Brain-like synaptic memristor based on lithium-doped silicate for neuromorphic computing

Shanwu Ke, Li Jiang, Yifan Zhao, Yongyue Xiao, Bei Jiang, Gong Cheng, Facai Wu, Guangsen Cao, Zehui Peng, Min Zhu, Cong Ye

PDF(3651 KB)
PDF(3651 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 53508. DOI: 10.1007/s11467-022-1173-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Brain-like synaptic memristor based on lithium-doped silicate for neuromorphic computing

Author information +
History +

Abstract

Artificial synapse is one of the potential electronics for constructing neural network hardware. In this work, Pt/LiSiOx/TiN analog artificial synapse memristor is designed and investigated. With the increase of compliance current (C. C.) under 0.6 mA, 1 mA, and 3 mA, the current in the high resistance state (HRS) presents an increasing variation, which indicates lithium ions participates in the operation process for Pt/LiSiOx/TiN memristor. Moreover, depending on the movement of lithium ions in the functional layer, the memristor illustrates excellent conduction modulation property, so the long-term potentiation (LTP) or depression (LTD) and paired-pulse facilitation (PPF) synaptic functions are successfully achieved. The neural network simulation for pattern recognition is proposed with the recognition accuracy of 91.4%. These findings suggest the potential application of the LiSiOx memristor in the neuromorphic computing.

Graphical abstract

Keywords

artificial synapse / lithium silicate / memristor / neuromorphic computing / resistive switching

Cite this article

Download citation ▾
Shanwu Ke, Li Jiang, Yifan Zhao, Yongyue Xiao, Bei Jiang, Gong Cheng, Facai Wu, Guangsen Cao, Zehui Peng, Min Zhu, Cong Ye. Brain-like synaptic memristor based on lithium-doped silicate for neuromorphic computing. Front. Phys., 2022, 17(5): 53508 https://doi.org/10.1007/s11467-022-1173-2

