Recent progress on optomagnetic coupling and optical manipulation based on cavity-optomagnonics

Kai Wang, Yong-Pan Gao, Rongzhen Jiao, Chuan Wang

PDF(5239 KB)
PDF(5239 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (4) : 42201. DOI: 10.1007/s11467-022-1165-2
TOPICAL REVIEW
TOPICAL REVIEW

Recent progress on optomagnetic coupling and optical manipulation based on cavity-optomagnonics

Author information +
History +

Abstract

Recently, the photon–magnon coherent interaction based on the collective spins excitation in ferromagnetic materials has been achieved experimentally. Under the prospect, the magnons are proposed to store and process quantum information. Meanwhile, cavity-optomagnonics which describes the interaction between photons and magnons has been developing rapidly as an interesting topic of the cavity quantum electrodynamics. Here in this short review, we mainly introduce the recent theoretical and experimental progress in the field of optomagnetic coupling and optical manipulation based on cavity-optomagnonics. According to the frequency range of the electromagnetic field, cavity optomagnonics can be divided into microwave cavity optomagnonics and optical cavity optomagnonics, due to the different dynamics of the photon–magnon interaction. As the interaction between the electromagnetic field and the magnetic materials is enhanced in the cavity-optomagnonic system, it provides great significance to explore the nonlinear characteristics and quantum properties for different magnetic systems. More importantly, the electromagnetic response of optomagnonics covers the frequency range from gigahertz to terahertz which provides a broad frequency platform for the multi-mode controlling in quantum systems.

Graphical abstract

Keywords

optomagnetic coupling / manipulation / cavity-optomagnonics / photon–magnon interaction

Cite this article

Download citation ▾
Kai Wang, Yong-Pan Gao, Rongzhen Jiao, Chuan Wang. Recent progress on optomagnetic coupling and optical manipulation based on cavity-optomagnonics. Front. Phys., 2022, 17(4): 42201 https://doi.org/10.1007/s11467-022-1165-2

