wirsig , C. Hucho , K. Watanabe , T. Taniguchi , A. K. Geim , R. V. Gorbachev . Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Lett., 2014, 14 : 3270

[17]

M. Lines, Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford England, 1977

[18]

L. A. Ponomarenko , A. K. Geim , A. A. Zhukov , R. Jalil , S. V. Morozov , K. S. Novoselov , I. V. Grigorieva , E. H. Hill , V. V. Cheianov , V. I. Fal’ko , K. Watanabe , T. Taniguchi , R. V. Gorbachev . Tunable metal–insulator transition in double-layer graphene heterostructures. Nat. Phys., 2011, 7 : 958

[19]

M. Schmitz , S. Engels , L. Banszerus , K. Watanabe , T. Taniguchi , C. Stampfer , B. Beschoten . High mobility dry-transferred CVD bilayer grapheme. Appl. Phys. Lett., 2017, 110 : 263110

[20]

Z. Wang , Y. B. Wang , J. Yin , E. Tóvári , Y. Yang , L. Lin , M. Holwill , J. Birkbeck , D. J. Perello , S. Xu , J. Zultak , R. V. Gorbachev , A. V. Kretinin , T. Taniguchi , K. Watanabe , S. V. Morozov , M. Anđelković , S. P. Milovanović , L. Covaci , F. M. Peeters , A. Mishchenko , A. K. Geim , K. S. Novoselov , V. I. Fal’Ko , A. Knothe , C. R. Woods . Composite super-moiré lattices in double-aligned graphene heterostructures. Sci. Adv., 2019, 5 : eaay8897

[21]

R. K. Kumar , X. Chen , G. H. Auton , A. Mishchenko , D. A. Bandurin , S. V. Morozov , Y. Cao , E. Khestanova , M. B. Shalom , A. V. Kretinin , K. S. Novoselov , L. Eaves , I. V. Grigorieva , L. A. Ponomarenko , V. I. Fal’Ko , A. K. Geim . High-temperature quantum oscillations caused by recurring Bloch states in graphene superlatticess. Science, 2017, 357 : 181

[22]

C. R. Woods , P. Ares , H. Nevison-Andrews , M. J. Holwill , R. Fabregas , F. Guinea , A. K. Geim , K. S. Novoselov , N. R. Walet , L. Fumagalli . Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nat. Commun., 2021, 12 : 347

[23]

M. V. Stern , Y. Waschitz , W. Cao , I. Nevo , K. Watanabe , T. Taniguchi , E. Sela , M. Urbakh , M. B. Shalom . Interfacial ferroelectricity by van der Waals sliding. Science, 2021, 372 : 1462

[24]

K. Yasuda , X. Wang , K. Watanabe , T. Taniguchi , P. Jarillo-Herrero . Stacking-engineered ferroelectricity in bilayer boron nitride. Science, 2021, 372 : 1458

[25]

Q. Cai , D. Scullion , W. G. Falin , S. Zhang , K. Watanabe , T. Taniguchi , Y. CHEN , E. J. G. Santos , L. H. Li . High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Sci. Adv., 2019, 5 : eaav0129

[26]

P. Ares , T. Cea , M. Holwill , Y. B. Wang , R. Roldán , F. Guinea , D. V. Andreeva , L. Fumagalli , K. S. Novoselov , C. R. Woods . Piezoelectricity in monolayer hexagonal boron nitride. Adv. Mater., 2020, 32 : 1905504

[27]

H. Min , E. Hwang , S. Das Sarma . Chirality-dependent phonon-limited resistivity in multiple layers of graphene. Phys. Rev. B, 2011, 83 : 161404

[28]

H. Polshyn , M. Yankowitz , S. Chen , Y. Zhang , K. Watanabe , T. Taniguchi , C. R. Dean , A. F. Young . Large linear-in-temperature resistivity in twisted bilayer grapheme. Nat. Phys., 2019, 15 : 1011

[29]

F. Wu , E. Hwang , S. Das Sarma . Phonon-induced giant linear-in-T resistivity in magic angle twisted bilayer graphene: Ordinary strangeness and exotic superconductivity. Phys. Rev. B, 2019, 99 : 165112

[30]

I. T. Lin , J. M. Liu . Surface polar optical phonon scattering of carriers in graphene on various substrates. Appl. Phys. Lett., 2013, 103 : 081606

[31]

X. Li , E. A. Barry , J. M. Zavada , M. B. Nardelli , K. W. Kim . Surface polar phonon dominated electron transport in grapheme. Appl. Phys. Lett., 2010, 97 : 232105

[32]

R. V. Gorbachev , A. K. Geim , M. I. Katsnelson , K. S. Novoselov , T. Tudorovskiy , I. V. Grigorieva , A. H. MacDonald , S. V. Morozov , K. Watanabe , T. Taniguchi , L. A. Ponomarenko . Strong coulomb drag and broken symmetry in double-layer grapheme. Nat. Phys., 2012, 8 : 896

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2904KB)

Supplementary files

fop-21175-OF-yugeliang_suppl_1

1485

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/