Brain-like synaptic memristor based on lithium-doped silicate for neuromorphic computing

Shanwu Ke , Li Jiang , Yifan Zhao , Yongyue Xiao , Bei Jiang , Gong Cheng , Facai Wu , Guangsen Cao , Zehui Peng , Min Zhu , Cong Ye

Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 53508

PDF (3651KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 53508 DOI: 10.1007/s11467-022-1173-2
RESEARCH ARTICLE

Brain-like synaptic memristor based on lithium-doped silicate for neuromorphic computing

Author information +
History +
PDF (3651KB)

Abstract

Artificial synapse is one of the potential electronics for constructing neural network hardware. In this work, Pt/LiSiOx/TiN analog artificial synapse memristor is designed and investigated. With the increase of compliance current (C. C.) under 0.6 mA, 1 mA, and 3 mA, the current in the high resistance state (HRS) presents an increasing variation, which indicates lithium ions participates in the operation process for Pt/LiSiOx/TiN memristor. Moreover, depending on the movement of lithium ions in the functional layer, the memristor illustrates excellent conduction modulation property, so the long-term potentiation (LTP) or depression (LTD) and paired-pulse facilitation (PPF) synaptic functions are successfully achieved. The neural network simulation for pattern recognition is proposed with the recognition accuracy of 91.4%. These findings suggest the potential application of the LiSiOx memristor in the neuromorphic computing.

Graphical abstract

Keywords

artificial synapse / lithium silicate / memristor / neuromorphic computing / resistive switching

Cite this article

Download citation ▾
Shanwu Ke, Li Jiang, Yifan Zhao, Yongyue Xiao, Bei Jiang, Gong Cheng, Facai Wu, Guangsen Cao, Zehui Peng, Min Zhu, Cong Ye. Brain-like synaptic memristor based on lithium-doped silicate for neuromorphic computing. Front. Phys., 2022, 17(5): 53508 DOI:10.1007/s11467-022-1173-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Prezioso , F. Merrikh-Bayat , B. D. Hoskins , G. C. Adam , K. K. Likharev , D. B. Strukov . Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature, 2015, 521( 7550): 61

[2]

H. Wu , M. Zhao , Y. Liu , P. Yao , Y. Xi , X. Li , W. Wu , Q. Zhang , J. Tang , B. Gao , H. Qian . Reliability perspective on neuromorphic computing based on analog RRAM. IEEE Int. Reliab. Phys. Symp., 2019, 1– 4

[3]

R. Schmitt , M. Kubicek , E. Sediva , M. Trassin , M. C. Weber , A. Rossi , H. Hutter , J. Kreisel , M. Fiebig , J. L. Rupp . Accelerated ionic motion in amorphous memristor oxides for nonvolatile memories and neuromorphic computing. Adv. Funct. Mater., 2019, 29( 5): 1804782

[4]

P. A. Merolla J. V. Arthur R. Alvarez-Icaza A. S. Cassidy J. Sawada F. Akopyan B. L. Jackson N. Imam C. Guo Y. Nakamura B. Brezzo I. K. Esser R. Appuswamy B. Taba A. Amir M. D. Flickner W. P. Risk R. Manohar D. S. Modha, A million spiking-neuron integrated circuit with a scalable communication network and interface, Science 345(6197), 668 ( 2014)

[5]

C. Zhang , J. Shang , W. Xue , H. Tan , L. Pan , X. Yang , S. Guo , J. Hao , G. Liu , R. W. Li . Convertible resistive switching characteristics between memory switching and threshold switching in a single ferritin-based memristor. Chem. Commun., 2016, 52( 26): 4828

[6]

Z. Wang , S. Joshi , S. E. Savel’ev , H. Jiang , R. Midya , P. Lin , M. Hu , N. Ge , J. P. Strachan , Z. Li , Q. Wu , M. Barnell , G. L. Li , H. L. Xin , R. Williams , Q. F. Xia , J. J. Yang . Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater., 2017, 16( 1): 101

[7]

L. Du , Z. Wang , G. Zhao . Novel intelligent devices: Two-dimensional materials based memristors. Front. Phys., 2022, 17( 2): 23602

[8]

P. Yao , H. Wu , B. Gao , S. B. Eryilmaz , X. Huang , W. Zhang , Q. Zhang , N. Deng , L. Shi , H. S. P. Wong , H. Qian . Face classification using electronic synapses. Nat. Commun., 2017, 8( 1): 15199

