Ferroelectricity in hBN intercalated double-layer graphene

Yibo Wang, Siqi Jiang, Jingkuan Xiao, Xiaofan Cai, Di Zhang, Ping Wang, Guodong Ma, Yaqing Han, Jiabei Huang, Kenji Watanabe, Takashi Taniguchi, Yanfeng Guo, Lei Wang, Alexander S. Mayorov, Geliang Yu

PDF(2904 KB)
PDF(2904 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (4) : 43504. DOI: 10.1007/s11467-022-1175-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Ferroelectricity in hBN intercalated double-layer graphene

Author information +
History +

Abstract

Van der Waals (vdW) assembly of two-dimensional materials has long been recognized as a powerful tool for creating unique systems with properties that cannot be found in natural compounds [Nature 499, 419 (2013)]. However, among the variety of vdW heterostructures and their various properties, only a few have revealed metallic and ferroelectric behaviour signatures [Sci. Adv. 5, eaax5080 (2019); Nature560, 336 (2018)]. Here we show ferroelectric semimetal made of double-gated double-layer graphene separated by an atomically thin crystal of hexagonal boron nitride. The structure demonstrates high room temperature mobility of the order of 10 m2·V−1·s−1 and exhibits ambipolar switching in response to the external electric field. The observed hysteresis is reversible and persists above room temperature. Our fabrication method expands the family of ferroelectric vdW compounds and offers a promising route for developing novel phase-changing devices. A possible microscopic model of ferroelectricity is discussed.

Graphical abstract

Keywords

double-layer graphene / ferroelectric metal / intercalation / dry transfer / high-mobility

Cite this article

Download citation ▾
Yibo Wang, Siqi Jiang, Jingkuan Xiao, Xiaofan Cai, Di Zhang, Ping Wang, Guodong Ma, Yaqing Han, Jiabei Huang, Kenji Watanabe, Takashi Taniguchi, Yanfeng Guo, Lei Wang, Alexander S. Mayorov, Geliang Yu. Ferroelectricity in hBN intercalated double-layer graphene. Front. Phys., 2022, 17(4): 43504 https://doi.org/10.1007/s11467-022-1175-0

