Error-detected three-photon hyperparallel Toffoli gate with state-selective reflection

Yi-Ming Wu, Gang Fan, Fang-Fang Du

PDF(2681 KB)
PDF(2681 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 51502. DOI: 10.1007/s11467-022-1172-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Error-detected three-photon hyperparallel Toffoli gate with state-selective reflection

Author information +
History +

Abstract

We present an error-detected hyperparallel Toffoli (hyper-Toffoli) gate for a three-photon system based on the interface between polarized photon and cavity-nitrogen-vacancy (NV) center system. This hyper-Toffoli gate can be used to perform double Toffoli gate operations simultaneously on both the polarization and spatial-mode degrees of freedom (DoFs) of a three-photon system with a low decoherence, shorten operation time, and less quantum resources required, in compared with those on two independent three-photon systems in one DoF only. As the imperfect cavity-NV-center interactions are transformed into the detectable failures rather than infidelity based on the heralding mechanism of detectors, a near-unit fidelity of the quantum hyper-Toffoli gate can be implemented. By recycling the procedures, the efficiency of our protocol for the hyper-Toffoli gate is improved further. Meanwhile, the evaluation of gate performance with achieved experiment parameters shows that it is feasible with current experimental technology and provides a promising building block for quantum compute.

Graphical abstract

Keywords

hyperparallel Toffoli gate / photon system / quantum information processing

Cite this article

Download citation ▾
Yi-Ming Wu, Gang Fan, Fang-Fang Du. Error-detected three-photon hyperparallel Toffoli gate with state-selective reflection. Front. Phys., 2022, 17(5): 51502 https://doi.org/10.1007/s11467-022-1172-3