[9]

P. N. Belhumeur , J. P. Hespanha , D. J. Kriegman . Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE. T. Pattern Anal., 1997, 19( 7): 711

[10]

H. L. Park , M. H. Kim , S. H. Lee . Reliable organic memristors for neuromorphic computing by predefining a localized ion-migration path in crosslinkable polymer. Nanoscale, 2020, 12( 44): 22502

[11]

Y. Li , Z. Wang , R. Midya , Q. Xia , J. J. Yang . Review of memristor devices in neuromorphic computing: Materials sciences and device challenges. J. Phys. D Appl. Phys., 2018, 51( 50): 503002

[12]

G. Liu , C. Wang , W. Zhang , L. Pan , C. Zhang , X. Yang , F. Fan , Y. Chen , R. W. Li . Organic biomimicking memristor for information storage and processing applications. Adv. Electron. Mater., 2016, 2( 2): 1500298

[13]

J. Yin , F. Zeng , Q. Wan , F. Li , Y. Sun , Y. Hu , J. L. Liu , G. Q. Li , F. Pan . Adaptive crystallite kinetics in homogenous bilayer oxide memristor for emulating diverse synaptic plasticity. Adv. Funct. Mater., 2018, 28( 19): 1706927

[14]

S. Kim , C. Du , P. Sheridan , W. Ma , S. Choi , W. D. Lu . Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity. Nano Lett., 2015, 15( 3): 2203

[15]

Y. Park , J. S. Lee . Artificial synapses with short-and long-term memory for spiking neural networks based on renewable materials. ACS Nano, 2017, 11( 9): 8962

[16]

M. N. Kozicki , H. J. Barnaby . Conductive bridging random access memory-materials, devices and applications. Semicond. Sci. Technol., 2016, 31( 11): 113001

[17]

T. V. P. Bliss G. L. Collingridge, G. L. A synaptic model of memory: Long-term potentiation in the hippocampus, Nature 361(6407), 31 ( 1993)

[18]

X. M. Zhang , S. Liu , X. L. Zhao , F. C. Wu , Q. T. Wu , W. Wang , M. Liu . Emulating short-term and long-term plasticity of bio-synapse based on Cu/a-Si/Pt memristor. IEEE Electron Device Lett., 2017, 38( 9): 1208

[19]

K. C. Chang , T. M. Tsai , T. C. Chang . Dual ion effect of the lithium silicate resistance random access memory. IEEE Electron Device Lett., 2014, 35( 5): 530

[20]

J. Chen , C. Y. Lin , Y. Li , C. Qin , K. Lu , J. M. Wang , C. K. Chen , Y. H. He , T. C. Chang , X. S. Miao . LiSiOx-based analog memristive synapse for neuromorphic computing. IEEE Electron Device Lett., 2019, 40( 4): 542

[21]

Y. L. Hsieh , W. H. Su , C. C. Huang , C. Y. Su . Solution-processed black phosphorus nanoflakes for integrating nonvolatile resistive random-access memory and the mechanism unveiled. Nanotechnology, 2019, 30( 44): 445702

[22]

L. Liu , W. Xiong , Y. Liu , K. Chen , Z. Xu , Y. Zhou , J. Han , C. Ye , X. Chen , Z. T. Song , M. Zhu . Designing high-performance storage in HfO2/BiFeO3 memristor for artificial synapse applications. Adv. Electron. Mater., 2020, 6( 2): 1901012

[23]

Y. C. Qiu , K. Y. Yan , S. H. Yang , L. M. Jin , H. Deng , W. S. Li . Synthesis of size-tunable anatase TiO2 nanospindles and their assembly into anatase@ titanium oxynitride/titanium nitride graphene nanocomposites for rechargeable lithium-ion batteries with high cycling performance. ACS Nano, 2010, 4( 11): 6515

[24]

Y. H. Yue , P. X. Han , S. M. Dong , K. J. Zhang , C. J. Zhang , C. Q. Shang , G. L. Cui . Nanostructured transition metal nitride composites as energy storage material. Chin. Sci. Bull., 2012, 57( 32): 4111

[25]

M. Q. Snyder , S. A. Trebukhova , B. Ravdel , M. C. Wheeler , J. DiCarlo , C. P. Tripp , W. J. DeSisto . Synthesis and characterization of atomic layer deposited titanium nitride thin films on lithium titanate spinel powder as a lithium-ion battery anode. J. Power Sources, 2007, 165( 1): 379

