Interfacial properties of 2D WS2 on SiO2 substrate from X-ray photoelectron spectroscopy and first-principles calculations

Changjie Zhou, Huili Zhu, Weifeng Yang, Qiubao Lin, Tongchang Zheng, Lan Yang, Shuqiong Lan

PDF(5886 KB)
PDF(5886 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 53500. DOI: 10.1007/s11467-022-1167-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Interfacial properties of 2D WS2 on SiO2 substrate from X-ray photoelectron spectroscopy and first-principles calculations

Author information +
History +

Abstract

Two-dimensional (2D) WS2 films were deposited on SiO2 wafers, and the related interfacial properties were investigated by high-resolution X-ray photoelectron spectroscopy (XPS) and first-principles calculations. Using the direct (indirect) method, the valence band offset (VBO) at monolayer WS2/SiO2 interface was found to be 3.97 eV (3.86 eV), and the conduction band offset (CBO) was 2.70 eV (2.81 eV). Furthermore, the VBO (CBO) at bulk WS2/SiO2 interface is found to be about 0.48 eV (0.33 eV) larger due to the interlayer orbital coupling and splitting of valence and conduction band edges. Therefore, the WS2/SiO2 heterostructure has a Type I energy-band alignment. The band offsets obtained experimentally and theoretically are consistent except the narrower theoretical bandgap of SiO2. The theoretical calculations further reveal a binding energy of 75 meV per S atom and the totally separated partial density of states, indicating a weak interaction and negligible Fermi level pinning effect between WS2 monolayer and SiO2 surface. Our combined experimental and theoretical results provide proof of the sufficient VBOs and CBOs and weak interaction in 2D WS2/SiO2 heterostructures.

Graphical abstract

Keywords

band offsets / WS2 / SiO2 / X-ray photoelectron spectroscopy / first-principles calculations

Cite this article

Download citation ▾
Changjie Zhou, Huili Zhu, Weifeng Yang, Qiubao Lin, Tongchang Zheng, Lan Yang, Shuqiong Lan. Interfacial properties of 2D WS2 on SiO2 substrate from X-ray photoelectron spectroscopy and first-principles calculations. Front. Phys., 2022, 17(5): 53500 https://doi.org/10.1007/s11467-022-1167-0