References

[1]
M. Prezioso , F. Merrikh-Bayat , B. D. Hoskins , G. C. Adam , K. K. Likharev , D. B. Strukov . Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature, 2015, 521( 7550): 61
CrossRef ADS Google scholar
[2]
H. Wu , M. Zhao , Y. Liu , P. Yao , Y. Xi , X. Li , W. Wu , Q. Zhang , J. Tang , B. Gao , H. Qian . Reliability perspective on neuromorphic computing based on analog RRAM. IEEE Int. Reliab. Phys. Symp., 2019, 1– 4
[3]
R. Schmitt , M. Kubicek , E. Sediva , M. Trassin , M. C. Weber , A. Rossi , H. Hutter , J. Kreisel , M. Fiebig , J. L. Rupp . Accelerated ionic motion in amorphous memristor oxides for nonvolatile memories and neuromorphic computing. Adv. Funct. Mater., 2019, 29( 5): 1804782
CrossRef ADS Google scholar
[4]
P. A. Merolla J. V. Arthur R. Alvarez-Icaza A. S. Cassidy J. Sawada F. Akopyan B. L. Jackson N. Imam C. Guo Y. Nakamura B. Brezzo I. K. Esser R. Appuswamy B. Taba A. Amir M. D. Flickner W. P. Risk R. Manohar D. S. Modha, A million spiking-neuron integrated circuit with a scalable communication network and interface, Science 345(6197), 668 ( 2014)
[5]
C. Zhang , J. Shang , W. Xue , H. Tan , L. Pan , X. Yang , S. Guo , J. Hao , G. Liu , R. W. Li . Convertible resistive switching characteristics between memory switching and threshold switching in a single ferritin-based memristor. Chem. Commun., 2016, 52( 26): 4828
CrossRef ADS Google scholar
[6]
Z. Wang , S. Joshi , S. E. Savel’ev , H. Jiang , R. Midya , P. Lin , M. Hu , N. Ge , J. P. Strachan , Z. Li , Q. Wu , M. Barnell , G. L. Li , H. L. Xin , R. Williams , Q. F. Xia , J. J. Yang . Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater., 2017, 16( 1): 101
CrossRef ADS Google scholar
[7]
L. Du , Z. Wang , G. Zhao . Novel intelligent devices: Two-dimensional materials based memristors. Front. Phys., 2022, 17( 2): 23602
CrossRef ADS Google scholar
[8]
P. Yao , H. Wu , B. Gao , S. B. Eryilmaz , X. Huang , W. Zhang , Q. Zhang , N. Deng , L. Shi , H. S. P. Wong , H. Qian . Face classification using electronic synapses. Nat. Commun., 2017, 8( 1): 15199
CrossRef ADS Google scholar
[9]
P. N. Belhumeur , J. P. Hespanha , D. J. Kriegman . Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE. T. Pattern Anal., 1997, 19( 7): 711
[10]
H. L. Park , M. H. Kim , S. H. Lee . Reliable organic memristors for neuromorphic computing by predefining a localized ion-migration path in crosslinkable polymer. Nanoscale, 2020, 12( 44): 22502
CrossRef ADS Google scholar
[11]
Y. Li , Z. Wang , R. Midya , Q. Xia , J. J. Yang . Review of memristor devices in neuromorphic computing: Materials sciences and device challenges. J. Phys. D Appl. Phys., 2018, 51( 50): 503002
CrossRef ADS Google scholar
[12]
G. Liu , C. Wang , W. Zhang , L. Pan , C. Zhang , X. Yang , F. Fan , Y. Chen , R. W. Li . Organic biomimicking memristor for information storage and processing applications. Adv. Electron. Mater., 2016, 2( 2): 1500298
CrossRef ADS Google scholar
[13]
J. Yin , F. Zeng , Q. Wan , F. Li , Y. Sun , Y. Hu , J. L. Liu , G. Q. Li , F. Pan . Adaptive crystallite kinetics in homogenous bilayer oxide memristor for emulating diverse synaptic plasticity. Adv. Funct. Mater., 2018, 28( 19): 1706927
CrossRef ADS Google scholar
[14]
S. Kim , C. Du , P. Sheridan , W. Ma , S. Choi , W. D. Lu . Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity. Nano Lett., 2015, 15( 3): 2203
CrossRef ADS Google scholar
[15]
Y. Park , J. S. Lee . Artificial synapses with short-and long-term memory for spiking neural networks based on renewable materials. ACS Nano, 2017, 11( 9): 8962
CrossRef ADS Google scholar
[16]
M. N. Kozicki , H. J. Barnaby . Conductive bridging random access memory-materials, devices and applications. Semicond. Sci. Technol., 2016, 31( 11): 113001
CrossRef ADS Google scholar
[17]
T. V. P. Bliss G. L. Collingridge, G. L. A synaptic model of memory: Long-term potentiation in the hippocampus, Nature 361(6407), 31 ( 1993)
[18]
X. M. Zhang , S. Liu , X. L. Zhao , F. C. Wu , Q. T. Wu , W. Wang , M. Liu . Emulating short-term and long-term plasticity of bio-synapse based on Cu/a-Si/Pt memristor. IEEE Electron Device Lett., 2017, 38( 9): 1208
CrossRef ADS Google scholar
[19]
K. C. Chang , T. M. Tsai , T. C. Chang . Dual ion effect of the lithium silicate resistance random access memory. IEEE Electron Device Lett., 2014, 35( 5): 530
CrossRef ADS Google scholar
[20]
J. Chen , C. Y. Lin , Y. Li , C. Qin , K. Lu , J. M. Wang , C. K. Chen , Y. H. He , T. C. Chang , X. S. Miao . LiSiOx-based analog memristive synapse for neuromorphic computing. IEEE Electron Device Lett., 2019, 40( 4): 542
CrossRef ADS Google scholar
[21]
Y. L. Hsieh , W. H. Su , C. C. Huang , C. Y. Su . Solution-processed black phosphorus nanoflakes for integrating nonvolatile resistive random-access memory and the mechanism unveiled. Nanotechnology, 2019, 30( 44): 445702
CrossRef ADS Google scholar
[22]
L. Liu , W. Xiong , Y. Liu , K. Chen , Z. Xu , Y. Zhou , J. Han , C. Ye , X. Chen , Z. T. Song , M. Zhu . Designing high-performance storage in HfO2/BiFeO3 memristor for artificial synapse applications. Adv. Electron. Mater., 2020, 6( 2): 1901012
