High performance of hot-carrier generation, transport and injection in TiN/TiO2 junction

Tingting Liu, Qianjun Wang, Cheng Zhang, Xiaofeng Li, Jun Hu

PDF(6012 KB)
PDF(6012 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 53509. DOI: 10.1007/s11467-022-1171-4
RESEARCH ARTICLE
RESEARCH ARTICLE

High performance of hot-carrier generation, transport and injection in TiN/TiO2 junction

Author information +
History +

Abstract

Improving the performance of generation, transport and injection of hot carriers within metal/semiconductor junctions is critical for promoting the hot-carrier applications. However, the conversion efficiency of hot carriers in the commonly used noble metals (e.g., Au) is extremely low. Herein, through a systematic study by first-principles calculation and Monte Carlo simulation, we show that TiN might be a promising plasmonic material for high-efficiency hot-carrier applications. Compared with Au, TiN shows obvious advantages in the generation (high density of low-energy hot electrons) and transport (long lifetime and mean free path) of hot carriers. We further performed a device-oriented study, which reveals that high hot-carrier injection efficiency can be achieved in core/shell cylindrical TiN/TiO2 junctions. Our findings provide a deep insight into the intrinsic processes of hot-carrier generation, transport and injection, which is helpful for the development of hot-carrier devices and applications.

Graphical abstract

Keywords

metal/semiconductor junction / plasmonic material / hot-carrier generation / lifetime and mean free path / injection efficiency

Cite this article

Download citation ▾
Tingting Liu, Qianjun Wang, Cheng Zhang, Xiaofeng Li, Jun Hu. High performance of hot-carrier generation, transport and injection in TiN/TiO2 junction. Front. Phys., 2022, 17(5): 53509 https://doi.org/10.1007/s11467-022-1171-4

