Interfacial properties of 2D WS2 on SiO2 substrate from X-ray photoelectron spectroscopy and first-principles calculations

Changjie Zhou , Huili Zhu , Weifeng Yang , Qiubao Lin , Tongchang Zheng , Lan Yang , Shuqiong Lan

Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 53500

PDF (5886KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 53500 DOI: 10.1007/s11467-022-1167-0
RESEARCH ARTICLE

Interfacial properties of 2D WS2 on SiO2 substrate from X-ray photoelectron spectroscopy and first-principles calculations

Author information +
History +
PDF (5886KB)

Abstract

Two-dimensional (2D) WS2 films were deposited on SiO2 wafers, and the related interfacial properties were investigated by high-resolution X-ray photoelectron spectroscopy (XPS) and first-principles calculations. Using the direct (indirect) method, the valence band offset (VBO) at monolayer WS2/SiO2 interface was found to be 3.97 eV (3.86 eV), and the conduction band offset (CBO) was 2.70 eV (2.81 eV). Furthermore, the VBO (CBO) at bulk WS2/SiO2 interface is found to be about 0.48 eV (0.33 eV) larger due to the interlayer orbital coupling and splitting of valence and conduction band edges. Therefore, the WS2/SiO2 heterostructure has a Type I energy-band alignment. The band offsets obtained experimentally and theoretically are consistent except the narrower theoretical bandgap of SiO2. The theoretical calculations further reveal a binding energy of 75 meV per S atom and the totally separated partial density of states, indicating a weak interaction and negligible Fermi level pinning effect between WS2 monolayer and SiO2 surface. Our combined experimental and theoretical results provide proof of the sufficient VBOs and CBOs and weak interaction in 2D WS2/SiO2 heterostructures.

Graphical abstract

Keywords

band offsets / WS 2 / SiO 2 / X-ray photoelectron spectroscopy / first-principles calculations

Cite this article

Download citation ▾
Changjie Zhou, Huili Zhu, Weifeng Yang, Qiubao Lin, Tongchang Zheng, Lan Yang, Shuqiong Lan. Interfacial properties of 2D WS2 on SiO2 substrate from X-ray photoelectron spectroscopy and first-principles calculations. Front. Phys., 2022, 17(5): 53500 DOI:10.1007/s11467-022-1167-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

K. F. Mak , C. Lee , J. Hone , J. Shan , T. F. Heinz . Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett., 2010, 105( 13): 136805

[2]

G. Eda , H. Yamaguchi , D. Voiry , T. Fujita , M. W. Chen , M. Chhowalla . Photoluminescence from chemically exfoliated MoS2. Nano Lett., 2011, 11( 12): 5111

[3]

J. N. Coleman , M. Lotya , A. O’Neill , S. D. Bergin , P. J. King , U. Khan , K. Young , A. Gaucher , S. De , R. J. Smith , I. V. Shvets , S. K. Arora , G. Stanton , H. Y. Kim , K. Lee , G. T. Kim , G. S. Duesberg , T. Hallam , J. J. Boland , J. J. Wang , J. F. Donegan , J. C. Grunlan , G. Moriarty , A. Shmeliov , R. J. Nicholls , J. M. Perkins , E. M. Grieveson , K. Theuwissen , D. W. McComb , P. D. Nellist , V. Nicolosi . Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011, 331( 6017): 568

[4]

Y. J. Zhan , Z. Liu , S. Najmaei , P. M. Ajayan , J. Lou . Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small, 2012, 8( 7): 966

[5]

Y. H. Lee , X. Q. Zhang , W. J. Zhang , M. T. Chang , C. T. Lin , K. D. Chang , Y. C. Yu , J. T. W. Wang , C. S. Chang , L. J. Li , T. W. Lin . Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater., 2012, 24( 17): 2320

[6]

P. Y. Liu , T. Luo , J. Xing , H. Xu , H. Y. Hao , H. Liu , J. J. Dong . Large-area WS2 film with big single domains grown by chemical vapor deposition. Nanoscale Res. Lett., 2017, 12( 1): 558

[7]

A. L. Elías , N. Perea-Lopez , A. Castro-Beltran , A. Berkdemir , R. T. Lv , S. M. Feng , A. D. Long , T. Hayashi , Y. A. Kim , M. Endo , H. R. Gutierrez , N. R. Pradhan , L. Balicas , T. E. Mallouk , F. Lopez-Urias , H. Terrones , M. Terrones . Controlled synthesis and transfer of large-area WS2 sheets: From single layer to few layers. ACS Nano, 2013, 7( 6): 5235

[8]