References

[1]
K. F. Mak , C. Lee , J. Hone , J. Shan , T. F. Heinz . Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett., 2010, 105( 13): 136805
CrossRef ADS Google scholar
[2]
G. Eda , H. Yamaguchi , D. Voiry , T. Fujita , M. W. Chen , M. Chhowalla . Photoluminescence from chemically exfoliated MoS2. Nano Lett., 2011, 11( 12): 5111
CrossRef ADS Google scholar
[3]
J. N. Coleman , M. Lotya , A. O’Neill , S. D. Bergin , P. J. King , U. Khan , K. Young , A. Gaucher , S. De , R. J. Smith , I. V. Shvets , S. K. Arora , G. Stanton , H. Y. Kim , K. Lee , G. T. Kim , G. S. Duesberg , T. Hallam , J. J. Boland , J. J. Wang , J. F. Donegan , J. C. Grunlan , G. Moriarty , A. Shmeliov , R. J. Nicholls , J. M. Perkins , E. M. Grieveson , K. Theuwissen , D. W. McComb , P. D. Nellist , V. Nicolosi . Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011, 331( 6017): 568
CrossRef ADS Google scholar
[4]
Y. J. Zhan , Z. Liu , S. Najmaei , P. M. Ajayan , J. Lou . Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small, 2012, 8( 7): 966
CrossRef ADS Google scholar
[5]
Y. H. Lee , X. Q. Zhang , W. J. Zhang , M. T. Chang , C. T. Lin , K. D. Chang , Y. C. Yu , J. T. W. Wang , C. S. Chang , L. J. Li , T. W. Lin . Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater., 2012, 24( 17): 2320
CrossRef ADS Google scholar
[6]
P. Y. Liu , T. Luo , J. Xing , H. Xu , H. Y. Hao , H. Liu , J. J. Dong . Large-area WS2 film with big single domains grown by chemical vapor deposition. Nanoscale Res. Lett., 2017, 12( 1): 558
CrossRef ADS Google scholar
[7]
A. L. Elías , N. Perea-Lopez , A. Castro-Beltran , A. Berkdemir , R. T. Lv , S. M. Feng , A. D. Long , T. Hayashi , Y. A. Kim , M. Endo , H. R. Gutierrez , N. R. Pradhan , L. Balicas , T. E. Mallouk , F. Lopez-Urias , H. Terrones , M. Terrones . Controlled synthesis and transfer of large-area WS2 sheets: From single layer to few layers. ACS Nano, 2013, 7( 6): 5235
CrossRef ADS Google scholar
[8]
H. L. Zhu , C. J. Zhou , B. S. Tang , W. F. Yang , J. W. Chai , W. L. Tay , H. Gong , J. S. Pan , W. D. Zou , S. J. Wang , D. Z. Chi . Band alignment of 2D WS2/HfO2 interfaces from X-ray photoelectron spectroscopy and first-principles calculations. Appl. Phys. Lett., 2018, 112( 17): 171604
CrossRef ADS Google scholar
[9]
M. X. Ye , D. Y. Zhang , Y. K. Yap . Recent advances in electronic and optoelectronic devices based on two-dimensional transition metal dichalcogenides. Electronics (Basel), 2017, 6( 2): 43
CrossRef ADS Google scholar
[10]
C. X. Cong , J. Z. Shang , Y. L. Wang , T. Yu . Optical properties of 2D semiconductor WS2. Adv. Opt. Mater., 2018, 6( 1): 1700767
CrossRef ADS Google scholar
[11]
P. J. Schuck , W. Bao , N. J. Borys . A polarizing situation: Taking an in-plane perspective for next-generation near-field studies. Front. Phys., 2016, 11( 2): 117804
CrossRef ADS Google scholar
[12]
Z. C. Zhou , F. Y. Yang , S. Wang , L. Wang , X. F. Wang , C. Wang , Y. Xie , Q. Liu . Emerging of two-dimensional materials in novel memristor. Front. Phys., 2022, 17( 2): 23204
CrossRef ADS Google scholar
[13]
H. L. Zhu , W. H. Yang , Y. P. Wu , W. Lin , J. Y. Kang , C. J. Zhou . Au and Ti induced charge redistributions on monolayer WS2. Chin. Phys. B, 2015, 24( 7): 077301
CrossRef ADS Google scholar
[14]
T. LaMountain , E. J. Lenferink , Y. J. Chen , T. K. Stanev , N. P. Stern . Environmental engineering of transition metal dichalcogenide optoelectronics. Front. Phys., 2018, 13( 4): 138114
CrossRef ADS Google scholar
[15]
G. Luo , Z. Z. Zhang , H. O. Li , X. X. Song , G. W. Deng , G. Cao , M. Xiao , G. P. Guo . Quantum dot behavior in transition metal dichalcogenides nanostructures. Front. Phys., 2017, 12( 4): 128502