[26]

C. Y. Lin , J. Chen , P. H. Chen , T. C. Chang , Y. Wu , J. K. Eshraghian , J. Moon , S. Yoo , Y. H. Wang , W. C. Chen , Z. Y. Wang , H. C. Huang , Y. Li , X. Miao , W. D. Lu , S. M. Sze . Adaptive synaptic memory via lithium ion modulation in RRAM devices. Small, 2020, 16( 42): 2003964

[27]

H. J. Zhang , C. T. Cheng , H. Zhang , R. Chen , B. J. Huang , H. D. Chen , W. H. Pei . Physical mechanism for the synapse behaviour of WTiOx-based memristors. Phys. Chem. Chem. Phys., 2019, 21( 42): 23758

[28]

Y. Li , K. S. Yin , M. Y. Zhang , L. Cheng , K. Lu , S. B. Long , X. S. Miao . Correlation analysis between the current fluctuation characteristics and the conductive filament morphology of HfO2-based memristor. Appl. Phys. Lett., 2017, 111( 21): 213505

[29]

Y. Fu , B. Dong , W. C. Su , C. Y. Lin , K. J. Zhou , T. C. Chang , X. S. Miao . Enhancing LiAlOx synaptic performance by reducing the Schottky barrier height for deep neural network applications. Nanoscale, 2020, 12( 45): 22970

[30]

E. Sivonxay , M. Aykol , K. A. Persson . The lithiation process and Li diffusion in amorphous SiO2 and Si from first-principles. Electrochim. Acta, 2020, 331 : 135344

[31]

Y. Zhang , Y. Li , Z. Wang , K. Zhao . Lithiation of SiO2 in Li-ion batteries: in situ transmission electron microscopy experiments and theoretical studies. Nano Lett., 2014, 14( 12): 7161

[32]

J. Moon . Tailoring the oxygen content in lithiated silicon oxide for lithium-ion batteries. Int. J. Energy Res., 2021, 45( 5): 7315

[33]

Z. Zhou , F. Yang , S. Wang , L. Wang , X. Wang , C. Wang , Q. Liu . Emerging of two-dimensional materials in novel memristor. Front. Phys., 2022, 17( 2): 1

[34]

R. S. Zucker , W. G. Regehr . Short-term synaptic plasticity. Annu. Rev. Physiol., 2002, 64( 1): 355

[35]

A. J. Smith , S. Owens , I. D. Forsythe . Characterisation of inhibitory and excitatory postsynaptic currents of the rat medial superior olive. J. Physiol., 2000, 529( 3): 681

[36]

P. Li , Z. M. Gao , X. S. Huang , L. F. Wang , W. F. Zhang , H. Z. Guo . Ferroelectric polarization reversal tuned by magnetic field in a ferroelectric BiFeO3/Nb-doped SrTiO3 heterojunction. Front. Phys., 2018, 13( 5): 1

[37]

P . Y. Chen, B. Lin, I. T. Wang, T. H. Hou, J. Ye, S. Vrudhula, and S. Yu, Mitigating effects of non-ideal synaptic device characteristics for on-chip learning, in: Proc. IEEE/ACM Int. Conf. Comput. Aided Design (ICCAD), 194– 199 (2015)

[38]

P. P. Atluri , W. G. Regehr . Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. J. Neurosci., 1996, 16( 18): 5661

[39]

W. Q. Pan , J. Chen , R. Kuang , Y. Li , Y. H. He , G. R. Feng , X. S. Miao . Strategies to improve the accuracy of memristor-based convolutional neural networks. IEEE Trans. Electron Dev., 2020, 67( 3): 895

[40]

H. Sun Z. Luo C. Liu C. Ma Z. Wang Y. Yin X. Li, A flexible BiFeO3-based ferroelectric tunnel junction memristor for neuromorphic computing , Journal of Materiomics 8(1), 144 ( 2022)

[41]

J. Lee , J. H. Ryu , B. Kim , F. Hussain , C. Mahata , E. Sim , S. Kim . Synaptic characteristics of amorphous boron nitride-based memristors on a highly doped silicon substrate for neuromorphic engineering. ACS Appl. Mater. Interfaces, 2020, 12( 30): 33908

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3651KB)

Supplementary files

Supplementary materials

2013

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/