References

[1]
R. L. Stamps, S. Breitkreutz, J. Åkerman, A. V. Chumak, Y. C. Otani, G. E. W. Bauer, J. U. Thiele, M. Bowen, S. A. Majetich, M. Kläui, I. L. Prejbeanu, B. Dieny, N. M. Dempsey, and B. Hillebrands, The 2014 magnetism roadmap, J. Phys. D: Appl. Phys. 47, 333001 (2014)
CrossRef ADS Google scholar
[2]
Ö. O. Soykal and M. E. Flatté, Strong field interactions between a nanomagnet and a photonic cavity, Phys. Rev. Lett. 104, 077202 (2010)
CrossRef ADS Google scholar
[3]
Ö. O. Soykal and M. E. Flatté, Size dependence of strong coupling between nanomagnets and photonic cavities, Phys. Rev. B 82, 104413 (2010)
CrossRef ADS Google scholar
[4]
H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein, A. Marx, R. Gross, and S. T. B. Goennenwein, Strong field interactions between a nanomagnet and a photonic cavity, Phys. Rev. Lett. 111, 127003 (2013)
CrossRef ADS Google scholar
[5]
Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, Hybridizing Ferromagnetic Magnons and microwave photons in the quantum limit, Phys. Rev. Lett. 113, 083603 (2014)
CrossRef ADS Google scholar
[6]
X. Zhang, C. Zou, L. Jiang, and H. X. Tang, Strongly coupled magnons and cavity microwave photons, Phys. Rev. Lett. 113, 156401 (2014)
CrossRef ADS Google scholar
[7]
A. Osada, R. Hisatomi, A. Noguchi, Y. Tabuchi, R. Yamazaki, K. Usami, M. Sadgrove, R. Yalla, M. Nomura, and Y. Nakamura, Cavity optomagnonics with spin–orbit coupled photons, Phys. Rev. Lett. 116, 223601 (2016)
CrossRef ADS Google scholar
[8]
J. A. Haigh, S. Langenfeld, N. J. Lambert, J. J. Baumberg, A. J. Ramsay, A. Nunnenkamp, and A. J. Ferguson, Magneto–optical coupling in whispering-gallerymode resonators, Phys. Rev. A 92, 063845 (2015)
CrossRef ADS Google scholar
[9]
X. Zhang, N. Zhu, C.-L. Zou, and H. X. Tang, Optomagnonic whispering gallery microresonators, Phys. Rev. Lett. 117, 123605 (2016)
CrossRef ADS Google scholar
[10]
J. A. Haigh, A. Nunnenkamp, A. J. Ramsay, and A. J. Ferguson, Triple-resonant brillouin light scattering in Magneto–optical cavities, Phys. Rev. Lett. 117, 133602 (2016)
CrossRef ADS Google scholar
[11]
S. Sharma, Y. M. Blanter, and G. E. W. Bauer, Light scattering by magnons in whispering gallery mode cavities, Phys. Rev. B 96, 094412 (2017)
CrossRef ADS Google scholar
[12]
R. Hisatomi, A. Osada, Y. Tabuchi, T. Ishikawa, A. Noguchi, R. Yamazaki, K. Usami, and Y. Nakamura, Bidirectional conversion between microwave and light via ferromagnetic magnons, Phys. Rev. B 93, 174427 (2016)
CrossRef ADS Google scholar
[13]
N. Zhu, X. Zhang, X. Han, C.-L. Zou, C. Zhong, C.-H. Wang, L. Jiang, and H. X. Tang, Waveguide cavity optomagnonics for microwave-to-optics conversion, Optica 7(10), 1291 (2020)
CrossRef ADS Google scholar
[14]
Y. S. Ihn, S.-Y. Lee, D. Kim, S. Hyuk Yim, and Z. Kim, Coherent multimode conversion from microwave to optical wave via a magnon-cavity hybrid system, Phys. Rev. B 102, 064418 (2020)
CrossRef ADS Google scholar
[15]
Y.-P. Wang, G.-Q. Zhang, D. Zhang, X.-Q. Luo, W. Xiong, S.-P. Wang, T.-F. Li, C.-M. Hu, and J. Q. You, Magnon Kerr effect in a strongly coupled cavity-magnon system, Phys. Rev. B 94, 224410 (2016)
CrossRef ADS Google scholar
[16]
Y.-P. Wang, G.-Q. Zhang, D. Zhang, T.-F. Li, C.-M. Hu, and J. Q. You, Bistability of cavity magnon polaritons, Phys. Rev. Lett. 120, 057202 (2018)
CrossRef ADS Google scholar
[17]
C. Kong, H. Xiong, and Y. Wu, Magnon-induced non-reciprocity based on the magnon kerr effect, Phys. Rev. Appl. 12, 034001 (2019)
CrossRef ADS Google scholar
[18]
Z.-X. Liu, B. Wang, H. Xiong, and Y. Wu, Magnon-induced high-order sideband generation, Opt. Lett. 43, 3698 (2018)