H. L. Zhu , C. J. Zhou , B. S. Tang , W. F. Yang , J. W. Chai , W. L. Tay , H. Gong , J. S. Pan , W. D. Zou , S. J. Wang , D. Z. Chi . Band alignment of 2D WS2/HfO2 interfaces from X-ray photoelectron spectroscopy and first-principles calculations. Appl. Phys. Lett., 2018, 112( 17): 171604

[9]

M. X. Ye , D. Y. Zhang , Y. K. Yap . Recent advances in electronic and optoelectronic devices based on two-dimensional transition metal dichalcogenides. Electronics (Basel), 2017, 6( 2): 43

[10]

C. X. Cong , J. Z. Shang , Y. L. Wang , T. Yu . Optical properties of 2D semiconductor WS2. Adv. Opt. Mater., 2018, 6( 1): 1700767

[11]

P. J. Schuck , W. Bao , N. J. Borys . A polarizing situation: Taking an in-plane perspective for next-generation near-field studies. Front. Phys., 2016, 11( 2): 117804

[12]

Z. C. Zhou , F. Y. Yang , S. Wang , L. Wang , X. F. Wang , C. Wang , Y. Xie , Q. Liu . Emerging of two-dimensional materials in novel memristor. Front. Phys., 2022, 17( 2): 23204

[13]

H. L. Zhu , W. H. Yang , Y. P. Wu , W. Lin , J. Y. Kang , C. J. Zhou . Au and Ti induced charge redistributions on monolayer WS2. Chin. Phys. B, 2015, 24( 7): 077301

[14]

T. LaMountain , E. J. Lenferink , Y. J. Chen , T. K. Stanev , N. P. Stern . Environmental engineering of transition metal dichalcogenide optoelectronics. Front. Phys., 2018, 13( 4): 138114

[15]

G. Luo , Z. Z. Zhang , H. O. Li , X. X. Song , G. W. Deng , G. Cao , M. Xiao , G. P. Guo . Quantum dot behavior in transition metal dichalcogenides nanostructures. Front. Phys., 2017, 12( 4): 128502

[16]

H. M. Hill , A. F. Rigosi , K. T. Rim , G. W. Flynn , T. F. Heinz . Band alignment in MoS2/WS2 transition metal dichalcogenide heterostructures probed by scanning tunneling microscopy and spectroscopy. Nano Lett., 2016, 16( 8): 4831

[17]

Y. Z. Guo , J. Robertson . Band engineering in transition metal dichalcogenides: Stacked versus lateral heterostructures. Appl. Phys. Lett., 2016, 108( 23): 233104

[18]

J. Jadczak , J. Kutrowska-Girzycka , P. Kapuscinski , Y. S. Huang , A. Wojs , L. Bryja . Probing of free and localized excitons and trions in atomically thin WSe2, WS2, MoSe2 and MoS2 in photoluminescence and reflectivity experiments. Nanotechnology, 2017, 28( 39): 395702

[19]

P. K. Nayak , F. C. Lin , C. H. Yeh , J. S. Huang , P. W. Chiu . Robust room temperature valley polarization in monolayer and bilayer WS2. Nanoscale, 2016, 8( 11): 6035

[20]

N. Ubrig , S. Jo , M. Philippi , D. Costanzo , H. Berger , A. B. Kuzmenko , A. F. Morpurgo . Microscopic origin of the valley Hall effect in transition metal dichalcogenides revealed by wavelength-dependent mapping. Nano Lett., 2017, 17( 9): 5719

[21]

M. Van der Donck , M. Zarenia , F. M. Peeters . Strong valley Zeeman effect of dark excitons in monolayer transition metal dichalcogenides in a tilted magnetic field. Phys. Rev. B, 2018, 97( 8): 081109

[22]

M. W. Iqbal , M. Z. Iqbal , M. F. Khan , M. A. Kamran , A. Majid , T. Alharbi , J. Eom . Tailoring the electrical and photo-electrical properties of a WS2 field effect transistor by selective n-type chemical doping. RSC Advances, 2016, 6( 29): 24675

[23]

N. J. Huo , S. X. Yang , Z. M. Wei , S. S. Li , J. B. Xia , J. B. Li . Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Sci. Rep., 2014, 4( 1): 5209

[24]

D. Akinwande , N. Petrone , J. Hone . Two-dimensional flexible nanoelectronics. Nat. Commun., 2014, 5( 1): 5678

[25]

Y. Wang , D. Kong , S. Huang , Y. Shi , M. Ding , Y. Von Lim , T. Xu , F. Chen , X. Li , H. Y. Yang . 3D carbon foam-supported WS2 nanosheets for cable-shaped flexible sodium ion batteries. J. Mater. Chem., 2018, 6( 23): 10813

[26]

C. Y. Lan , Z. Y. Zhou , Z. F. Zhou , C. Li , L. Shu , L. F. Shen , D. P. Li , R. T. Dong , S. P. Yip , J. Ho . Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition. Nano Res., 2018, 11( 6): 3371