CrossRef ADS Google scholar
[23]
Y. C. Qiu , K. Y. Yan , S. H. Yang , L. M. Jin , H. Deng , W. S. Li . Synthesis of size-tunable anatase TiO2 nanospindles and their assembly into anatase@ titanium oxynitride/titanium nitride graphene nanocomposites for rechargeable lithium-ion batteries with high cycling performance. ACS Nano, 2010, 4( 11): 6515
CrossRef ADS Google scholar
[24]
Y. H. Yue , P. X. Han , S. M. Dong , K. J. Zhang , C. J. Zhang , C. Q. Shang , G. L. Cui . Nanostructured transition metal nitride composites as energy storage material. Chin. Sci. Bull., 2012, 57( 32): 4111
CrossRef ADS Google scholar
[25]
M. Q. Snyder , S. A. Trebukhova , B. Ravdel , M. C. Wheeler , J. DiCarlo , C. P. Tripp , W. J. DeSisto . Synthesis and characterization of atomic layer deposited titanium nitride thin films on lithium titanate spinel powder as a lithium-ion battery anode. J. Power Sources, 2007, 165( 1): 379
CrossRef ADS Google scholar
[26]
C. Y. Lin , J. Chen , P. H. Chen , T. C. Chang , Y. Wu , J. K. Eshraghian , J. Moon , S. Yoo , Y. H. Wang , W. C. Chen , Z. Y. Wang , H. C. Huang , Y. Li , X. Miao , W. D. Lu , S. M. Sze . Adaptive synaptic memory via lithium ion modulation in RRAM devices. Small, 2020, 16( 42): 2003964
CrossRef ADS Google scholar
[27]
H. J. Zhang , C. T. Cheng , H. Zhang , R. Chen , B. J. Huang , H. D. Chen , W. H. Pei . Physical mechanism for the synapse behaviour of WTiOx-based memristors. Phys. Chem. Chem. Phys., 2019, 21( 42): 23758
CrossRef ADS Google scholar
[28]
Y. Li , K. S. Yin , M. Y. Zhang , L. Cheng , K. Lu , S. B. Long , X. S. Miao . Correlation analysis between the current fluctuation characteristics and the conductive filament morphology of HfO2-based memristor. Appl. Phys. Lett., 2017, 111( 21): 213505
CrossRef ADS Google scholar
[29]
Y. Fu , B. Dong , W. C. Su , C. Y. Lin , K. J. Zhou , T. C. Chang , X. S. Miao . Enhancing LiAlOx synaptic performance by reducing the Schottky barrier height for deep neural network applications. Nanoscale, 2020, 12( 45): 22970
CrossRef ADS Google scholar
[30]
E. Sivonxay , M. Aykol , K. A. Persson . The lithiation process and Li diffusion in amorphous SiO2 and Si from first-principles. Electrochim. Acta, 2020, 331 : 135344
CrossRef ADS Google scholar
[31]
Y. Zhang , Y. Li , Z. Wang , K. Zhao . Lithiation of SiO2 in Li-ion batteries: in situ transmission electron microscopy experiments and theoretical studies. Nano Lett., 2014, 14( 12): 7161
CrossRef ADS Google scholar
[32]
J. Moon . Tailoring the oxygen content in lithiated silicon oxide for lithium-ion batteries. Int. J. Energy Res., 2021, 45( 5): 7315
CrossRef ADS Google scholar
[33]
Z. Zhou , F. Yang , S. Wang , L. Wang , X. Wang , C. Wang , Q. Liu . Emerging of two-dimensional materials in novel memristor. Front. Phys., 2022, 17( 2): 1
CrossRef ADS Google scholar
[34]
R. S. Zucker , W. G. Regehr . Short-term synaptic plasticity. Annu. Rev. Physiol., 2002, 64( 1): 355
CrossRef ADS Google scholar
[35]
A. J. Smith , S. Owens , I. D. Forsythe . Characterisation of inhibitory and excitatory postsynaptic currents of the rat medial superior olive. J. Physiol., 2000, 529( 3): 681
CrossRef ADS Google scholar
[36]
P. Li , Z. M. Gao , X. S. Huang , L. F. Wang , W. F. Zhang , H. Z. Guo . Ferroelectric polarization reversal tuned by magnetic field in a ferroelectric BiFeO3/Nb-doped SrTiO3 heterojunction. Front. Phys., 2018, 13( 5): 1
CrossRef ADS Google scholar
[37]
P . Y. Chen, B. Lin, I. T. Wang, T. H. Hou, J. Ye, S. Vrudhula, and S. Yu, Mitigating effects of non-ideal synaptic device characteristics for on-chip learning, in: Proc. IEEE/ACM Int. Conf. Comput. Aided Design (ICCAD), 194– 199 (2015)
[38]
P. P. Atluri , W. G. Regehr . Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. J. Neurosci., 1996, 16( 18): 5661
CrossRef ADS Google scholar
[39]
W. Q. Pan , J. Chen , R. Kuang , Y. Li , Y. H. He , G. R. Feng , X. S. Miao . Strategies to improve the accuracy of memristor-based convolutional neural networks. IEEE Trans. Electron Dev., 2020, 67( 3): 895
CrossRef ADS Google scholar
[40]
H. Sun Z. Luo C. Liu C. Ma Z. Wang Y. Yin X. Li, A flexible BiFeO3-based ferroelectric tunnel junction memristor for neuromorphic computing , Journal of Materiomics 8(1), 144 ( 2022)
[41]
J. Lee , J. H. Ryu , B. Kim , F. Hussain , C. Mahata , E. Sim , S. Kim . Synaptic characteristics of amorphous boron nitride-based memristors on a highly doped silicon substrate for neuromorphic engineering. ACS Appl. Mater. Interfaces, 2020, 12( 30): 33908
CrossRef ADS Google scholar

Electronic supplementary materials

are available in the online version of this article at https://doi.org/10.1007/s11467-022-1173-2 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-022-1173-2 and are accessible for authorized users.

Acknowledgements

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No. XDB44000000 and the National Natural Science Foundation of China (No. 61774057).

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(3651 KB)

Accesses

Citations

Detail

Sections
Recommended

/