Enhancing thermal transport in multilayer structures: A molecular dynamics study on Lennard−Jones solids

Cuiqian Yu, Yulou Ouyang, Jie Chen

PDF(3645 KB)
PDF(3645 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 53507. DOI: 10.1007/s11467-022-1170-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Enhancing thermal transport in multilayer structures: A molecular dynamics study on Lennard−Jones solids

Author information +
History +

Abstract

We investigate the thermal transport properties of three kinds of multilayer structures: a perfect superlattice (SL) structure, a quasi-periodic multilayer structure consisted of two superlattice (2SL) structures with different periods, and a random multilayer (RML) structure. Our simulation results show that there exists a large number of aperiodic multilayer structures that have effective thermal conductivity higher than that of the SL counterpart, showing enhancement ratio in the effective thermal conductivity up to 193%. Surprisingly, some RML structures also exhibit enhanced thermal transport than the SL counterpart even in the presence of phonon localization. The detailed analysis on the underlying mechanism reveals that such peculiar enhancement is caused by the synergistic effect of coherent and incoherent phonon transport, which can be tuned by the structural configuration. Combined with molecular dynamics simulations and the machine learning technique, we further reveal that the enhancement effect of the effective thermal conductivity by 2SL structure is more significant when the period of SL structure is close to the critical transition period between the coherent and incoherent phonon transport regimes. Our study proposes a novel strategy to enhance the thermal transport in multilayer structures by regulating the wave-particle duality of phonons via the structure optimization, which might provide valuable insights to the thermal management in devices with densely packed interfaces.

Graphical abstract

Keywords

multilayer structures / thermal conductivity / machine learning / molecular dynamics simulation / wave-particle duality of phonon

Cite this article

Download citation ▾
Cuiqian Yu, Yulou Ouyang, Jie Chen. Enhancing thermal transport in multilayer structures: A molecular dynamics study on Lennard−Jones solids. Front. Phys., 2022, 17(5): 53507 https://doi.org/10.1007/s11467-022-1170-5