[27]

C. Ouyang , Y. X. Chen , Z. Y. Qin , D. W. Zeng , J. Zhang , H. Wang , C. S. Xie . Two-dimensional WS2-based nanosheets modified by Pt quantum dots for enhanced room-temperature NH3 sensing properties. Appl. Surf. Sci., 2018, 455 : 45

[28]

G. A. Asres , J. J. Baldoví , A. Dombovari , T. Järvinen , G. S. Lorite , M. Mohl , A. Shchukarev , A. Pérez Paz , L. Xian , J. P. Mikkola , A. L. Spetz , H. Jantunen , Á. Rubio , K. Kordás . Ultrasensitive H2S gas sensors based on p-type WS2 hybrid materials. Nano Res., 2018, 11( 8): 4215

[29]

Q. H. Xu , Y. T. Lu , S. Y. Zhao , N. Hu , Y. W. Jiang , H. Li , Y. Wang , H. Q. Gao , Y. Li , M. Yuan , L. Chu , J. H. Li , Y. N. Xie . A wind vector detecting system based on triboelectric and photoelectric sensors for simultaneously monitoring wind speed and direction. Nano Energy, 2021, 89 : 106382

[30]

Q. H. Xu , Y. S. Fang , B. Q. S. Jing , N. Hu , K. Lin , Y. F. Pan , L. Xu , H. Q. Gao , M. Yuan , L. Chu , Y. W. Ma , Y. N. Xie , J. Chen , L. H. Wang . A portable triboelectric spirometer for wireless pulmonary function monitoring. Biosens. Bioelectron., 2021, 187 : 113329

[31]

Z. Z. Yan , Z. H. Jiang , J. P. Lu , Z. H. Ni . Interfacial charge transfer in WS2 monolayer/CsPbBr3 microplate heterostructure. Front. Phys., 2018, 13( 4): 138115

[32]

W. J. Yin , X. L. Zeng , B. Wen , Q. X. Ge , Y. Xu , G. Teobaldi , L. M. Liu . The unique carrier mobility of Janus MoSSe/GaN heterostructures. Front. Phys., 2021, 16( 3): 33501

[33]

H. Wang , D. L. Ren , C. Lu , X. B. Yan . Investigation of multilayer WS2 flakes as charge trapping stack layers in non-volatile memories. Appl. Phys. Lett., 2018, 112( 23): 231903

[34]

O. Zheliuk , J. M. Lu , J. Yang , J. T. Ye . Monolayer superconductivity in WS2. Phys. Status Solidi Rapid Res. Lett., 2017, 11( 9): 1700245

[35]

S. Ulstrup , R. J. Koch , D. Schwarz , K. M. McCreary , B. T. Jonker , S. Singh , A. Bostwick , E. Rotenberg , C. Jozwiak , J. Katoch . Imaging microscopic electronic contrasts at the interface of single-layer WS2 with oxide and boron nitride substrates. Appl. Phys. Lett., 2019, 114( 15): 151601

[36]

W. F. Yang , H. Kawai , M. Bosman , B. S. Tang , J. W. Chai , W. L. Tay , J. Yang , H. L. Seng , H. L. Zhu , H. Gong , H. F. Liu , K. E. J. Goh , S. J. Wang , D. Z. Chi . Interlayer interactions in 2D WS2/MoS2 heterostructures monolithically grown by in situ physical vapor deposition. Nanoscale, 2018, 10( 48): 22927

[37]

B. S. Tang , Z. G. Yu , L. Huang , J. W. Chai , S. L. Wong , J. Deng , W. F. Yang , H. Gong , S. J. Wang , K. W. Ang , Y. W. Zhang , D. Z. Chi . Direct n- to p-type channel conversion in monolayer/few-layer WS2 field-effect transistors by atomic nitrogen treatment. ACS Nano, 2018, 12( 3): 2506

[38]

H. R. Gutiérrez , N. Perea-Lopez , A. L. Elias , A. Berkdemir , B. Wang , R. Lv , F. Lopez-Urias , V. H. Crespi , H. Terrones , M. Terrones . Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett., 2013, 13( 8): 3447

[39]

L. Yang , X. B. Zhu , S. J. Xiong , X. L. Wu , Y. Shan , P. K. Chu . Synergistic WO2·2H2O nanoplates/WS2 hybrid catalysts for high-efficiency hydrogen evolution. ACS Appl. Mater. Interfaces, 2016, 8( 22): 13966

[40]

R. Bhandavat , L. David , G. Singh . Synthesis of surface-functionalized WS2 nanosheets and performance as Li-ion battery anodes. J. Phys. Chem. Lett., 2012, 3( 11): 1523

[41]