References

[1]
C.Clavero. Plasmon-induced hot-electron generation at nanoparticle/metal−oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics , 2014, 8( 2): 95
CrossRef ADS Google scholar
[2]
M.W. Knight, H.Sobhani, P.Nordlander, N.J. Halas. Photodetection with active optical antennas. Science , 2011, 332( 6030): 702
CrossRef ADS Google scholar
[3]
Y.Tian, T.Tatsuma. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chem. Commun. , 2004, 16( 16): 1810
CrossRef ADS Google scholar
[4]
C.Scales, P.Berini. Thin-film Schottky barrier photodetector models. IEEE J. Quantum Electron. , 2010, 46( 5): 633
CrossRef ADS Google scholar
[5]
G.V. Naik, V.M. Shalaev, A.Boltasseva. Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. , 2013, 25( 24): 3264
CrossRef ADS Google scholar
[6]
L.J. Krayer, K.J. Palm, C.Gong, A.Torres, C.E. P. Villegas, A.R. Rocha, M.S. Leite, J.N. Munday. Enhanced near-infrared photoresponse from nanoscale Ag−Au alloyed films. ACS Photonics , 2020, 7( 7): 1689
CrossRef ADS Google scholar
[7]
G.Tagliabue, J.S. DuChene, M.Abdellah, A.Habib, D.J. Gosztola, Y.Hattori, W.H. Cheng, K.Zheng, S.E. Canton, R.Sundararaman, J.Sá, H.A. Atwater. Ultrafast hot-hole injection modifies hot-electron dynamics in Au/p−GaN heterostructures. Nat. Mater. , 2020, 19( 12): 1312
CrossRef ADS Google scholar
[8]
M.Ortolani, A.Mancini, A.Budweg, D.Garoli, D.Brida, F.de Angelis. Pump-probe spectroscopy study of ultrafast temperature dynamics in nanoporous gold. Phys. Rev. B , 2019, 99( 3): 035435
CrossRef ADS Google scholar
[9]
Y.J. Chang, K.H. Shih. Solar energy conversion via internal photoemission in aluminum, copper, and silver: Band structure effects and theoretical efficiency estimates. J. Appl. Phys. , 2016, 119( 18): 183101
CrossRef ADS Google scholar
[10]
A.J. Leenheer, P.Narang, N.S. Lewis, H.A. Atwater. Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates. J. Appl. Phys. , 2014, 115( 13): 134301
CrossRef ADS Google scholar
[11]
T.P. White, K.R. Catchpole. Plasmon-enhanced internal photoemission for photovoltaics: Theoretical efficiency limits. Appl. Phys. Lett. , 2012, 101( 7): 073905
CrossRef ADS Google scholar
[12]
R.T. Ross, A.J. Nozik. Efficiency of hot-carrier solar energy converters. J. Appl. Phys. , 1982, 53( 5): 3813
CrossRef ADS Google scholar
[13]
R.Sundararaman, P.Narang, A.S. Jermyn, W.A. III Goddard, H.A. Atwater. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. , 2014, 5( 1): 5788
CrossRef ADS Google scholar
[14]
A.M. Brown, R.Sundararaman, P.Narang, W.A. III Goddard, H.A. Atwater. Nonradiative plasmon decay and hot carrier dynamics: Effects of phonons, surfaces, and geometry. ACS Nano , 2016, 10( 1): 957
CrossRef ADS Google scholar
[15]
F.Ladstädter, U.Hohenester, P.Puschnig, C.Ambrosch-Draxl. First-principles calculation of hot-electron scattering in metals. Phys. Rev. B , 2004, 70( 23): 235125
CrossRef ADS Google scholar
[16]
T.Gong, J.N. Munday. Materials for hot carrier plasmonics. Opt. Mater. Express , 2015, 5( 11): 2501
CrossRef ADS Google scholar
[17]
D.Y. Lee, J.H. Park, Y.H. Kim, M.H. Lee, N.I. Cho. Effect of Nb doping on morphology, crystal structure, optical band gap energy of TiO2 thin films. Curr. Appl. Phys. , 2014, 14( 3): 421
CrossRef ADS Google scholar
[18]
Q.Guo, C.Y. Zhou, Z.B. Ma, X.M. Yang. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges. Adv. Mater. , 2019, 31( 50): 1901997
CrossRef ADS Google scholar
[19]
D.Z. Zhang, X.H. Gu, F.Y. Jing, F.L. Gao, J.G. Zhou, S.B. Ruan. High performance ultraviolet detector based on TiO2/ZnO heterojunction. J. Alloys Compd. , 2015, 618 : 551
CrossRef ADS Google scholar
[20]
U.Bach, D.Lupo, P.Comte, J.E. Moser, F.Weissortel, J.Salbeck, H.Spreitzer, M.Gratzel. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature , 1998, 395( 6702): 583
CrossRef ADS Google scholar
[21]
E.Traver, R.A. Karaballi, Y.E. Monfared, H.Daurie, G.A. Gagnon, M.Dasog. TiN, ZrN, and HfN nanoparticles on nanoporous Aluminum oxide membranes for solar-driven water evaporation and desalination. ACS Appl. Nano Mater. , 2020, 3( 3): 2787
CrossRef ADS Google scholar
[22]
M.Kumar, N.Umezawa, S.Ishii, T.Nagao. Examining the performance of refractory conductive ceramics as plasmonic materials: A theoretical approach. ACS Photonics , 2016, 3( 1): 43
CrossRef ADS Google scholar
[23]
M.W. Yu, S.Ishii, S.L. Shinde, N.K. Tanjaya, K.P. Chen, T.Nagao. Direct observation of photoinduced charge separation at transition-metal nitride−semiconductor interfaces. ACS Appl. Mater. Interfaces , 2020, 12( 50): 56562
CrossRef ADS Google scholar
[24]
M.Marlo, V.Milman. Density-funcitional study of bulk and surface properties of titanium nitride using different exchange-correlation functional. Phys. Rev. B , 2000, 62( 4): 2899
CrossRef ADS Google scholar
[25]
X.H. Chen, R.T. Pekarek, J.Gu, A.Zakutayev, K.E. Hurst, N.R. Neale, Y.Yang, M.C. Beard. Transient evolution of the built-in field at junctions of GaAs. ACS Appl. Mater. Interfaces , 2020, 12( 36): 40339
CrossRef ADS Google scholar
[26]
A.Naldoni, U.Guler, Z.X. Wang, M.Marelli, F.Malara, X.G. Meng, L.V. Besteiro, A.O. Govorov, A.V. Kildishev, A.Boltasseva, V.M. Shalaev. Broadband hot-electron collection for solar water splitting with plasmonic titanium nitride. Adv. Opt. Mater. , 2017, 5( 15): 1601031
CrossRef ADS Google scholar
[27]
U.Guler, A.Boltasseva, V.M. Shalaev. Refractory plasmonics. Science , 2014, 344( 6181): 263
CrossRef ADS Google scholar
[28]