References

[1]
M. A. Nielsen , I. Chuang , L. K. Grover . Quantum computation and quantum information. Am. J. Phys., 2002, 70( 5): 558
CrossRef ADS Google scholar
[2]
L. X. Liang , Y. Y. Zheng , Y. X. Zhang , M. Zhang . Error-detected N-photon cluster state generation based on the controlled-phase gate using a quantum dot in an optical microcavity. Front. Phys., 2020, 15( 2): 21601
CrossRef ADS Google scholar
[3]
T. Li , G. L. Long . Quantum secure direct communication based on single-photon Bell-state measurement. New J. Phys., 2020, 22( 6): 063017
CrossRef ADS Google scholar
[4]
Z. D. Ye , D. Pan , Z. Sun , C. G. Du , L. G. Yin , G. L. Long . Generic security analysis framework for quantum secure direct communication. Front. Phys., 2021, 16( 2): 21503
CrossRef ADS Google scholar
[5]
P. S. Yan , L. Zhou , W. Zhong , Y. B. Sheng . Measurement-based entanglement purification for entangled coherent states. Front. Phys., 2022, 17( 2): 21501
CrossRef ADS Google scholar
[6]
C. Wang . Quantum secure direct communication: Intersection of communication and cryptography. Fundam. Res., 2021, 1( 1): 91
CrossRef ADS Google scholar
[7]
P. Wang , C. Q. Yu , Z. X. Wang , R. Y. Yuan , F. F. Du , B. C. Ren . Hyperentanglement-assisted hyperdistillation for hyper-encoding photon system. Front. Phys., 2022, 17( 3): 31501
CrossRef ADS Google scholar
[8]
P. W. Shor . Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev., 1999, 41( 2): 303
CrossRef ADS Google scholar
[9]
L. K. Grover . Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett., 1997, 79( 2): 325
CrossRef ADS Google scholar
[10]
M. AbuGhanem , A. H. Homid , M. Abdel-Aty . Cavity control as a new quantum algorithms implementation treatment. Front. Phys., 2018, 13( 1): 130303
CrossRef ADS Google scholar
[11]
X. D. Cai , D. Wu , Z. E. Su , M. C. Chen , X. L. Wang , L. Li , N. L. Liu , C. Y. Lu , J. W. Pan . Entanglement-based machine learning on a quantum computer. Phys. Rev. Lett., 2015, 114( 11): 110504
CrossRef ADS Google scholar
[12]
J. Allcock , S. Y. Zhang . Quantum machine learning. Natl. Sci. Rev., 2019, 6( 1): 26
CrossRef ADS Google scholar
[13]
X. L. Ouyang , X. Z. Huang , Y. K. Wu , W. G. Zhang , X. Wang , H. L. Zhang , L. He , X. Y. Chang , L. M. Duan . Experimental demonstration of quantum-enhanced machine learning in a nitrogen-vacancy-center system. Phys. Rev. A, 2020, 101( 1): 012307
CrossRef ADS Google scholar
[14]
D. R. Chong , M. Kim , J. Ahn , H. Jeong . Machine learning identification of symmetrized base states of Rydberg atoms. Front. Phys., 2022, 17( 1): 12504
CrossRef ADS Google scholar
[15]
W. Q. Liu , H. R. Wei . Optimal synthesis of the Fredkin gate in a multilevel system. New J. Phys., 2020, 22( 6): 063026
CrossRef ADS Google scholar
[16]
W. Q. Liu , H. R. Wei , L. C. Kwek . Low-cost Fredkin gate with auxiliary space. Phys. Rev. A, 2020, 14( 5): 054057
[17]
V. V. Shende , I. L. Markov , S. S. Bullock . Minimal universal two-qubit controlled-NOT-based circuits. Phys. Rev. A, 2004, 69( 6): 062321
CrossRef ADS Google scholar
[18]
T. C. Ralph , K. J. Resch , A. Gilchrist . Efficient Toffoli gates using qudits. Phys. Rev. A, 2007, 75( 2): 022313
CrossRef ADS Google scholar
[19]
I. Radu , T. P. Spiller , W. J. Munro . Generalized Toffoli gates using qudit catalysis. Phys. Rev. A, 2009, 80( 1): 012313
[20]
N. K. Yu , R. Y. Duan , M. S. Ying . Five two-qubit gates are necessary for implementing the Toffoli gate. Phys. Rev. A, 2013, 88( 1): 010304
CrossRef ADS Google scholar
[21]
J. Fiurášek . Linear-optics quantum Toffoli and Fredkin gates. Phys. Rev. A, 2006, 73( 6): 062313