References

[1]
Z.Zhang, Y.Ouyang, Y.Cheng, J.Chen, N.Li, G.Zhang. Size-dependent phononic thermal transport in low-dimensional nanomaterials. Phys. Rep. , 2020, 860 : 1
CrossRef ADS Google scholar
[2]
W.Ren, Y.Ouyang, P.Jiang, C.Yu, J.He, J.Chen. The impact of interlayer rotation on thermal transport across graphene/hexagonal boron nitride van der Waals heterostructure. Nano Lett. , 2021, 21( 6): 2634
CrossRef ADS Google scholar
[3]
C.Yu Y. Ouyang J.Chen, A perspective on the hydrodynamic phonon transport in two-dimensional materials, J. Appl. Phys. 130(1), 010902 ( 2021)
[4]
G.Xie, D.Ding, G.Zhang. Phonon coherence and its effect on thermal conductivity of nanostructures. Adv. Phys. X , 2018, 3( 1): 1480417
CrossRef ADS Google scholar
[5]
J.He, Y.Ouyang, C.Yu, P.Jiang, W.Ren, J.Chen. Lattice thermal conductivity of β12 and χ3 borophene. Chin. Phys. B , 2020, 29( 12): 126503
CrossRef ADS Google scholar
[6]
A.L. Moore, L.Shi. Emerging challenges and materials for thermal management of electronics. Mater. Today , 2014, 17( 4): 163
CrossRef ADS Google scholar
[7]
Y.Fu, J.Hansson, Y.Liu, S.Chen, A.Zehri, M.K. Samani, N.Wang, Y.Ni, Y.Zhang, Z.-B.Zhang. Graphene related materials for thermal management. 2D Mater. , 2019, 7 : 012001
CrossRef ADS Google scholar
[8]
Y.Ouyang, Z.Zhang, D.Li, J.Chen, G.Zhang. Emerging theory, materials, and screening methods: New opportunities for promoting thermoelectric performance. Ann. Phys. , 2019, 531( 4): 1800437
CrossRef ADS Google scholar
[9]
J.He, Y.Hu, D.Li, J.Chen. Ultra-low lattice thermal conductivity and promising thermoelectric figure of merit in borophene via chlorination. Nano Res. , 2022, 15( 4): 3804
CrossRef ADS Google scholar
[10]
M.N. Luckyanova, J.Garg, K.Esfarjani, A.Jandl, M.T. Bulsara, A.J. Schmidt, A.J. Minnich, S.Chen, M.S. Dresselhaus, Z.Ren, E.A. Fitzgerald, G.Chen. Coherent phonon heat conduction in superlattices. Science , 2012, 338( 6109): 936
CrossRef ADS Google scholar
[11]
J.Ravichandran, A.K. Yadav, R.Cheaito, P.B. Rossen, A.Soukiassian, S.Suresha, J.C. Duda, B.M. Foley, C.H. Lee, Y.Zhu, A.W. Lichtenberger, J.E. Moore, D.A. Muller, D.G. Schlom, P.E. Hopkins, A.Majumdar, R.Ramesh, M.A. Zurbuchen. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. Nat. Mater. , 2014, 13( 2): 168
CrossRef ADS Google scholar
[12]
T.Zhu, E.Ertekin. Phonon transport on two-dimensional graphene/boron nitride superlattices. Phys. Rev. B , 2014, 90( 19): 195209
CrossRef ADS Google scholar
[13]
J.Maire, R.Anufriev, R.Yanagisawa, A.Ramiere, S.Volz, M.Nomura. Heat conduction tuning by wave nature of phonons. Sci. Adv. , 2017, 3( 8): e1700027
CrossRef ADS Google scholar
[14]
P.Jiang, Y.Ouyang, W.Ren, C.Yu, J.He, J.Chen. Total-transmission and total-reflection of individual phonons in phononic crystal nanostructures. APL Mater. , 2021, 9( 4): 040703
CrossRef ADS Google scholar
[15]
L.Yang, J.Chen, N.Yang, B.Li. Significant reduction of graphene thermal conductivity by phononic crystal structure. Int. J. Heat Mass Transf. , 2015, 91 : 428
CrossRef ADS Google scholar
[16]
X.K. Chen, Z.X. Xie, W.X. Zhou, L.M. Tang, K.Q. Chen. Phonon wave interference in graphene and boron nitride superlattice. Appl. Phys. Lett. , 2016, 109( 2): 023101
CrossRef ADS Google scholar
[17]
Z.Zhang, Y.Guo, M.Bescond, J.Chen, M.Nomura, S.Volz. Coherent thermal transport in nano-phononic crystals: An overview. APL Mater. , 2021, 9( 8): 081102
CrossRef ADS Google scholar
[18]
Y.Zhou, X.Gong, B.Xu, M.Hu. First-principles and molecular dynamics study of thermoelectric transport properties of N-type silicon-based superlattice-nanocrystalline heterostructures. J. Appl. Phys. , 2017, 122( 8): 085105
CrossRef ADS Google scholar
[19]
I.M. Felix, L.F. C. Pereira. Thermal conductivity of graphene−hBN superlattice ribbons. Sci. Rep. , 2018, 8( 1): 2737
CrossRef ADS Google scholar