S. Cadot , O. Renault , D. Rouchon , D. Mariolle , E. Nolot , C. Thieuleux , L. Veyre , H. Okuno , F. Martin , E. A. Quadrelli . Low-temperature and scalable CVD route to WS2 monolayers on SiO2/Si substrates. J. Vac. Sci. Technol. A, 2017, 35( 6): 061502

[42]

E. A. Kraut , R. W. Grant , J. R. Waldrop , S. P. Kowalczyk . Precise determination of the valence-band edge in X-ray photoemission spectra-application to measurement of semi-conductor interface potentials. Phys. Rev. Lett., 1980, 44( 24): 1620

[43]

J. G. Tao , J. W. Chai , Z. Zhang , J. S. Pan , S. J. Wang . The energy-band alignment at molybdenum disulphide and high-k dielectrics interfaces. Appl. Phys. Lett., 2014, 104( 23): 232110

[44]

A. Santoni , F. Biccari , C. Malerba , M. Valentini , R. Chierchia , A. Mittiga . Valence band offset at the CdS/Cu2ZnSnS4 interface probed by X-ray photoelectron spectroscopy. J. Phys. D Appl. Phys., 2013, 46( 17): 175101

[45]

F. J. Grunthaner , B. F. Lewis , N. Zamini , J. Maserjian , A. Madhukar . XPS studies of structure-induced radiation effects at the Si/SiO2 interface. IEEE Trans. Nucl. Sci., 1980, 27( 6): 1640

[46]

J. Zhang , S. H. Wei , X. L. Wang , J. J. Xiang , W. W. Wang . Experimental estimation of charge neutrality level of SiO2. Appl. Surf. Sci., 2017, 422 : 690

[47]

H. L. Zhu , C. J. Zhou , X. J. Huang , X. L. Wang , H. Z. Xu , Y. Lin , W. H. Yang , Y. P. Wu , W. Lin , F. Guo . Evolution of band structures in MoS2-based homo- and heterobilayers. J. Phys. D Appl. Phys., 2016, 49( 6): 065304

[48]

Y. K. Lin , R. S. Chen , T. C. Chou , Y. H. Lee , Y. F. Chen , K. H. Chen , L. C. Chen . Thickness-dependent binding energy shift in few-layer MoS2 grown by chemical vapor deposition. ACS Appl. Mater. Interfaces, 2016, 8( 34): 22637

[49]

G. Kresse , J. Hafner . Ab initio molecular-dynamics for liquid-metals. Phys. Rev. B, 1993, 47( 1): 558

[50]

J. P. Perdew , K. Burke , M. Ernzerhof . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77( 18): 3865

[51]

S. Grimme , J. Antony , S. Ehrlich , H. Krieg . A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 2010, 132( 15): 154104

[52]

J. Heyd , G. E. Scuseria , M. Ernzerhof . Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys., 2003, 118( 18): 8207

[53]

L. Bengtsson . Dipole correction for surface supercell calculations. Phys. Rev. B, 1999, 59( 19): 12301

[54]

O. I. Malyi , V. V. Kulish , C. Persson . In search of new reconstructions of (001) alpha-quartz surface: A first principles study. RSC Advances, 2014, 4( 98): 55599

[55]

W. L. Scopel , A. J. R. da Silva , A. Fazzio . Amorphous HfO2 and Hf1−xSixO via a melt-and-quench scheme using ab initio molecular dynamics. Phys. Rev. B, 2008, 77( 17): 172101

[56]

W. L. Scopel , R. H. Miwa , T. M. Schmidt , P. Venezuela . MoS2 on an amorphous HfO2 surface: An ab initio investigation. J. Appl. Phys., 2015, 117( 19): 194303

[57]

T. C. Nguyen , M. Otani , S. Okada . Semiconducting electronic property of graphene adsorbed on (0001) surfaces of SiO2. Phys. Rev. Lett., 2011, 106( 10): 106801

[58]

S. H. Feng , R. L. Yang , Z. Y. Jia , J. Y. Xiang , F. S. Wen , C. P. Mu , A. M. Nie , Z. S. Zhao , B. Xu , C. G. Tao , Y. J. Tian , Z. Y. Liu . Strain release induced novel fluorescence variation in CVD-grown monolayer WS2 crystals. ACS Appl. Mater. Interfaces, 2017, 9( 39): 34071

[59]

K. Keyshar , M. Berg , X. Zhang , R. Vajtai , G. Gupta , C. K. Chan , T. E. Beechem , P. M. Ajayan , A. D. Mohite , T. Ohta . Experimental determination of the ionization energies of MoSe2, WS2, and MoS2 on SiO2 using photoemission electron microscopy. ACS Nano, 2017, 11( 8): 8223

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (5886KB)

813

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/