CrossRef ADS Google scholar
[22]
M. Soeken , D. M. Miller , R. Drechsler . Quantum circuits employing roots of the Pauli matrices. Phys. Rev. A, 2013, 88( 4): 042322
CrossRef ADS Google scholar
[23]
A. Fedorov , L. Steffen , M. Baur , M. P. da Silva , A. Wallraff . Implementation of a Toffoli gate with superconducting circuits. Nature, 2012, 481( 7380): 170
CrossRef ADS Google scholar
[24]
S. E. Rasmussen , K. Groenland , R. Gerritsma , K. Schoutens , N. T. Zinner . Single-step implementation of high-fidelity n-bit Toffoli gatess. Phys. Rev. A, 2020, 101( 2): 022308
CrossRef ADS Google scholar
[25]
S. Daraeizadeh , S. P. Premaratne , N. Khammassi , X. Song , M. Perkowski , A. Y. Matsuura . Machine learning-based three-qubit gate design for the Toffoli gate and parity check in transmon systems. Phys. Rev. A, 2020, 102( 1): 012601
CrossRef ADS Google scholar
[26]
H. R. Wei , F. G. Deng . Compact quantum gates on electron-spin qubits assisted by diamond nitrogen vacancy centers inside cavities. Phys. Rev. A, 2013, 88( 4): 042323
CrossRef ADS Google scholar
[27]
H. R. Wei , F. G. Deng . Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities. Sci. Rep., 2015, 4( 1): 7551
CrossRef ADS Google scholar
[28]
H. R. Wei , F. G. Deng . Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities. Opt. Express, 2014, 22( 1): 593
CrossRef ADS Google scholar
[29]
G. Z. Song , J. L. Guo , Q. Liu , H. R. Wei , G. L. Long . Heralded quantum gates for hybrid systems via waveguide-mediated photon scattering. Phys. Rev. A, 2021, 104( 1): 012608
CrossRef ADS Google scholar
[30]
T. Monz , K. Kim , W. Hänsel , M. Riebe , A. S. Villar , P. Schindler , M. Chwalla , M. Hennrich , R. Blatt . Realization of the quantum Toffoli gate with trapped ions. Phys. Rev. Lett., 2009, 102( 4): 040501
CrossRef ADS Google scholar
[31]
D. Solenov , S. E. Economou , T. L. Reinecke . Fast two-qubit gates for quantum computing in semiconductor quantum dots using a photonic microcavity. Phys. Rev. B, 2013, 87( 3): 035308
CrossRef ADS Google scholar
[32]
B. P. Lanyon , M. Barbieri , M. P. Almeida , T. Jennewein , T. C. Ralph , K. J. Resch , G. J. Pryde , J. L. O’Brien , A. Gilchrist , A. G. White . Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys., 2009, 5( 2): 134
CrossRef ADS Google scholar
[33]
E. O. Kiktenko , A. S. Nikolaeva , P. Xu , G. V. Shlyapnikov , A. K. Fedorov . Scalable quantum computing with qudits on a graph. Phys. Rev. A, 2020, 101( 2): 022304
CrossRef ADS Google scholar
[34]
T. Li , G. L. Long . Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities. Phys. Rev. A, 2016, 94( 2): 022343
CrossRef ADS Google scholar
[35]
Y. H. Han , C. Cao , L. Fan , R. Zhang . Heralded high-fidelity quantum hyper-CNOT gates assisted by charged quantum dots inside single-sided optical microcavities. Opt. Express, 2021, 29( 13): 20045
CrossRef ADS Google scholar
[36]
F. F. Du , Z. R. Shi . Robust hybrid hyper-controlled-not gates assisted by an input−output process of low-Q cavities. Opt. Express, 2019, 27( 13): 17493
CrossRef ADS Google scholar
[37]
H. R. Wei , G. L. Long . Universal photonic quantum gates assisted by ancilla diamond nitrogen-vacancy centers coupled to resonators. Phys. Rev. A, 2015, 91( 3): 032324
CrossRef ADS Google scholar
[38]
T. J. Wang , Y. Zhang , C. Wang . Universal hybrid hyper-controlled quantum gates assisted by quantum dots in optical double-sided microcavities. Laser Phys. Lett., 2014, 11( 2): 025203
CrossRef ADS Google scholar
[39]
