High performance of hot-carrier generation, transport and injection in TiN/TiO2 junction
Tingting Liu, Qianjun Wang, Cheng Zhang, Xiaofeng Li, Jun Hu
High performance of hot-carrier generation, transport and injection in TiN/TiO2 junction
Improving the performance of generation, transport and injection of hot carriers within metal/semiconductor junctions is critical for promoting the hot-carrier applications. However, the conversion efficiency of hot carriers in the commonly used noble metals (e.g., Au) is extremely low. Herein, through a systematic study by first-principles calculation and Monte Carlo simulation, we show that TiN might be a promising plasmonic material for high-efficiency hot-carrier applications. Compared with Au, TiN shows obvious advantages in the generation (high density of low-energy hot electrons) and transport (long lifetime and mean free path) of hot carriers. We further performed a device-oriented study, which reveals that high hot-carrier injection efficiency can be achieved in core/shell cylindrical TiN/TiO2 junctions. Our findings provide a deep insight into the intrinsic processes of hot-carrier generation, transport and injection, which is helpful for the development of hot-carrier devices and applications.
metal/semiconductor junction / plasmonic material / hot-carrier generation / lifetime and mean free path / injection efficiency
[1] |
C.Clavero. Plasmon-induced hot-electron generation at nanoparticle/metal−oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics , 2014, 8( 2): 95
CrossRef
ADS
Google scholar
|
[2] |
M.W. Knight, H.Sobhani, P.Nordlander, N.J. Halas. Photodetection with active optical antennas. Science , 2011, 332( 6030): 702
CrossRef
ADS
Google scholar
|
[3] |
Y.Tian, T.Tatsuma. Plasmon-induced photoelectrochemistry at metal nanoparticles supported on nanoporous TiO2. Chem. Commun. , 2004, 16( 16): 1810
CrossRef
ADS
Google scholar
|
[4] |
C.Scales, P.Berini. Thin-film Schottky barrier photodetector models. IEEE J. Quantum Electron. , 2010, 46( 5): 633
CrossRef
ADS
Google scholar
|
[5] |
G.V. Naik, V.M. Shalaev, A.Boltasseva. Alternative plasmonic materials: Beyond gold and silver. Adv. Mater. , 2013, 25( 24): 3264
CrossRef
ADS
Google scholar
|
[6] |
L.J. Krayer, K.J. Palm, C.Gong, A.Torres, C.E. P. Villegas, A.R. Rocha, M.S. Leite, J.N. Munday. Enhanced near-infrared photoresponse from nanoscale Ag−Au alloyed films. ACS Photonics , 2020, 7( 7): 1689
CrossRef
ADS
Google scholar
|
[7] |
G.Tagliabue, J.S. DuChene, M.Abdellah, A.Habib, D.J. Gosztola, Y.Hattori, W.H. Cheng, K.Zheng, S.E. Canton, R.Sundararaman, J.Sá, H.A. Atwater. Ultrafast hot-hole injection modifies hot-electron dynamics in Au/p−GaN heterostructures. Nat. Mater. , 2020, 19( 12): 1312
CrossRef
ADS
Google scholar
|
[8] |
M.Ortolani, A.Mancini, A.Budweg, D.Garoli, D.Brida, F.de Angelis. Pump-probe spectroscopy study of ultrafast temperature dynamics in nanoporous gold. Phys. Rev. B , 2019, 99( 3): 035435
CrossRef
ADS
Google scholar
|
[9] |
Y.J. Chang, K.H. Shih. Solar energy conversion via internal photoemission in aluminum, copper, and silver: Band structure effects and theoretical efficiency estimates. J. Appl. Phys. , 2016, 119( 18): 183101
CrossRef
ADS
Google scholar
|
[10] |
A.J. Leenheer, P.Narang, N.S. Lewis, H.A. Atwater. Solar energy conversion via hot electron internal photoemission in metallic nanostructures: Efficiency estimates. J. Appl. Phys. , 2014, 115( 13): 134301
CrossRef
ADS
Google scholar
|
[11] |
T.P. White, K.R. Catchpole. Plasmon-enhanced internal photoemission for photovoltaics: Theoretical efficiency limits. Appl. Phys. Lett. , 2012, 101( 7): 073905
CrossRef
ADS
Google scholar
|
[12] |
R.T. Ross, A.J. Nozik. Efficiency of hot-carrier solar energy converters. J. Appl. Phys. , 1982, 53( 5): 3813
CrossRef
ADS
Google scholar
|
[13] |
R.Sundararaman, P.Narang, A.S. Jermyn, W.A. III Goddard, H.A. Atwater. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. , 2014, 5( 1): 5788
CrossRef
ADS
Google scholar
|
[14] |