CrossRef ADS Google scholar
[16]
H. M. Hill , A. F. Rigosi , K. T. Rim , G. W. Flynn , T. F. Heinz . Band alignment in MoS2/WS2 transition metal dichalcogenide heterostructures probed by scanning tunneling microscopy and spectroscopy. Nano Lett., 2016, 16( 8): 4831
CrossRef ADS Google scholar
[17]
Y. Z. Guo , J. Robertson . Band engineering in transition metal dichalcogenides: Stacked versus lateral heterostructures. Appl. Phys. Lett., 2016, 108( 23): 233104
CrossRef ADS Google scholar
[18]
J. Jadczak , J. Kutrowska-Girzycka , P. Kapuscinski , Y. S. Huang , A. Wojs , L. Bryja . Probing of free and localized excitons and trions in atomically thin WSe2, WS2, MoSe2 and MoS2 in photoluminescence and reflectivity experiments. Nanotechnology, 2017, 28( 39): 395702
CrossRef ADS Google scholar
[19]
P. K. Nayak , F. C. Lin , C. H. Yeh , J. S. Huang , P. W. Chiu . Robust room temperature valley polarization in monolayer and bilayer WS2. Nanoscale, 2016, 8( 11): 6035
CrossRef ADS Google scholar
[20]
N. Ubrig , S. Jo , M. Philippi , D. Costanzo , H. Berger , A. B. Kuzmenko , A. F. Morpurgo . Microscopic origin of the valley Hall effect in transition metal dichalcogenides revealed by wavelength-dependent mapping. Nano Lett., 2017, 17( 9): 5719
CrossRef ADS Google scholar
[21]
M. Van der Donck , M. Zarenia , F. M. Peeters . Strong valley Zeeman effect of dark excitons in monolayer transition metal dichalcogenides in a tilted magnetic field. Phys. Rev. B, 2018, 97( 8): 081109
CrossRef ADS Google scholar
[22]
M. W. Iqbal , M. Z. Iqbal , M. F. Khan , M. A. Kamran , A. Majid , T. Alharbi , J. Eom . Tailoring the electrical and photo-electrical properties of a WS2 field effect transistor by selective n-type chemical doping. RSC Advances, 2016, 6( 29): 24675
CrossRef ADS Google scholar
[23]
N. J. Huo , S. X. Yang , Z. M. Wei , S. S. Li , J. B. Xia , J. B. Li . Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Sci. Rep., 2014, 4( 1): 5209
CrossRef ADS Google scholar
[24]
D. Akinwande , N. Petrone , J. Hone . Two-dimensional flexible nanoelectronics. Nat. Commun., 2014, 5( 1): 5678
CrossRef ADS Google scholar
[25]
Y. Wang , D. Kong , S. Huang , Y. Shi , M. Ding , Y. Von Lim , T. Xu , F. Chen , X. Li , H. Y. Yang . 3D carbon foam-supported WS2 nanosheets for cable-shaped flexible sodium ion batteries. J. Mater. Chem., 2018, 6( 23): 10813
CrossRef ADS Google scholar
[26]
C. Y. Lan , Z. Y. Zhou , Z. F. Zhou , C. Li , L. Shu , L. F. Shen , D. P. Li , R. T. Dong , S. P. Yip , J. Ho . Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition. Nano Res., 2018, 11( 6): 3371
CrossRef ADS Google scholar
[27]
C. Ouyang , Y. X. Chen , Z. Y. Qin , D. W. Zeng , J. Zhang , H. Wang , C. S. Xie . Two-dimensional WS2-based nanosheets modified by Pt quantum dots for enhanced room-temperature NH3 sensing properties. Appl. Surf. Sci., 2018, 455 : 45
CrossRef ADS Google scholar
[28]
G. A. Asres , J. J. Baldoví , A. Dombovari , T. Järvinen , G. S. Lorite , M. Mohl , A. Shchukarev , A. Pérez Paz , L. Xian , J. P. Mikkola , A. L. Spetz , H. Jantunen , Á. Rubio , K. Kordás . Ultrasensitive H2S gas sensors based on p-type WS2 hybrid materials. Nano Res., 2018, 11( 8): 4215
CrossRef ADS Google scholar
[29]
Q. H. Xu , Y. T. Lu , S. Y. Zhao , N. Hu , Y. W. Jiang , H. Li , Y. Wang , H. Q. Gao , Y. Li , M. Yuan , L. Chu , J. H. Li , Y. N. Xie . A wind vector detecting system based on triboelectric and photoelectric sensors for simultaneously monitoring wind speed and direction. Nano Energy, 2021, 89 : 106382
CrossRef ADS Google scholar
[30]