H. R. Wei , F. G. Deng , G. L. Long . Hyper-parallel Toffoli gate on three-photon system with two degrees of freedom assisted by single-sided optical microcavities. Opt. Express, 2016, 24( 16): 18619
CrossRef ADS Google scholar
[40]
S. H. Ru , Y. L. Wang , M. An , F. R. Wang , P. Zhang , F. L. Li . Realization of a deterministic quantum Toffoli gate with a single photon. Phys. Rev. A, 2021, 103( 2): 022606
CrossRef ADS Google scholar
[41]
T. Gaebel , M. Domhan , I. Popa , C. Wittmann , P. Neumann , F. Jelezko , J. R. Rabeau , N. Stavrias , A. D. Greentree , S. Prawer , J. Meijer , J. Twamley , P. R. Hemmer , J. Wrachtrup . Room-temperature coherent coupling of single spins in diamond. Nat. Phys., 2006, 2( 6): 408
CrossRef ADS Google scholar
[42]
G. D. Fuchs , V. V. Dobrovitski , D. M. Toyli , F. J. Heremans , D. D. Awschalom . Gigahertz dynamics of a strongly driven single quantum spin. Science, 2009, 326( 5959): 1520
CrossRef ADS Google scholar
[43]
D. Englund , B. Shields , K. Rivoire , F. Hatami , J. Vučković , H. Park , M. D. Lukin . Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity. Nano Lett., 2010, 10( 10): 3922
CrossRef ADS Google scholar
[44]
J. Zhang , D. Suter . Experimental Protection of Two-Qubit Quantum Gates against Environmental Noise by Dynamical Decoupling. Phys. Rev. Lett., 2015, 115( 11): 110502
CrossRef ADS Google scholar
[45]
L. Robledo , L. Childress , H. Bernien , B. Hensen , P. F. A. Alkemade , R. Hanson . High-fidelity projective readout of a solid-state spin quantum register. Nature, 2011, 477( 7366): 574
CrossRef ADS Google scholar
[46]
M. V. G. Dutt , L. Childress , L. Jiang , E. Togan , J. Maze , F. Jelezko , A. S. Zibrov , P. R. Hemmer , M. D. Lukin . Quantum register based on individual electronic and nuclear spin qubits in diamond. Science, 2007, 316( 5829): 1312
CrossRef ADS Google scholar
[47]
F. Shi , X. Rong , N. Xu , Y. Wang , J. Wu , B. Chong , X. Peng , J. Kniepert , R. S. Schoenfeld , W. Harneit , M. Feng , J. Du . Room-temperature implementation of the Deutsch−Jozsa algorithm with a single electronic spin in diamond. Phys. Rev. Lett., 2010, 105( 4): 040504
CrossRef ADS Google scholar
[48]
T. van der Sar , Z. H. Wang , M. S. Blok , H. Bernien , T. H. Taminiau , D. M. Toyli , D. A. Lidar , D. D. Awschalom , R. Hanson , V. V. Dobrovitski . Decoherence-protected quantum gates for a hybrid solid-state spin register. Nature, 2012, 484( 7392): 82
CrossRef ADS Google scholar
[49]
S. Arroyo-Camejo , A. Lazariev , S. W. Hell , G. Balasubramanian . Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin. Nat. Commun., 2014, 5( 1): 4870
CrossRef ADS Google scholar
[50]
C. Zu , W. B. Wang , L. He , W. G. Zhang , C. Y. Dai , F. Wang , L. M. Duan . Experimental realization of universal geometric quantum gates with solid-state spins. Nature, 2014, 514( 7520): 72
CrossRef ADS Google scholar
[51]
E. Togan , Y. Chu , A. S. Trifonov , L. Jiang , J. Maze , L. Childress , M. V. G. Dutt , A. S. Sørensen , P. R. Hemmer , A. S. Zibrov , M. D. Lukin . Quantum entanglement between an optical photon and a solid-state spin qubit. Nature, 2010, 466( 7307): 730
CrossRef ADS Google scholar
[52]
H. Kosaka , N. Niikura . Entangled absorption of a single photon with a single spin in diamond. Phys. Rev. Lett., 2015, 114( 5): 053603
CrossRef ADS Google scholar
[53]
H. Bernien , B. Hensen , W. Pfaff , G. Koolstra , M. S. Blok , L. Robledo , T. H. Taminiau , M. Markham , D. J. Twitchen , L. Childress , R. Hanson . Heralded entanglement between solid-state qubits separated by three metres. Nature, 2013, 497( 7447): 86
CrossRef ADS Google scholar
[54]