References

[1]
A. K. Geim , I. V. Grigorieva . Van der Waals heterostructures. Nature, 2013, 499 : 419
CrossRef ADS Google scholar
[2]
P. Sharma F. X. Xiang D. F. Shao D. Zhang E. Y. Tsymbal A. R. Hamilton J. Seidel, A room-temperature ferroelectric semimetal, Sci. Adv. 5, eaax5080 ( 2019)
[3]
Z. Fei , W. Zhao , T. A. Palomaki , B. Sun , M. K. Miller , Z. Zhao , J. Yan , X. Xu , D. H. Cobden . Ferroelectric switching of a two-dimensional metal. Nature, 2018, 560 : 336
CrossRef ADS Google scholar
[4]
X. Xi , L. Zhao , Z. Wang , H. Berger , L. Forró , J. Shan , K. F. Mak . Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotech., 2015, 10 : 765
CrossRef ADS Google scholar
[5]
W. X. Zhou , A. Ariando . Review on ferroelectric/polar metals. Jpn. J. Appl. Phys., 2020, 59 : SI0802
CrossRef ADS Google scholar
[6]
Y. Cao , Z. Wang , S. Y. Park , Y. Yuan , X. Liu , S. M. Nikitin , H. Akamatsu , M. Kareev , S. Middey , D. Meyers , P. Thompson , P. J. Ryan , P. Shafer , A. N’Diaye , E. Arenholz , V. Gopalan , Y. Zhu , K. M. Rabe , J. Chakhalian . Artificial two-dimensional polar metal at room temperature. Nat. Commun., 2018, 9 : 1547
CrossRef ADS Google scholar
[7]
Y. Shi Y. Guo X. Wang A. J. Princep D. Khalyavin P. Manuel Y. Michiue A. Sato K. Tsuda S. Yu M. Arai Y. Shirako M. Akaogi N. Wang K. Yamaura A. T. Boothroyd, A ferroelectric-like structural transition in a metal, Nat. Mater. 12, 1024 ( 2013)
[8]
X. Liu , Y. Yang , T. Hu , G. Zhao , C. Chen , W. Ren . Vertical ferroelectric switching by in-plane sliding of two-dimensional bilayer WTe2. Nanoscale, 2019, 11 : 18575
CrossRef ADS Google scholar
[9]
M . Si, A. K. Saha, S. Gao, G. Qiu, J. Qin, Y. Duan, J. Jian, C. Niu, H. Wang, W. Wu, S. K. Gupta, and P. D. Ye, A ferroelectric semiconductor field-effect transistor, Nat. Nanoelectron. 2, 580 (2019)
[10]
L. Wang , I. Mericp , Y. Huang , Q. Gao , Y. Gao , H. Tran , T. Taniguchi , K. Watanabe , L. M. Campos , D. A. Muller , J. Guo , P. Kim , J. Hone , K. L. Shepard , C. R. Dean . One-dimensional electrical contact to a two-dimensional material. Science, 2013, 342 : 614
CrossRef ADS Google scholar
[11]
C. R. Dean , A. F. Young , I. Meric , C. Lee , L. Wang , S. Sorgenfrei , K. Watanabe , T. Taniguchi , P. Kim , K. L. Shepard , J. Hone . Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol., 2010, 5 : 722
CrossRef ADS Google scholar
[12]
A. S. Mayorov , R. V. Gorbachev , S. V. Morozov , L. Britnell , R. Jalil , L. A. Ponomarenko , P. Blake , K. S. Novoselov , K. Watanabe , T. Taniguchi , A. K. Geim . Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett., 2011, 11 : 2396
CrossRef ADS Google scholar
[13]
A. H. Castro Neto , F. Guinea , N. M. R. Peres , K. S. Novoselov , A. K. Geim . The electronic properties of grapheme. Rev. Mod. Phys., 2009, 81 : 109
CrossRef ADS Google scholar
[14]
D. Puggioni , G. Giovannetti , M. Capone , J. M. Rondinelli . Design of a Mott multiferroic from a nonmagnetic polar metal. Phys. Rev. Lett., 2015, 115 : 087202
CrossRef ADS Google scholar
[15]
Z. Zheng , Q. Ma , Z. Bi , S. de la Barrera , M. H. Liu , N. Mao , Y. Zhang , N. Kiper , K. Watanabe , T. Taniguchi , J. Kong , W. A. Tisdale , R. Ashoori , N. Gedik , L. Fu , S. Y. Xu , P. Jarillo-Herrero . Unconventional ferroelectricity in moiré heterostructures. Nature, 2020, 588 : 71
CrossRef ADS Google scholar
[16]
A. V. Kretinin , Y. Cao , J. S. Tu , G. L. Yu , R. Jalil , K. S. Novoselov , S. J. Haigh , A. Gholinia , A. Mishchenko , M. Lozada , T. Georgiou , C. R. Woods , F. Withers , P. Blake , G. Eda , A. Wirsig , C. Hucho , K. Watanabe , T. Taniguchi , A. K. Geim , R. V. Gorbachev . Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Lett., 2014, 14 : 3270
CrossRef ADS Google scholar
[17]
M. Lines, Principles and Applications of Ferroelectrics and Related Materials, Clarendon Press, Oxford England, 1977
[18]
L. A. Ponomarenko , A. K. Geim , A. A. Zhukov , R. Jalil , S. V. Morozov , K. S. Novoselov , I. V. Grigorieva , E. H. Hill , V. V. Cheianov , V. I. Fal’ko , K. Watanabe , T. Taniguchi , R. V. Gorbachev . Tunable metal–insulator transition in double-layer graphene heterostructures. Nat. Phys., 2011, 7 : 958
CrossRef ADS Google scholar
[19]
M. Schmitz , S. Engels , L. Banszerus , K. Watanabe , T. Taniguchi , C. Stampfer , B. Beschoten . High mobility dry-transferred CVD bilayer grapheme. Appl. Phys. Lett., 2017, 110 : 263110
CrossRef ADS Google scholar
[20]