CrossRef ADS Google scholar
[19]
D. Zhang, X.-Q. Luo, Y.-P. Wang, T.-F. Li, and J. Q. You, Observation of the exceptional point in cavity magnon-polaritons, Nat. Commun. 8, 1368 (2017)
CrossRef ADS Google scholar
[20]
G.-Q. Zhang and J. Q. You, Higher-order exceptional point in a cavity magnonics system, Phys. Rev. B 99, 054404 (2019)
CrossRef ADS Google scholar
[21]
J. Zhao, Y. Liu, L. Wu, C.-K. Duan, Y.-X. Liu, and J. Du, Observation of anti-PT-symmetry phase transition in the magnon–cavity–magnon coupled system, Phys. Rev. Applied 13, 014053 (2020)
CrossRef ADS Google scholar
[22]
Y. Yang, Y.-P. Wang, J. W. Rao, Y. S. Gui, B. M. Yao, W. Lu, and C.-M. Hu, Unconventional singularity in anti-parity–time symmetric cavity magnonics, Phys. Rev. Lett. 125, 147202 (2020)
CrossRef ADS Google scholar
[23]
Y. Cao and P. Yan, Exceptional magnetic sensitivity of PT-symmetric cavity magnon polaritons, Phys. Rev. B 99, 214415 (2019)
CrossRef ADS Google scholar
[24]
X. Zhang, K. Ding, X. Zhou, J. Xu, and D. Jin, Experimental observation of an exceptional surface in synthetic dimensions with magnon polaritons, Phys. Rev. Lett. 123, 237202 (2019)
CrossRef ADS Google scholar
[25]
J. M. P. Nair, D. Mukhopadhyay, and G. S. Agarwal, Enhanced sensing of weak anharmonicities through coherences in dissipatively coupled anti-PT symmetric systems, Phys. Rev. Lett. 126, 180401 (2021)
CrossRef ADS Google scholar
[26]
B. Wang, Z.-X. Liu, C. Kong, H. Xiong, and Y. Wu, Magnon-induced transparency and amplification in PT-symmetric cavity-magnon system, Opt. Express 26, 20248 (2018)
CrossRef ADS Google scholar
[27]
B. Wang, C. Kong, Z.-X. Liu, H. Xiong, and Y. Wu, Magnetic-field-controlled magnon chaos in an active cavity-magnon system, Laser Phys. Lett. 16, 045208 (2019)
CrossRef ADS Google scholar
[28]
Z.-X. Liu, C. You, B. Wang, H. Xiong, and Y. Wu, Phasemediated magnon chaos-order transition in cavity optomagnonics, Opt. Lett. 44, 507 (2019)
CrossRef ADS Google scholar
[29]
M. Harder, Y. Yang, B. M. Yao, C. H. Yu, J. W. Rao, Y. S. Gui, R. L. Stamps, and C.-M. Hu, Level attraction due to dissipative magnon-photon coupling, Phys. Rev. Lett. 121, 137203 (2018)
CrossRef ADS Google scholar
[30]
B. Bhoi, B. Kim, S.-H. Jang, J. Kim, J. Yang, Y.-J. Cho, and S.-K. Kim, Abnormal anticrossing effect in photon–magnon coupling, Phys. Rev. B 99, 134426 (2019)
CrossRef ADS Google scholar
[31]
Y. Yang, J. W. Rao, Y. S. Gui, B. M. Yao, W. Lu, and C.-M. Hu, Control of the Magnon–photon level attraction in a planar cavity, Phys. Rev. Applied 11, 054023 (2019)
CrossRef ADS Google scholar
[32]
J. W. Rao, C. H. Yu, Y. T. Zhao, Y. S. Gui, X. L. Fan, D. S. Xue, and C.-M. Hu, Level attraction and level repulsion of magnon coupled with a cavity anti-resonance, New J. Phys. 21, 065001 (2019)
CrossRef ADS Google scholar
[33]
Y.-P. Wang, J. W. Rao, Y. Yang, P.-C. Xu, Y. S. Gui, B. M. Yao, J. Q. You, and C.-M. Hu, Nonreciprocity and unidirectional invisibility in cavity magnonics, Phys. Rev. Lett. 123, 127202 (2019)
CrossRef ADS Google scholar
[34]
W. Yu, J. Wang, H. Y. Yuan, and J. Xiao, Prediction of attractive level crossing via a dissipative mode, Phys. Rev. Lett. 123, 227201 (2019)
CrossRef ADS Google scholar
[35]
Bimu Yao, Tao Yu, Y. S. Gui, J. W. Rao, Y. T. Zhao, W. Lu, and C.-M. Hu, Coherent control of magnon radiative damping with local photon states, Commun. Phys. 2, 161 (2019)
CrossRef ADS Google scholar
[36]
B. Yao, T. Yu, X. Zhang, W. Lu, Y. Gui, C.-M. Hu, and Y. M. Blanter, The microscopic origin of magnon–photon level attraction by traveling waves: Theory and experiment, Phys. Rev. B 100, 214426 (2019)