A.M. Brown, R.Sundararaman, P.Narang, W.A. III Goddard, H.A. Atwater. Nonradiative plasmon decay and hot carrier dynamics: Effects of phonons, surfaces, and geometry. ACS Nano , 2016, 10( 1): 957
CrossRef
ADS
Google scholar
|
[15] |
F.Ladstädter, U.Hohenester, P.Puschnig, C.Ambrosch-Draxl. First-principles calculation of hot-electron scattering in metals. Phys. Rev. B , 2004, 70( 23): 235125
CrossRef
ADS
Google scholar
|
[16] |
T.Gong, J.N. Munday. Materials for hot carrier plasmonics. Opt. Mater. Express , 2015, 5( 11): 2501
CrossRef
ADS
Google scholar
|
[17] |
D.Y. Lee, J.H. Park, Y.H. Kim, M.H. Lee, N.I. Cho. Effect of Nb doping on morphology, crystal structure, optical band gap energy of TiO2 thin films. Curr. Appl. Phys. , 2014, 14( 3): 421
CrossRef
ADS
Google scholar
|
[18] |
Q.Guo, C.Y. Zhou, Z.B. Ma, X.M. Yang. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges. Adv. Mater. , 2019, 31( 50): 1901997
CrossRef
ADS
Google scholar
|
[19] |
D.Z. Zhang, X.H. Gu, F.Y. Jing, F.L. Gao, J.G. Zhou, S.B. Ruan. High performance ultraviolet detector based on TiO2/ZnO heterojunction. J. Alloys Compd. , 2015, 618 : 551
CrossRef
ADS
Google scholar
|
[20] |
U.Bach, D.Lupo, P.Comte, J.E. Moser, F.Weissortel, J.Salbeck, H.Spreitzer, M.Gratzel. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature , 1998, 395( 6702): 583
CrossRef
ADS
Google scholar
|
[21] |
E.Traver, R.A. Karaballi, Y.E. Monfared, H.Daurie, G.A. Gagnon, M.Dasog. TiN, ZrN, and HfN nanoparticles on nanoporous Aluminum oxide membranes for solar-driven water evaporation and desalination. ACS Appl. Nano Mater. , 2020, 3( 3): 2787
CrossRef
ADS
Google scholar
|
[22] |
M.Kumar, N.Umezawa, S.Ishii, T.Nagao. Examining the performance of refractory conductive ceramics as plasmonic materials: A theoretical approach. ACS Photonics , 2016, 3( 1): 43
CrossRef
ADS
Google scholar
|
[23] |
M.W. Yu, S.Ishii, S.L. Shinde, N.K. Tanjaya, K.P. Chen, T.Nagao. Direct observation of photoinduced charge separation at transition-metal nitride−semiconductor interfaces. ACS Appl. Mater. Interfaces , 2020, 12( 50): 56562
CrossRef
ADS
Google scholar
|
[24] |
M.Marlo, V.Milman. Density-funcitional study of bulk and surface properties of titanium nitride using different exchange-correlation functional. Phys. Rev. B , 2000, 62( 4): 2899
CrossRef
ADS
Google scholar
|
[25] |
X.H. Chen, R.T. Pekarek, J.Gu, A.Zakutayev, K.E. Hurst, N.R. Neale, Y.Yang, M.C. Beard. Transient evolution of the built-in field at junctions of GaAs. ACS Appl. Mater. Interfaces , 2020, 12( 36): 40339
CrossRef
ADS
Google scholar
|
[26] |
A.Naldoni, U.Guler, Z.X. Wang, M.Marelli, F.Malara, X.G. Meng, L.V. Besteiro, A.O. Govorov, A.V. Kildishev, A.Boltasseva, V.M. Shalaev. Broadband hot-electron collection for solar water splitting with plasmonic titanium nitride. Adv. Opt. Mater. , 2017, 5( 15): 1601031
CrossRef
ADS
Google scholar
|
[27] |
U.Guler, A.Boltasseva, V.M. Shalaev. Refractory plasmonics. Science , 2014, 344( 6181): 263
CrossRef
ADS
Google scholar
|
[28] |
G.V. Naik, J.L. Schroeder, X.J. Ni, A.V. Kildishev, T.D. Sands, A.Boltasseva. Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt. Mater. Express , 2012, 2( 4): 478
CrossRef
ADS
Google scholar
|
[29] |
D.McIntyre, J.E. Greene, G.Hakansson, J.E. Sundgren, W.D. Münz. Oxidation of metastable single-phase polycrystalline Ti0.5Al0.5N films: Kinetics and mechanisms. J. Appl. Phys. , 1990, 67( 3): 1542
CrossRef
ADS
Google scholar
|
[30] |
P.Bordone, C.Jacoboni, P.Lugli, L.Reggiani, P.Kocevar. Monte Carlo analysis of hot-phonon effects on non-polar semiconductor transport properties. Physica B+C , 1985, 134( 1−3): 169
CrossRef
ADS
Google scholar
|
[31] |
A.Piryatinski, C.K. Huang, T.J. T. Kwan. Theory of electron transport and emission from a semiconductor nanotip. J. Appl. Phys. , 2019, 125( 21): 214301
CrossRef
ADS
Google scholar
|
[32] |
E.Blandre, D.Jalas, A.Y. Petrov, M.Eich. Limit of efficiency of hot electrons in metals and their injection inside a semiconductor using a semiclassical approach. ACS Photonics , 2018, 5( 9): 3613