Z. Wang , Y. B. Wang , J. Yin , E. Tóvári , Y. Yang , L. Lin , M. Holwill , J. Birkbeck , D. J. Perello , S. Xu , J. Zultak , R. V. Gorbachev , A. V. Kretinin , T. Taniguchi , K. Watanabe , S. V. Morozov , M. Anđelković , S. P. Milovanović , L. Covaci , F. M. Peeters , A. Mishchenko , A. K. Geim , K. S. Novoselov , V. I. Fal’Ko , A. Knothe , C. R. Woods . Composite super-moiré lattices in double-aligned graphene heterostructures. Sci. Adv., 2019, 5 : eaay8897
CrossRef ADS Google scholar
[21]
R. K. Kumar , X. Chen , G. H. Auton , A. Mishchenko , D. A. Bandurin , S. V. Morozov , Y. Cao , E. Khestanova , M. B. Shalom , A. V. Kretinin , K. S. Novoselov , L. Eaves , I. V. Grigorieva , L. A. Ponomarenko , V. I. Fal’Ko , A. K. Geim . High-temperature quantum oscillations caused by recurring Bloch states in graphene superlatticess. Science, 2017, 357 : 181
CrossRef ADS Google scholar
[22]
C. R. Woods , P. Ares , H. Nevison-Andrews , M. J. Holwill , R. Fabregas , F. Guinea , A. K. Geim , K. S. Novoselov , N. R. Walet , L. Fumagalli . Charge-polarized interfacial superlattices in marginally twisted hexagonal boron nitride. Nat. Commun., 2021, 12 : 347
CrossRef ADS Google scholar
[23]
M. V. Stern , Y. Waschitz , W. Cao , I. Nevo , K. Watanabe , T. Taniguchi , E. Sela , M. Urbakh , M. B. Shalom . Interfacial ferroelectricity by van der Waals sliding. Science, 2021, 372 : 1462
CrossRef ADS Google scholar
[24]
K. Yasuda , X. Wang , K. Watanabe , T. Taniguchi , P. Jarillo-Herrero . Stacking-engineered ferroelectricity in bilayer boron nitride. Science, 2021, 372 : 1458
CrossRef ADS Google scholar
[25]
Q. Cai , D. Scullion , W. G. Falin , S. Zhang , K. Watanabe , T. Taniguchi , Y. CHEN , E. J. G. Santos , L. H. Li . High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion. Sci. Adv., 2019, 5 : eaav0129
CrossRef ADS Google scholar
[26]
P. Ares , T. Cea , M. Holwill , Y. B. Wang , R. Roldán , F. Guinea , D. V. Andreeva , L. Fumagalli , K. S. Novoselov , C. R. Woods . Piezoelectricity in monolayer hexagonal boron nitride. Adv. Mater., 2020, 32 : 1905504
CrossRef ADS Google scholar
[27]
H. Min , E. Hwang , S. Das Sarma . Chirality-dependent phonon-limited resistivity in multiple layers of graphene. Phys. Rev. B, 2011, 83 : 161404
CrossRef ADS Google scholar
[28]
H. Polshyn , M. Yankowitz , S. Chen , Y. Zhang , K. Watanabe , T. Taniguchi , C. R. Dean , A. F. Young . Large linear-in-temperature resistivity in twisted bilayer grapheme. Nat. Phys., 2019, 15 : 1011
CrossRef ADS Google scholar
[29]
F. Wu , E. Hwang , S. Das Sarma . Phonon-induced giant linear-in-T resistivity in magic angle twisted bilayer graphene: Ordinary strangeness and exotic superconductivity. Phys. Rev. B, 2019, 99 : 165112
CrossRef ADS Google scholar
[30]
I. T. Lin , J. M. Liu . Surface polar optical phonon scattering of carriers in graphene on various substrates. Appl. Phys. Lett., 2013, 103 : 081606
CrossRef ADS Google scholar
[31]
X. Li , E. A. Barry , J. M. Zavada , M. B. Nardelli , K. W. Kim . Surface polar phonon dominated electron transport in grapheme. Appl. Phys. Lett., 2010, 97 : 232105
CrossRef ADS Google scholar
[32]
R. V. Gorbachev , A. K. Geim , M. I. Katsnelson , K. S. Novoselov , T. Tudorovskiy , I. V. Grigorieva , A. H. MacDonald , S. V. Morozov , K. Watanabe , T. Taniguchi , L. A. Ponomarenko . Strong coulomb drag and broken symmetry in double-layer grapheme. Nat. Phys., 2012, 8 : 896
CrossRef ADS Google scholar

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant Nos. SQ2018YFA030066 and SQ2018YFA030143), the National Natural Science Foundation of China (No. 11974169), the Fundamental Research Funds for the Central Universities (Nos. 020414380087 and 020414913201), and the Basic Research Program of Jiangsu Province (Grant No. BK20190283).

Author contributions statement

A.S.M. and G.Y. designed the project. Y.W. fabricated the samples, S.J. and J.X. performed transport measurements, X.C. and G.M. did the AFM and Raman research, K.W. and T.T. provided hBN crystals. S. J., J.X., Y.W., and A.S.M performed data analysis, D.Z., P.W., G.M., Y.H, J.H., and A.S.M provided the experimental support. Y.W., A.S.M and G.Y. wrote the manuscript. All authors participated in the discussions.

Competing interests

The authors declare no competing interests.

Electronic supplementary materials

are available in the online version of this article at https://doi.org/10.1007/s11467-022-1175-0 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-022-1175-0 and are accessible for authorized users.

Correspondence and requests for materials

should be addressed to Y.W, A.S.M. or G.Y.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(2904 KB)

Accesses

Citations

Detail

Sections
Recommended

/