[20]
L.Razzaghi, F.Khoeini, A.Rajabpour, M.Khalkhali. Thermal transport in two-dimensional C3N/C2N superlattices: A molecular dynamics approach. Int. J. Heat Mass Transf. , 2021, 177 : 121561
CrossRef ADS Google scholar
[21]
S.C. Huberman, J.M. Larkin, A.J. McGaughey, C.H. Amon. Disruption of superlattice phonons by interfacial mixing. Phys. Rev. B , 2013, 88( 15): 155311
CrossRef ADS Google scholar
[22]
Y.Wang, C.Gu, X.Ruan. Optimization of the random multilayer structure to break the random-alloy limit of thermal conductivity. Appl. Phys. Lett. , 2015, 106( 7): 073104
CrossRef ADS Google scholar
[23]
T.Juntunen, O.Vänskä, I.Tittonen. Anderson localization quenches thermal transport in aperiodic superlattices. Phys. Rev. Lett. , 2019, 122( 10): 105901
CrossRef ADS Google scholar
[24]
E.Pop. Energy dissipation and transport in nanoscale devices. Nano Res. , 2010, 3( 3): 147
CrossRef ADS Google scholar
[25]
C.Xiang, C.W. Wu, W.X. Zhou, G.Xie, G.Zhang. Thermal transport in lithium-ion battery: A micro perspective for thermal management. Front. Phys. , 2022, 17( 1): 13202
CrossRef ADS Google scholar
[26]
S.Hu, Z.Zhang, P.Jiang, J.Chen, S.Volz, M.Nomura, B.Li. Randomness-induced phonon localization in graphene heat conduction. J. Phys. Chem. Lett. , 2018, 9( 14): 3959
CrossRef ADS Google scholar
[27]
M.Luckyanova, J.Mendoza, H.Lu, B.Song, S.Huang, J.Zhou, M.Li, Y.Dong, H.Zhou, J.Garlow, L.Wu, B.J. Kirby, A.J. Grutter, A.A. Puretzky, Y.Zhu, M.S. Dresselhaus, A.Gossard, G.Chen. Phonon localization in heat conduction. Sci. Adv. , 2018, 4( 12): eaat9460
CrossRef ADS Google scholar
[28]
S.Hu, Z.Zhang, P.Jiang, W.Ren, C.Yu, J.Shiomi, J.Chen. Disorder limits the coherent phonon transport in two-dimensional phononic crystal structures. Nanoscale , 2019, 11( 24): 11839
CrossRef ADS Google scholar
[29]
T.Ma, C.-T.Lin, Y.Wang. The dimensionality effect on phonon localization in graphene/hexagonal boron nitride superlattices. 2D Mater. , 2020, 7 : 035029
CrossRef ADS Google scholar
[30]
Y.Wang, H.Huang, X.Ruan. Decomposition of coherent and incoherent phonon conduction in superlattices and random multilayers. Phys. Rev. B , 2014, 90( 16): 165406
CrossRef ADS Google scholar
[31]
H.Wei, H.Bao, X.Ruan. Genetic algorithm-driven discovery of unexpected thermal conductivity enhancement by disorder. Nano Energy , 2020, 71 : 104619
CrossRef ADS Google scholar
[32]
P.Chakraborty, Y.Liu, T.Ma, X.Guo, L.Cao, R.Hu, Y.Wang. Quenching thermal transport in aperiodic superlattices: A molecular dynamics and machine learning study. ACS Appl. Mater. Interfaces , 2020, 12( 7): 8795
CrossRef ADS Google scholar
[33]
A.Agrawal, A.Choudhary. Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science. APL Mater. , 2016, 4( 5): 053208
CrossRef ADS Google scholar
[34]
S.Ju, T.Shiga, L.Feng, Z.Hou, K.Tsuda, J.Shiomi. Designing nanostructures for phonon transport via Bayesian optimization. Phys. Rev. X , 2017, 7( 2): 021024
CrossRef ADS Google scholar
[35]
X.Wan, W.Feng, Y.Wang, H.Wang, X.Zhang, C.Deng, N.Yang. Materials discovery and properties prediction in thermal transport via materials informatics: A mini review. Nano Lett. , 2019, 19( 6): 3387
CrossRef ADS Google scholar
[36]
Y.Ouyang, Z.Zhang, C.Yu, J.He, G.Yan, J.Chen. Accuracy of machine learning potential for predictions of multiple-target physical properties. Chin. Phys. Lett. , 2020, 37( 12): 126301
CrossRef ADS Google scholar
[37]
S.Ju, S.Shimizu, J.Shiomi. Designing thermal functional materials by coupling thermal transport calculations and machine learning. J. Appl. Phys. , 2020, 128( 16): 161102
CrossRef ADS Google scholar
[38]
P.R. Chowdhury, C.Reynolds, A.Garrett, T.Feng, S.P. Adiga, X.Ruan. Machine learning maximized Anderson localization of phonons in aperiodic superlattices. Nano Energy , 2020, 69 : 104428
CrossRef ADS Google scholar
[39]
Y.Ouyang, C.Yu, G.Yan, J.Chen. Machine learning approach for the prediction and optimization of thermal transport properties. Front. Phys. , 2021, 16( 4): 43200
CrossRef ADS Google scholar
[40]
L.Yang, X.Wan, D.Ma, Y.Jiang, N.Yang. Maximization and minimization of interfacial thermal conductance by modulating the mass distribution of the interlayer. Phys. Rev. B , 2021, 103( 15): 155305
CrossRef ADS Google scholar
[41]
S.Arabha, Z.S. Aghbolagh, K.Ghorbani, S.M. Hatam-Lee, A.Rajabpour. Recent advances in lattice thermal conductivity calculation using machine-learning interatomic potentials. J. Appl. Phys. , 2021, 130( 21): 210903
CrossRef ADS Google scholar
[42]
Y.Ouyang, C.Yu, J.He, P.Jiang, W.Ren, J.Chen. Accurate description of high-order phonon anharmonicity and lattice thermal conductivity from molecular dynamics simulations with machine learning potential. Phys. Rev. B , 2022, 105( 11): 115202
CrossRef ADS Google scholar
[43]
Z.Zhang, Y.Guo, M.Bescond, J.Chen, M.Nomura, S.Volz. Generalized decay law for particlelike and wavelike thermal phonons. Phys. Rev. B , 2021, 103( 18): 184307
CrossRef ADS Google scholar
[44]
Z.Zhang, Y.Guo, M.Bescond, J.Chen, M.Nomura, S.Volz. Heat conduction theory including phonon coherence. Phys. Rev. Lett. , 2022, 128( 1): 015901
CrossRef ADS Google scholar
[45]
S.Plimpton. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. , 1995, 117( 1): 1
CrossRef ADS Google scholar
[46]
P.Chakraborty, I.A. Chiu, T.Ma, Y.Wang. Complex temperature dependence of coherent and incoherent lattice thermal transport in superlattices. Nanotechnology , 2021, 32( 6): 065401
CrossRef ADS Google scholar
[47]
A.Giri, J.L. Braun, P.E. Hopkins. Implications of interfacial bond strength on the spectral contributions to thermal boundary conductance across solid, liquid, and gas interfaces: A molecular dynamics study. J. Phys. Chem. C , 2016, 120( 43): 24847
CrossRef ADS Google scholar
[48]
P.Chakraborty, L.Cao, Y.Wang. Ultralow lattice thermal conductivity of the random multilayer structure with lattice imperfections. Sci. Rep. , 2017, 7( 1): 8134
CrossRef ADS Google scholar
[49]
B.Qiu, G.Chen, Z.Tian. Effects of aperiodicity and roughness on coherent heat conduction in superlattices. Nanoscale Microscale Thermophys. Eng. , 2015, 19( 4): 272
CrossRef ADS Google scholar
[50]
Y.Zhou, X.Zhang, M.Hu. An excellent candidate for largely reducing interfacial thermal resistance: A nano-confined mass graded interface. Nanoscale , 2016, 8( 4): 1994
CrossRef ADS Google scholar
[51]
K.Sääskilahti, J.Oksanen, S.Volz, J.Tulkki. Frequency-dependent phonon mean free path in carbon nanotubes from nonequilibrium molecular dynamics. Phys. Rev. B , 2015, 91( 11): 115426
CrossRef ADS Google scholar
[52]
K.Sääskilahti, J.Oksanen, J.Tulkki, S.Volz. Role of anharmonic phonon scattering in the spectrally decomposed thermal conductance at planar interfaces. Phys. Rev. B , 2014, 90( 13): 134312
CrossRef ADS Google scholar
[53]
Y.Zhou, X.Zhang, M.Hu. Quantitatively analyzing phonon spectral contribution of thermal conductivity based on nonequilibrium molecular dynamics simulations (I): From space Fourier transform. Phys. Rev. B , 2015, 92( 19): 195204
CrossRef ADS Google scholar
[54]
Y.Zhou, M.Hu. Full quantification of frequency-dependent interfacial thermal conductance contributed by two- and three-phonon scattering processes from nonequilibrium molecular dynamics simulations. Phys. Rev. B , 2017, 95( 11): 115313
CrossRef ADS Google scholar
[55]
Y.Ouyang, Z.Zhang, Q.Xi, P.Jiang, W.Ren, N.Li, J.Zhou, J.Chen. Effect of boundary chain folding on thermal conductivity of lamellar amorphous polyethylene. RSC Advances , 2019, 9( 57): 33549
CrossRef ADS Google scholar
[56]
X.K. Chen, M.Pang, T.Chen, D.Du, K.Q. Chen. Thermal rectification in asymmetric graphene/hexagonal boron nitride van der Waals heterostructures. ACS Appl. Mater. Interfaces , 2020, 12( 13): 15517
CrossRef ADS Google scholar
[57]
Y.Ma, Z.Zhang, J.Chen, K.Sääskilahti, S.Volz, J.Chen. Ordered water layers by interfacial charge decoration leading to an ultra-low Kapitza resistance between graphene and water. Carbon , 2018, 135 : 263
CrossRef ADS Google scholar
[58]
G.Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons, Oxford University Press, 2005
[59]
E.S. Landry, A.J. McGaughey. Effect of film thickness on the thermal resistance of confined semiconductor thin films. J. Appl. Phys. , 2010, 107( 1): 013521
CrossRef ADS Google scholar
[60]
S.I. Tamura, Y.Tanaka, H.J. Maris. Phonon group velocity and thermal conduction in superlattices. Phys. Rev. B , 1999, 60( 4): 2627
CrossRef ADS Google scholar
[61]
R.Hu, S.Iwamoto, L.Feng, S.Ju, S.Hu, M.Ohnishi, N.Nagai, K.Hirakawa, J.Shiomi. Machine-learning-optimized aperiodic superlattice minimizes coherent phonon heat conduction. Phys. Rev. X , 2020, 10( 2): 021050
CrossRef ADS Google scholar
[62]
P.Jiang, S.Hu, Y.Ouyang, W.Ren, C.Yu, Z.Zhang, J.Chen. Remarkable thermal rectification in pristine and symmetric monolayer graphene enabled by asymmetric thermal contact. J. Appl. Phys. , 2020, 127( 23): 235101
CrossRef ADS Google scholar
[63]
C.Yu, Y.Hu, J.He, S.Lu, D.Li, J.Chen. Strong four-phonon scattering in monolayer and hydrogenated bilayer BAs with horizontal mirror symmetry. Appl. Phys. Lett. , 2022, 120( 13): 132201
CrossRef ADS Google scholar
[64]
S.Lu, W.Ren, J.He, C.Yu, P.Jiang, J.Chen. Enhancement of the lattice thermal conductivity of two-dimensional functionalized MXenes by inversion symmetry breaking. Phys. Rev. B , 2022, 105( 16): 165301
CrossRef ADS Google scholar
[65]
T.Zhan, L.Fang, Y.Xu. Prediction of thermal boundary resistance by the machine learning method. Sci. Rep. , 2017, 7( 1): 7109
CrossRef ADS Google scholar
[66]
Y.J. Wu, M.Sasaki, M.Goto, L.Fang, Y.Xu. Electrically conductive thermally insulating Bi–Si nanocomposites by interface design for thermal management. ACS Appl. Nano Mater. , 2018, 1( 7): 3355
CrossRef ADS Google scholar
[67]
Y.J. Wu, L.Fang, Y.Xu. Predicting interfacial thermal resistance by machine learning. npj Comput. Mater. , 2019, 5 : 56
CrossRef ADS Google scholar
[68]
Y.Liu, W.Hong, B.Cao. Machine learning for predicting thermodynamic properties of pure fluids and their mixtures. Energy , 2019, 188 : 116091
CrossRef ADS Google scholar
[69]
Z.Hou, Y.Takagiwa, Y.Shinohara, Y.Xu, K.Tsuda. Machine-learning-assisted development and theoretical consideration for the Al2Fe3Si3 thermoelectric material. ACS Appl. Mater. Interfaces , 2019, 11( 12): 11545
CrossRef ADS Google scholar
[70]
J.H. Friedman. Greedy function approximation: A gradient boosting machine. Ann. Stat. , 2001, 29( 5): 1189
CrossRef ADS Google scholar
[71]
M.R. Wagner, B.Graczykowski, J.S. Reparaz, A.El Sachat, M.Sledzinska, F.Alzina, C.M. Sotomayor Torres. Two-dimensional phononic crystals: Disorder matters. Nano Lett. , 2016, 16( 9): 5661
CrossRef ADS Google scholar

Declaration of interests

The authors declare no competing financial interest.

Electronic supplementary material

is available in the online version of this article at https://doi.org/10.1007/s11467-022-1170-5 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-022-1170-5 and are accessible for authorized users.

Acknowledgements

This project was supported in part by the grants from the National Natural Science Foundation of China (Grant Nos. 12075168 and 11890703), the Science and Technology Commission of Shanghai Municipality (Grant Nos. 19ZR1478600 and 21JC1405600), and the Fundamental Research Funds for the Central Universities (Grant No. 22120220060).

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(3645 KB)

Accesses

Citations

Detail

Sections
Recommended

/