CrossRef
ADS
Google scholar
|
[33] |
G.Kresse, J.Furthmuller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. , 1996, 6( 1): 15
CrossRef
ADS
Google scholar
|
[34] |
G.Kresse, J.Furthmuller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B , 1996, 54( 16): 11169
CrossRef
ADS
Google scholar
|
[35] |
G.Kresse, D.Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B , 1999, 59( 3): 1758
CrossRef
ADS
Google scholar
|
[36] |
J.P. Perdew, A.Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X.L. Zhou, K.Burke. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. , 2008, 100( 13): 136406
CrossRef
ADS
Google scholar
|
[37] |
S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C.J. Humphreys, A.P. Sutton. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B , 1998, 57( 3): 1505
CrossRef
ADS
Google scholar
|
[38] |
A.Habib, F.Florio, R.Sundararaman. Hot carrier dynamics in plasmonic transition metal nitrides. J. Opt. , 2018, 20( 6): 064001
CrossRef
ADS
Google scholar
|
[39] |
K.A. Mills, R.F. Davis, S.D. Kevan, G.Thornton, D.A. Shirley. Angle-resolved photoemission determination of Λ-line valence bands in Pt and Au using synchrotron radiation. Phys. Rev. B , 1980, 22( 2): 581
CrossRef
ADS
Google scholar
|
[40] |
N.W. Ashcroft N.D. Mermin W.Dan, Solid State Physics, revised edition, Cengage Leaning Asia PTe Ltd, 2016
|
[41] |
D.Gall, I.Petrov, N.Hellgren, L.Hultman, J.E. Sundgren, J.E. Greene. Growth of poly- and single-crystal ScN on MgO (001): Role of low-energy N2+ irradiation in determining texture, microstructure evolution, and mechanical properties. J. Appl. Phys. , 1998, 84( 11): 6034
CrossRef
ADS
Google scholar
|
[42] |
R.Sundararaman, K.Letchworth-Weaver, K.A. Schwarz, D.Gunceler, Y.Ozhabes, T.A. Arias. JDFTx: Software for joint density-functional theory. SoftwareX , 2017, 6 : 278
CrossRef
ADS
Google scholar
|
[43] |
M.Schlipf, F.Gygi. Optimization algorithm for the generation of ONCV pseudopotentials. Comput. Phys. Commun. , 2015, 196 : 36
CrossRef
ADS
Google scholar
|
[44] |
N.Marzari, D.Vanderbilt. Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B , 1997, 56( 20): 12847
CrossRef
ADS
Google scholar
|
[45] |
X.Xu, A.Dutta, J.Khurgin, A.Wei, W.M. Shalaev, A.Boltasseva. TiN@TiO2 core-shell nanoparticles as plasmon-enhanced photosensitizers: The role of hot electron injection. Laser Photonics Rev. , 2020, 14( 5): 1900376
CrossRef
ADS
Google scholar
|
[46] |
D.C. Ratchford, A.D. Dunkelberger, I.Vurgaftman, J.C. Owrutsky, P.E. Pehrsson. Quantification of efficient plasmonic hot-electron injection in gold nanoparticle-TiO2 films. Nano Lett. , 2017, 17( 10): 6047
CrossRef
ADS
Google scholar
|
[47] |
G.Tagliabue, A.S. Jermyn, R.Sundararaman, A.J. Welch, J.S. Duchene, R.Pala, A.R. Davoyan, P.Narang, H.A. Atwater. Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices. Nat. Commun. , 2018, 9( 1): 3394
CrossRef
ADS
Google scholar
|
[48] |
C.Zhang, K.Wu, V.Giannini, X.F. Li. Planar hot-electron photodetection with Tamm plasmons. ACS Nano , 2017, 11( 2): 1719
CrossRef
ADS
Google scholar
|
[49] |
A.A. Mostofi, J.R. Yates, Y.S. Lee, I.Souza, D.Vanderbilt, N.Marzari. Wannier90: A tool for obtaining maximally-localized Wannier functions. Comput. Phys. Commun. , 2008, 178( 9): 685
CrossRef
ADS
Google scholar
|
[50] |
N.Marzari, A.A. Mostofi, J.R. Yates, I.Souza, D.Vanderbilt. Maximally localized Wannier functions: Theory and applications. Rev. Mod. Phys. , 2012, 84( 4): 1419
CrossRef
ADS
Google scholar
|
[51] |
D.Gerbert, P.Tegeder. Absorbate-mediated relaxation dynamics of hot electrons at metal/organic interfaces. Phys. Rev. B , 2017, 96( 14): 144304
CrossRef
ADS
Google scholar
|
[52] |
S.Stair, R.G. Johnston, T.C. Bagg. Spectral distribution of energy from the sun. J. Res. Natl. Bur. Stand. , 1954, 53( 2): 113
CrossRef
ADS
Google scholar
|
[53] |
H.R. Condit, F.Grum. Spectral energy distribution of daylight. J. Opt. Soc. Am. , 1964, 54( 7): 937
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |