Edge enhancement of phase objects through complex media by using transmission-matrix-based spiral phase contrast imaging

Qian Zhao , Shijie Tu , Qiannan Lei , Qingyang Yue , Chengshan Guo , Yangjian Cai

Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 52503

PDF (2889KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 52503 DOI: 10.1007/s11467-022-1169-y
RESEARCH ARTICLE

Edge enhancement of phase objects through complex media by using transmission-matrix-based spiral phase contrast imaging

Author information +
History +
PDF (2889KB)

Abstract

The wavefront shaping based technique has been introduced to detect the edges of amplitude objects through complex media, but the extraction of the boundary information of invisible phase objects through complex media has not been demonstrated yet. Here, we present a phase contrast imaging technique to overcome the scattering, aiming to achieve the edge detection of the phase object through the complex media. An operator based on the experimentally measured transmission matrix is obtained by numerically adding a spiral phase in the Fourier domain. With the inverse of the filtered transmission matrix, we can directly reconstruct the edge enhanced images for both amplitude object and phase object beyond scattering. Experimentally, both digital and real objects are imaged, and the results verify that isotropic edge detection can be achieved with our technique. Our work could benefit the detection of invisible phase objects through complex media.

Graphical abstract

Keywords

complex media / edge detection / spiral phase contrast imaging

Cite this article

Download citation ▾
Qian Zhao, Shijie Tu, Qiannan Lei, Qingyang Yue, Chengshan Guo, Yangjian Cai. Edge enhancement of phase objects through complex media by using transmission-matrix-based spiral phase contrast imaging. Front. Phys., 2022, 17(5): 52503 DOI:10.1007/s11467-022-1169-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D. Mawet , E. Serabyn , J. K. Wallace , L. Pueyo . Improved high-contrast imaging with on-axis telescopes using a multistage vortex coronagraph. Opt. Lett., 2011, 36( 8): 1506

[2]

A. Jesacher , S. Fürhapter , S. Bernet , M. Ritsch-Marte . Shadow effects in spiral phase contrast microscopy. Phys. Rev. Lett., 2005, 94( 23): 233902

[3]

F. Qadir , M. Peer , K. Khan . Efficient edge detection methods for diagnosis of lung cancer based on two-dimensional cellular automata. Adv. Appl. Sci. Res., 2012, 3( 4): 2050

[4]

P. Nisthula , R. Yadhu . A novel method to detect bone cancer using image fusion and edge detection. Int. J. Eng. Comp. Sci., 2013, 2( 6): 2012

[5]

T. Zhu , Y. Zhou , Y. Lou , H. Ye , M. Qiu , Z. Ruan , S. Fan . Plasmonic computing of spatial differentiation. Nat. Commun., 2017, 8( 1): 15391

[6]

S. Fürhapter , A. Jesacher , S. Bernet , M. Ritsch-Marte . Spiral phase contrast imaging in microscopy. Opt. Express, 2005, 13( 3): 689

[7]

S. Bernet , A. Jesacher , S. Fürhapter , C. Maurer , M. Ritsch-Marte . Quantitative imaging of complex samples by spiral phase contrast microscopy. Opt. Express, 2006, 14( 9): 3792

[8]

X. Qiu , F. Li , W. Zhang , Z. Zhu , L. Chen . Spiral phase contrast imaging in nonlinear optics: Seeing phase objects using invisible illumination. Optica, 2018, 5( 2): 208

[9]

C. Zhou , G. Wang , H. Huang , L. Song , K. Xue . Edge detection based on joint iteration ghost imaging. Opt. Express, 2019, 27( 19): 27295

[10]

H. Ren , S. Zhao , J. Gruska . Edge detection based on single-pixel imaging. Opt. Express, 2018, 26( 5): 5501

[11]

Y. Liu , P. Yu , X. Hu , Z. Wang , Y. Li , L. Gong . Single-pixel spiral phase contrast imaging. Opt. Lett., 2020, 45( 14): 4028

[12]

J. A. Davis , D. E. McNamara , D. M. Cottrell , J. Campos . Image processing with the radial Hilbert transform: Theory and experiments. Opt. Lett., 2000, 25( 2): 99

[13]

H. Song , Y. Zhang , Y. Ren , Z. Yuan , D. Zhao , Z. Zheng , L. Gao . Non-local edge enhanced imaging with incoherent thermal light. Appl. Phys. Lett., 2020, 116( 17): 174001

[14]

S. K. Liu , Y. H. Li , S. L. Liu , Z. Y. Zhou , Y. Li , C. Yang , G. C. Guo , B. S. Shi . Real-time quantum edge enhanced imaging. Opt. Express, 2020, 28( 24): 35415

[15]

X. Zhu , H. Yao , J. Yu , G. Gbur , F. Wang , Y. Chen , Y. Cai . Inverse design of a spatial filter in edge enhanced imaging. Opt. Lett., 2020, 45( 9): 2542

[16]

C. S. Guo , Y. J. Han , J. B. Xu , J. Ding . Radial Hilbert transform with Laguerre−Gaussian spatial filters. Opt. Lett., 2006, 31( 10): 1394

[17]

Y. Zhou , S. Feng , S. Nie , J. Ma , C. Yuan . Image edge enhancement using Airy spiral phase filter. Opt. Express, 2016, 24( 22): 25258

[18]

S. Popoff , G. Lerosey , M. Fink , A. C. Boccara , S. Gigan . Image transmission through an opaque material. Nat. Commun., 2010, 1( 1): 81

[19]

J. Bertolotti , E. G. van Putten , C. Blum , A. Lagendijk , W. L. Vos , A. P. Mosk . Non-invasive imaging through opaque scattering layers. Nature, 2012, 491( 7423): 232

[20]

Z. Yaqoob , D. Psaltis , M. S. Feld , C. Yang . Optical phase conjugation for turbidity suppression in biological samples. Nat. Photonics, 2008, 2( 2): 110

[21]

J. Yang , Y. Shen , Y. Liu , A. S. Hemphill , L. V. Wang . Focusing light through scattering media by polarization modulation based generalized digital optical phase conjugation. Appl. Phys. Lett., 2017, 111( 20): 201108

[22]

Y. Choi , C. Yoon , M. Kim , T. D. Yang , C. Fang-Yen , R. R. Dasari , K. J. Lee , W. Choi . Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Phys. Rev. Lett., 2012, 109( 20): 203901

[23]

Y. Baek , K. Lee , Y. Park . High-resolution holographic microscopy exploiting speckle-correlation scattering matrix. Phys. Rev. Appl., 2018, 10( 2): 024053

[24]

Z. Li , Z. Yu , H. Hui , H. Li , T. Zhong , H. Liu , P. Lai . Edge enhancement through scattering media enabled by optical wavefront shaping. Photon. Res., 2020, 8( 6): 954

[25]

S. Popoff , G. Lerosey , R. Carminati , M. Fink , A. Boccara , S. Gigan . Measuring the transmission matrix in optics: An approach to the study and control of light propagation in disordered media. Phys. Rev. Lett., 2010, 104( 10): 100601

[26]

Q. Zhao , P. P. Yu , Y. F. Liu , Z. Q. Wang , Y. M. Li , L. Gong . Light field imaging through a single multimode fiber for OAM-multiplexed data transmission. Appl. Phys. Lett., 2020, 116( 18): 181101

[27]

L. Gong , Q. Zhao , H. Zhang , X. Y. Hu , K. Huang , J. M. Yang , Y. M. Li . Optical orbital-angular-momentum-multiplexed data transmission under high scattering. Light Sci. Appl., 2019, 8( 1): 27

[28]

X. Hu , Q. Zhao , P. Yu , X. Li , Z. Wang , Y. Li , L. Gong . Dynamic shaping of orbital-angular-momentum beams for information encoding. Opt. Express, 2018, 26( 2): 1796

[29]

R. Sprik , A. Tourin , J. de Rosny , M. Fink . Eigenvalue distributions of correlated multichannel transfer matrices in strongly scattering systems. Phys. Rev. B, 2008, 78( 1): 012202

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2889KB)

1326

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/