CrossRef ADS Google scholar
[37]
J. W. Rao, Y. P. Wang, Y. Yang, T. Yu, Y. S. Gui, X. L. Fan, D. S. Xue, and C.-M. Hu, Interactions between a magnon mode and a cavity photon mode mediated by traveling photons, Phys. Rev. B 101, 064404 (2020)
CrossRef ADS Google scholar
[38]
Y.-P. Wang and C.-M. Hu, Dissipative couplings in cavity magnonics, J. Appl. Phys. 127, 130901 (2020)
CrossRef ADS Google scholar
[39]
I. Proskurin, R. Macêdo, and R. L. Stamps, Microscopic origin of level attraction for a coupled magnon–photon system in a microwave cavity, New J. Phys. 21, 095003 (2019)
CrossRef ADS Google scholar
[40]
A. Osada, A. Gloppe, Y. Nakamura, and K. Usami, Orbital angular momentum conservation in Brillouin light scattering within a ferromagnetic sphere, New J. Phys. 20, 103018 (2018)
CrossRef ADS Google scholar
[41]
A. Osada, A. Gloppe, R. Hisatomi, A. Noguchi, R. Yamazaki, M. Nomura, Y. Nakamura, and K. Usami, Brillouin light scattering by magnetic quasivortices in cavity optomagnonics, Phys. Rev. Lett. 120, 133602 (2018)
CrossRef ADS Google scholar
[42]
J. A. Haigh, N. J. Lambert, S. Sharma, Y. M. Blanter, G. E. W. Bauer, and A. J. Ramsay, Selection rules for cavityenhanced Brillouin light scattering from magnetostatic modes, Phys. Rev. B 97, 214423 (2018)
CrossRef ADS Google scholar
[43]
A. Gloppe, R. Hisatomi, Y. Nakata, Y. Nakamura, and K. Usami, Resonant magnetic induction tomography of a magnetized sphere, Phys. Rev. Applied 12, 014061 (2019)
CrossRef ADS Google scholar
[44]
J. Graf, H. Pfeifer, F. Marquardt, and S. V. Kusminskiy, Cavity optomagnonics with magnetic textures: Coupling a magnetic vortex to light, Phys. Rev. B 98, 241406 (2018)
CrossRef ADS Google scholar
[45]
S. Sharma, B. Z. Rameshti, Y. M. Blanter, and G. E. W. Bauer, Optimal mode matching in cavity optomagnonics, Phys. Rev. B 99, 214423 (2019)
CrossRef ADS Google scholar
[46]
P. A. Pantazopoulos, N. Stefanou, E. Almpanis, and N. Papanikolaou, Photomagnonic nanocavities for strong light–spin-wave interaction, Phys. Rev. B 96, 104425 (2017)
CrossRef ADS Google scholar
[47]
P. A. Pantazopoulos, K. L. Tsakmakidis, E. Almpanis, G. P. Zouros, and N. Stefanou, High-efficiency triple-resonant inelastic light scattering in planar optomagnonic cavities, New J. Phys. 21, 095001 (2019)
CrossRef ADS Google scholar
[48]
P. A. Pantazopoulos and N. Stefanou, Planar optomagnonic cavities driven by surface spin waves, Phys. Rev. B 101, 134426 (2020)
CrossRef ADS Google scholar
[49]
J. A. Haigh, R. A. Chakalov, and A. J. Ramsay, Subpicoliter magnetoptical cavities, Phys. Rev. Appl. 14, 044005 (2020)
CrossRef ADS Google scholar
[50]
S. V. Kusminskiy, H. X. Tang, and F. Marquardt, Coupled spin-light dynamics in cavity optomagnonics, Phys. Rev. A 94, 033821 (2016)
CrossRef ADS Google scholar
[51]
Y.-P. Gao, C. Cao, Y.-W. Duan, X.-F. Liu, T.-T. Pang, T.-J. Wang, and C. Wang, Magnons scattering induced photonic chaos in the optomagnonic resonators, Nanophotonics 9(7), 1953 (2020)
CrossRef ADS Google scholar
[52]
Y.-P. Gao, X.-F. Liu, T.-J. Wang, C. Cao, and C. Wang, Photon excitation and photon-blockade effects in optomagnonic microcavities, Phys. Rev. A 100, 043831 (2019)
CrossRef ADS Google scholar
[53]
W.-L. Xu, X.-F. Liu, Y. Sun, Y.-P. Gao, T.-J. Wang, and C. Wang, Magnon-induced chaos in an optical PT-symmetric resonator, Phys. Rev. E 101, 012205 (2020)
[54]
W.-L. Xu, Y.-P. Gao, C. Cao, T.-J. Wang, and C. Wang, Nanoscatterer-mediated frequency combs in cavity optomagnonics, Phys. Rev. A 102, 043519 (2020)
CrossRef ADS Google scholar
[55]
W.-L. Xu, Y.-P. Gao, T.-J. Wang, and C. Wang, Magnoninduced optical high-order sideband generation in hybrid atom-cavity optomagnonical system, Opt. Express 28, 22334 (2020)
CrossRef ADS Google scholar
[56]
A. Mahmoud, F. Ciubotaru, F. Vanderveken, A. V. Chumak, S. Hamdioui, C. Adelmann, and S. Cotofana, Introduction to spin wave computing, J. Appl. Phys. 128, 161101 (2020)
CrossRef ADS Google scholar
[57]
L. Landau and E. Lifshitz, On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys. Z. Sowjetunion 8, 101 (1935)
[58]
T. L. Gilbert, A phenomenological theory of damping in ferromagnetic materials, IEEE Trans. Magn. 40, 3443 (2004)
CrossRef ADS Google scholar
[59]
I. S. Maksymov and M. Kostylev, Broadband stripline ferromagnetic resonance spectroscopy of ferromagnetic films, multilayers and nanostructures, Physica E 69, 253 (2015)
CrossRef ADS Google scholar
[60]
T. Holstein and H. Primakoff, Field dependence of the intrinsic domain magnetization of a ferromagnet, Phys. Rev. 58, 1098 (1940)
CrossRef ADS Google scholar
[61]
M. Goryachev, W. G. Farr, D. L. Creedon, Y. Fan, M. Kostylev, and M. E. Tobar, High-cooperativity cavity QED with magnons at microwave frequencies, Phys. Rev. Appl. 14, 044005 (2014)
CrossRef ADS Google scholar
[62]
D. Zhang, X.-M. Wang, T.-F. Li, X.-Q. Luo, W. Wu, F. Nori, and J. Q. You, Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere, npj Quantum Inf. 1, 15014 (2015)
CrossRef ADS Google scholar
[63]
N. Kostylev, M. Goryachev, and M. E. Tobar, Superstrong coupling of a microwave cavity to yttrium iron garnet magnons, Appl. Phys. Lett. 108, 062402 (2016)
CrossRef ADS Google scholar
[64]
J. Bourhill, N. Kostylev, M. Goryachev, D. L. Creedon, and M. E. Tobar, Ultrahigh cooperativity interactions between magnons and resonant photons in a YIG sphere, Phys. Rev. B 93, 144420 (2016)
CrossRef ADS Google scholar
[65]
A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, Observation of PT-symmetry breaking in complex optical potentials, Phys. Rev. Lett. 103, 093902 (2009)
CrossRef ADS Google scholar
[66]
C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, Observation of parity–time symmetry in optics, Nat. Phys. 6, 192 (2010)
CrossRef ADS Google scholar
[67]
A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and U. Peschel, Parity–time synthetic photonic lattices, Nat. Phys. 488, 167 (2012)
CrossRef ADS Google scholar
[68]
B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Parity–time-symmetric whispering-gallery microcavities, Nat. Phys. 10, 394 (2014)
CrossRef ADS Google scholar
[69]
P. Peng, W. Cao, C. Shen, W. Qu, J. Wen, L. Jiang, and Y. Xiao, Anti-parity–time symmetry with flying atoms, Nat. Phys. 12, 1139 (2016)
CrossRef ADS Google scholar
[70]
Y. Choi, C. Hahn, J. W. Yoon, and S. H. Song, Observation of an anti-PT-symmetric exceptional point and energy-difference conserving dynamics in electrical circuit resonators, Nat. Commun. 9, 2182 (2018)
CrossRef ADS Google scholar
[71]
H. Y. Yuan, P. Yan, S. Zheng, Q. Y. He, Ke Xia, and M.-H. Yung, Steady bell state generation via magnon– photon coupling, Phys. Rev. Lett. 124, 053602 (2020)
CrossRef ADS Google scholar
[72]
C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Observation of coherent optical information storage in an atomic medium using halted light pulses, Nature 409, 490 (2001)
CrossRef ADS Google scholar
[73]
R. W. Boyd, D. J. Gauthier, and A. L. Gaeta, Applications of slow light in telecommunications, Optics Photon. News. 17 (4), 18 (2006)