Q. H. Xu , Y. S. Fang , B. Q. S. Jing , N. Hu , K. Lin , Y. F. Pan , L. Xu , H. Q. Gao , M. Yuan , L. Chu , Y. W. Ma , Y. N. Xie , J. Chen , L. H. Wang . A portable triboelectric spirometer for wireless pulmonary function monitoring. Biosens. Bioelectron., 2021, 187 : 113329
CrossRef ADS Google scholar
[31]
Z. Z. Yan , Z. H. Jiang , J. P. Lu , Z. H. Ni . Interfacial charge transfer in WS2 monolayer/CsPbBr3 microplate heterostructure. Front. Phys., 2018, 13( 4): 138115
CrossRef ADS Google scholar
[32]
W. J. Yin , X. L. Zeng , B. Wen , Q. X. Ge , Y. Xu , G. Teobaldi , L. M. Liu . The unique carrier mobility of Janus MoSSe/GaN heterostructures. Front. Phys., 2021, 16( 3): 33501
CrossRef ADS Google scholar
[33]
H. Wang , D. L. Ren , C. Lu , X. B. Yan . Investigation of multilayer WS2 flakes as charge trapping stack layers in non-volatile memories. Appl. Phys. Lett., 2018, 112( 23): 231903
CrossRef ADS Google scholar
[34]
O. Zheliuk , J. M. Lu , J. Yang , J. T. Ye . Monolayer superconductivity in WS2. Phys. Status Solidi Rapid Res. Lett., 2017, 11( 9): 1700245
CrossRef ADS Google scholar
[35]
S. Ulstrup , R. J. Koch , D. Schwarz , K. M. McCreary , B. T. Jonker , S. Singh , A. Bostwick , E. Rotenberg , C. Jozwiak , J. Katoch . Imaging microscopic electronic contrasts at the interface of single-layer WS2 with oxide and boron nitride substrates. Appl. Phys. Lett., 2019, 114( 15): 151601
CrossRef ADS Google scholar
[36]
W. F. Yang , H. Kawai , M. Bosman , B. S. Tang , J. W. Chai , W. L. Tay , J. Yang , H. L. Seng , H. L. Zhu , H. Gong , H. F. Liu , K. E. J. Goh , S. J. Wang , D. Z. Chi . Interlayer interactions in 2D WS2/MoS2 heterostructures monolithically grown by in situ physical vapor deposition. Nanoscale, 2018, 10( 48): 22927
CrossRef ADS Google scholar
[37]
B. S. Tang , Z. G. Yu , L. Huang , J. W. Chai , S. L. Wong , J. Deng , W. F. Yang , H. Gong , S. J. Wang , K. W. Ang , Y. W. Zhang , D. Z. Chi . Direct n- to p-type channel conversion in monolayer/few-layer WS2 field-effect transistors by atomic nitrogen treatment. ACS Nano, 2018, 12( 3): 2506
CrossRef ADS Google scholar
[38]
H. R. Gutiérrez , N. Perea-Lopez , A. L. Elias , A. Berkdemir , B. Wang , R. Lv , F. Lopez-Urias , V. H. Crespi , H. Terrones , M. Terrones . Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett., 2013, 13( 8): 3447
CrossRef ADS Google scholar
[39]
L. Yang , X. B. Zhu , S. J. Xiong , X. L. Wu , Y. Shan , P. K. Chu . Synergistic WO2·2H2O nanoplates/WS2 hybrid catalysts for high-efficiency hydrogen evolution. ACS Appl. Mater. Interfaces, 2016, 8( 22): 13966
CrossRef ADS Google scholar
[40]
R. Bhandavat , L. David , G. Singh . Synthesis of surface-functionalized WS2 nanosheets and performance as Li-ion battery anodes. J. Phys. Chem. Lett., 2012, 3( 11): 1523
CrossRef ADS Google scholar
[41]
S. Cadot , O. Renault , D. Rouchon , D. Mariolle , E. Nolot , C. Thieuleux , L. Veyre , H. Okuno , F. Martin , E. A. Quadrelli . Low-temperature and scalable CVD route to WS2 monolayers on SiO2/Si substrates. J. Vac. Sci. Technol. A, 2017, 35( 6): 061502
CrossRef ADS Google scholar
[42]
E. A. Kraut , R. W. Grant , J. R. Waldrop , S. P. Kowalczyk . Precise determination of the valence-band edge in X-ray photoemission spectra-application to measurement of semi-conductor interface potentials. Phys. Rev. Lett., 1980, 44( 24): 1620
CrossRef ADS Google scholar
[43]
J. G. Tao , J. W. Chai , Z. Zhang , J. S. Pan , S. J. Wang . The energy-band alignment at molybdenum disulphide and high-k dielectrics interfaces. Appl. Phys. Lett., 2014, 104( 23): 232110
CrossRef ADS Google scholar
[44]
A. Santoni , F. Biccari , C. Malerba , M. Valentini , R. Chierchia , A. Mittiga . Valence band offset at the CdS/Cu2ZnSnS4 interface probed by X-ray photoelectron spectroscopy. J. Phys. D Appl. Phys., 2013, 46( 17): 175101