G.V. Naik, J.L. Schroeder, X.J. Ni, A.V. Kildishev, T.D. Sands, A.Boltasseva. Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express , 2012, 2( 4): 478
CrossRef ADS Google scholar
[29]
D.McIntyre, J.E. Greene, G.Hakansson, J.E. Sundgren, W.D. Münz. Oxidation of metastable single-phase polycrystalline Ti0.5Al0.5N films: Kinetics and mechanisms. J. Appl. Phys. , 1990, 67( 3): 1542
CrossRef ADS Google scholar
[30]
P.Bordone, C.Jacoboni, P.Lugli, L.Reggiani, P.Kocevar. Monte Carlo analysis of hot-phonon effects on non-polar semiconductor transport properties. Physica B+C , 1985, 134( 1−3): 169
CrossRef ADS Google scholar
[31]
A.Piryatinski, C.K. Huang, T.J. T. Kwan. Theory of electron transport and emission from a semiconductor nanotip. J. Appl. Phys. , 2019, 125( 21): 214301
CrossRef ADS Google scholar
[32]
E.Blandre, D.Jalas, A.Y. Petrov, M.Eich. Limit of efficiency of hot electrons in metals and their injection inside a semiconductor using a semiclassical approach. ACS Photonics , 2018, 5( 9): 3613
CrossRef ADS Google scholar
[33]
G.Kresse, J.Furthmuller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. , 1996, 6( 1): 15
CrossRef ADS Google scholar
[34]
G.Kresse, J.Furthmuller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B , 1996, 54( 16): 11169
CrossRef ADS Google scholar
[35]
G.Kresse, D.Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B , 1999, 59( 3): 1758
CrossRef ADS Google scholar
[36]
J.P. Perdew, A.Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X.L. Zhou, K.Burke. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. , 2008, 100( 13): 136406
CrossRef ADS Google scholar
[37]
S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B , 1998, 57( 3): 1505
CrossRef ADS Google scholar
[38]
A.Habib, F.Florio, R.Sundararaman. Hot carrier dynamics in plasmonic transition metal nitrides. J. Opt. , 2018, 20( 6): 064001
CrossRef ADS Google scholar
[39]
K.A. Mills, R.F. Davis, S.D. Kevan, G.Thornton, D.A. Shirley. Angle-resolved photoemission determination of Λ-line valence bands in Pt and Au using synchrotron radiation. Phys. Rev. B , 1980, 22( 2): 581
CrossRef ADS Google scholar
[40]
N.W. Ashcroft N.D. Mermin W.Dan, Solid State Physics, revised edition, Cengage Leaning Asia PTe Ltd, 2016
[41]
D.Gall, I.Petrov, N.Hellgren, L.Hultman, J.E. Sundgren, J.E. Greene. Growth of poly- and single-crystal ScN on MgO (001): Role of low-energy N2+ irradiation in determining texture, microstructure evolution, and mechanical properties. J. Appl. Phys. , 1998, 84( 11): 6034
CrossRef ADS Google scholar
[42]
R.Sundararaman, K.Letchworth-Weaver, K.A. Schwarz, D.Gunceler, Y.Ozhabes, T.A. Arias. JDFTx: Software for joint density-functional theory. SoftwareX , 2017, 6 : 278
CrossRef ADS Google scholar
[43]
M.Schlipf, F.Gygi. Optimization algorithm for the generation of ONCV pseudopotentials. Comput. Phys. Commun. , 2015, 196 : 36
CrossRef ADS Google scholar
[44]
N.Marzari, D.Vanderbilt. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B , 1997, 56( 20): 12847
CrossRef ADS Google scholar
[45]
X.Xu, A.Dutta, J.Khurgin, A.Wei, W.M. Shalaev, A.Boltasseva. TiN@TiO2 core-shell nanoparticles as plasmon-enhanced photosensitizers: The role of hot electron injection. Laser Photonics Rev. , 2020, 14( 5): 1900376
CrossRef ADS Google scholar
[46]
D.C. Ratchford, A.D. Dunkelberger, I.Vurgaftman, J.C. Owrutsky, P.E. Pehrsson. Quantification of efficient plasmonic hot-electron injection in gold nanoparticle-TiO2 films. Nano Lett. , 2017, 17( 10): 6047
CrossRef ADS Google scholar
[47]
G.Tagliabue, A.S. Jermyn, R.Sundararaman, A.J. Welch, J.S. Duchene, R.Pala, A.R. Davoyan, P.Narang, H.A. Atwater. Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices. Nat. Commun. , 2018, 9( 1): 3394
CrossRef ADS Google scholar
[48]
C.Zhang, K.Wu, V.Giannini, X.F. Li. Planar hot-electron photodetection with Tamm plasmons. ACS Nano , 2017, 11( 2): 1719
CrossRef ADS Google scholar
[49]
A.A. Mostofi, J.R. Yates, Y.S. Lee, I.Souza, D.Vanderbilt, N.Marzari. Wannier90: A tool for obtaining maximally-localized Wannier functions. Comput. Phys. Commun. , 2008, 178( 9): 685
CrossRef ADS Google scholar
[50]
N.Marzari, A.A. Mostofi, J.R. Yates, I.Souza, D.Vanderbilt. Maximally localized Wannier functions: Theory and applications. Rev. Mod. Phys. , 2012, 84( 4): 1419
CrossRef ADS Google scholar
[51]
D.Gerbert, P.Tegeder. Absorbate-mediated relaxation dynamics of hot electrons at metal/organic interfaces. Phys. Rev. B , 2017, 96( 14): 144304
CrossRef ADS Google scholar
[52]
S.Stair, R.G. Johnston, T.C. Bagg. Spectral distribution of energy from the sun. J. Res. Natl. Bur. Stand. , 1954, 53( 2): 113
CrossRef ADS Google scholar
[53]
H.R. Condit, F.Grum. Spectral energy distribution of daylight. J. Opt. Soc. Am. , 1964, 54( 7): 937
CrossRef ADS Google scholar

Acknowledgements

We really appreciate the financial support from the National Natural Science Foundation of China (Grant Nos. 61875143, 61905170, 62075146, and 11574223), the Natural Science Foundation of Jiangsu Province (Nos. BK20180042, BK20181169, and BK20190816), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 17KJA480004), the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institution, and the start-up funding of Ningbo University, and the Yongjiang Recruitment Project (No. 432200942).

Conflict of interest

The authors have no conflicts to disclose.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(6012 KB)

Accesses

Citations

Detail

Sections
Recommended

/