B. C. Ren , F. G. Deng . Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities. Laser Phys. Lett., 2013, 10( 11): 115201
CrossRef ADS Google scholar
[55]
T. J. Wang , C. Wang . Universal hybrid three-qubit quantum gates assisted by a nitrogen-vacancy center coupled with a whispering-gallery-mode microresonator. Phys. Rev. A, 2014, 90( 5): 052310
CrossRef ADS Google scholar
[56]
C. Wang , Y. Zhang , R. Z. Jiao , G. S. Jin . Universal quantum controlled phase gate on photonic qubits based on nitrogen vacancy centers and microcavity resonators. Opt. Express, 2013, 21( 16): 19252
CrossRef ADS Google scholar
[57]
F. F. Du , Y. T. Liu , Z. R. Shi , Y. X. Liang , J. Tang , J. Liu . Efficient hyperentanglement purification for three-photon systems with the fidelity-robust quantum gates and hyperentanglement link. Opt. Express, 2019, 27( 19): 27046
CrossRef ADS Google scholar
[58]
Q. Chen , W. Yang , M. Feng , J. Du . Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators. Phys. Rev. A, 2011, 83( 5): 054305
CrossRef ADS Google scholar
[59]
M. O. Scully M. S. Zubairy, Quantum Optics, Cambridge University Press, 1997
[60]
C. Y. Hu , W. J. Munro , J. G. Rarity . Deterministic photon entangler using a charged quantum dot inside a microcavity. Phys. Rev. B, 2008, 78( 12): 125318
CrossRef ADS Google scholar
[61]
J. H. An , M. Feng , C. H. Oh . Quantum-information processing with a single photon by an input−output process with respect to low-Q cavities. Phys. Rev. A, 2009, 79( 3): 032303
CrossRef ADS Google scholar
[62]
B. C. Pursley , S. G. Carter , M. K. Yakes , A. S. Bracker , D. Gammon . Picosecond pulse shaping of single photons using quantum dots. Nat. Commun., 2018, 9( 1): 115
CrossRef ADS Google scholar
[63]
R. Albrecht , A. Bommer , C. Deutsch , J. Reichel , C. Becher . Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity. Phys. Rev. Lett., 2013, 110( 24): 243602
CrossRef ADS Google scholar
[64]
B. J. M. Hausmann , B. Shields , Q. Quan , P. Maletinsky , M. McCutcheon , J. T. Choy , T. M. Babinec , A. Kubanek , A. Yacoby , M. D. Lukin , M. Lonc̆ar . Integrated diamond networks for quantum nanophotonics. Nano Lett., 2012, 12( 3): 1578
CrossRef ADS Google scholar
[65]
J. Teissier , A. Barfuss , P. Appel , E. Neu , P. Maletinsky . Strain coupling of a nitrogen-vacancy center spin to a diamond mechanical oscillator. Phys. Rev. Lett., 2014, 113( 2): 020503
CrossRef ADS Google scholar
[66]
K. M. C. Fu , C. Santori , P. E. Barclay , L. J. Rogers , N. B. Manson , R. G. Beausoleil . Observation of the dynamic Jahn−Teller effect in the excited states of nitrogen-vacancy centers in diamond. Phys. Rev. Lett., 2009, 103( 25): 256404
CrossRef ADS Google scholar
[67]
L. C. Bassett , F. J. Heremans , C. G. Yale , B. B. Buckley , D. D. Awschalom . Electrical tuning of single nitrogen-vacancy center optical transitions enhanced by photoinduced fields. Phys. Rev. Lett., 2011, 107( 26): 266403
CrossRef ADS Google scholar
[68]
P. Siyushev , H. Pinto , M. Vörös , A. Gali , F. Jelezko , J. Wrachtrup . Optically controlled switching of the charge state of a single nitrogen-vacancy center in diamond at cryogenic temperatures. Phys. Rev. Lett., 2013, 110( 16): 167402
CrossRef ADS Google scholar

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Contract 61901420, the Shanxi Province Science Foundation for Youths under Contract 201901D211235, the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi under Contract 2019L0507, and the Shanxi “1331 Project” Key Subjects Construction.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(2681 KB)

Accesses

Citations

Detail

Sections
Recommended

/