CrossRef ADS Google scholar
[45]
F. J. Grunthaner , B. F. Lewis , N. Zamini , J. Maserjian , A. Madhukar . XPS studies of structure-induced radiation effects at the Si/SiO2 interface. IEEE Trans. Nucl. Sci., 1980, 27( 6): 1640
CrossRef ADS Google scholar
[46]
J. Zhang , S. H. Wei , X. L. Wang , J. J. Xiang , W. W. Wang . Experimental estimation of charge neutrality level of SiO2. Appl. Surf. Sci., 2017, 422 : 690
CrossRef ADS Google scholar
[47]
H. L. Zhu , C. J. Zhou , X. J. Huang , X. L. Wang , H. Z. Xu , Y. Lin , W. H. Yang , Y. P. Wu , W. Lin , F. Guo . Evolution of band structures in MoS2-based homo- and heterobilayers. J. Phys. D Appl. Phys., 2016, 49( 6): 065304
CrossRef ADS Google scholar
[48]
Y. K. Lin , R. S. Chen , T. C. Chou , Y. H. Lee , Y. F. Chen , K. H. Chen , L. C. Chen . Thickness-dependent binding energy shift in few-layer MoS2 grown by chemical vapor deposition. ACS Appl. Mater. Interfaces, 2016, 8( 34): 22637
CrossRef ADS Google scholar
[49]
G. Kresse , J. Hafner . Ab initio molecular-dynamics for liquid-metals. Phys. Rev. B, 1993, 47( 1): 558
CrossRef ADS Google scholar
[50]
J. P. Perdew , K. Burke , M. Ernzerhof . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77( 18): 3865
CrossRef ADS Google scholar
[51]
S. Grimme , J. Antony , S. Ehrlich , H. Krieg . A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 2010, 132( 15): 154104
CrossRef ADS Google scholar
[52]
J. Heyd , G. E. Scuseria , M. Ernzerhof . Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys., 2003, 118( 18): 8207
CrossRef ADS Google scholar
[53]
L. Bengtsson . Dipole correction for surface supercell calculations. Phys. Rev. B, 1999, 59( 19): 12301
CrossRef ADS Google scholar
[54]
O. I. Malyi , V. V. Kulish , C. Persson . In search of new reconstructions of (001) alpha-quartz surface: A first principles study. RSC Advances, 2014, 4( 98): 55599
CrossRef ADS Google scholar
[55]
W. L. Scopel , A. J. R. da Silva , A. Fazzio . Amorphous HfO2 and Hf1−xSixO via a melt-and-quench scheme using ab initio molecular dynamics. Phys. Rev. B, 2008, 77( 17): 172101
CrossRef ADS Google scholar
[56]
W. L. Scopel , R. H. Miwa , T. M. Schmidt , P. Venezuela . MoS2 on an amorphous HfO2 surface: An ab initio investigation. J. Appl. Phys., 2015, 117( 19): 194303
CrossRef ADS Google scholar
[57]
T. C. Nguyen , M. Otani , S. Okada . Semiconducting electronic property of graphene adsorbed on (0001) surfaces of SiO2. Phys. Rev. Lett., 2011, 106( 10): 106801
CrossRef ADS Google scholar
[58]
S. H. Feng , R. L. Yang , Z. Y. Jia , J. Y. Xiang , F. S. Wen , C. P. Mu , A. M. Nie , Z. S. Zhao , B. Xu , C. G. Tao , Y. J. Tian , Z. Y. Liu . Strain release induced novel fluorescence variation in CVD-grown monolayer WS2 crystals. ACS Appl. Mater. Interfaces, 2017, 9( 39): 34071
CrossRef ADS Google scholar
[59]
K. Keyshar , M. Berg , X. Zhang , R. Vajtai , G. Gupta , C. K. Chan , T. E. Beechem , P. M. Ajayan , A. D. Mohite , T. Ohta . Experimental determination of the ionization energies of MoSe2, WS2, and MoS2 on SiO2 using photoemission electron microscopy. ACS Nano, 2017, 11( 8): 8223
CrossRef ADS Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11804115), the Foundation from Department of Science and Technology of Fujian Province (Grant Nos. 2019L3008, 2020J01704, 2021J01863, and 2021J05171), the Foundation from Department of Education of Fujian Province (Grant No. JT180261), and the Scientific Research Foundation from Jimei University (Grant Nos. ZC2018007, ZQ2019008, ZP2020066, and ZP2020065).

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(5886 KB)

Accesses

Citations

Detail

Sections
Recommended

/