CrossRef ADS Google scholar
[74]
S. Rajput, V. Kaushik, S. Jain, and M. Kumar, Slow light enhanced phase shifter based on low-loss silicon-ITO hollow waveguide, IEEE Photon. J. 11, 1 (2019)
CrossRef ADS Google scholar
[75]
Y. Hinakura, Y. Terada, H. Arai, and T. Baba, Electrooptic phase matching in a Si photonic crystal slow light modulator using meander-line electrodes, Opt. Express 26, 11538 (2018)
CrossRef ADS Google scholar
[76]
K. Qian, F. Wang, R. Wang, S. Zhen, X. Wu, G. Tu, T. Zhang, B. Yu, and L. Zhan, Enhanced sensitivity of fiber laser sensor with Brillouin slow light, Opt. Express 27, 25485 (2019)
CrossRef ADS Google scholar
[77]
M. F. Yanik, W. Suh, Z. Wang, and S. Fan, Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency, Phys. Rev. Lett. 93, 233903 (2004)
CrossRef ADS Google scholar
[78]
D. Tarhan, S. Huang, and Ö. E. Müstecaplıoğlu, Superluminal and ultraslow light propagation in optomechanical systems, Phys. Rev. A 87, 013824 (2013)
CrossRef ADS Google scholar
[79]
B. Wang, Z.-X. Liu, C. Kong, H. Xiong, and Y. Wu, Mechanical exceptional-point-induced transparency and slow light, Opt. Express 27, 8069 (2019)
CrossRef ADS Google scholar
[80]
Q. He, F. Badshah, R. U. Din, H. Zhang, Y. Hu, and G.-Q. Ge, Optomechanically induced transparency and the long-lived slow light in a nonlinear system, J. Opt. Soc. Am. B 35, 1649 (2018)
CrossRef ADS Google scholar
[81]
Z. Liu, H. Xiong, and Y. Wu, Room-temperature slow light in a coupled cavity magnon-photon system, IEEE Access 7, 57047 (2019)
CrossRef ADS Google scholar
[82]
C.-Z. Liu, Y.-L. Deng, and M. Yin, Relative-cavity-length-controlled slow light in a cascaded magnon–photon system, J. Opt. Soc. Am. B 37, 1127 (2020)
CrossRef ADS Google scholar
[83]
J. Z. L. Wu, T. Li, Y.-X. Liu, F. Nori, Y. Liu, and J. Du, Phase-controlled pathway interferences and switchable fast-slow light in a cavity-magnon polariton system, Phys. Rev. Applied 15, 024056 (2021)
CrossRef ADS Google scholar
[84]
L. Bai, P. Hyde, Y. S. Gui, C.-M. Hu, V. Vlaminck, J. E. Pearson, S. D. Bader, and A. Hoffmann, Universal method for separating spin pumping from spin rectification voltage of ferromagnetic resonance, Phys. Rev. Lett. 111, 217602 (2013)
CrossRef ADS Google scholar
[85]
L. Bai, M. Harder, Y. P. Chen, X. Fan, J. Q. Xiao, and C.-M. Hu, Spin pumping in electrodynamically coupled magnon–photon systems, Phys. Rev. Lett. 114, 227201 (2015)
CrossRef ADS Google scholar
[86]
L. Ba, M. Harder, P. Hyde, Z. Zhang, C.-M. Hu, Y. P. Chen, and J. Q. Xiao, Cavity mediated manipulation of distant spin currents using a cavity-magnon-polariton, Phys. Rev. Lett. 118, 217201 (2017)
CrossRef ADS Google scholar
[87]
T. A. Palomaki, J. D. Teufel, R. W. Simmonds, and K. W. Lehnert, Entangling mechanical motion with microwave fields, Science 342, 710 (2013)
CrossRef ADS Google scholar
[88]
S. G. Hofer, W. Wieczorek, M. Aspelmeyer, and K. Hammerer, Quantum entanglement and teleportation in pulsed cavity optomechanics, Phys. Rev. A 84, 052327 (2011)
CrossRef ADS Google scholar
[89]
U. Akram, W. Munro, K. Nemoto, and G. J. Milburn, Photon–phonon entanglement in coupled optomechanical arrays, Phys. Rev. A 86, 042306 (2012)
CrossRef ADS Google scholar
[90]
M. Ho, E. Oudot, J.-D. Bancal, and N. Sangouard, Witnessing optomechanical entanglement with photon counting, Phys. Rev. Lett. 121, 023602 (2018)
CrossRef ADS Google scholar
[91]
H. Tan, G. Li, and P. Meystre, Dissipation-driven two-mode mechanical squeezed states in optomechanical systems, Phys. Rev. A 87, 033829 (2013)
CrossRef ADS Google scholar
[92]
G. Huang, W. Deng, H. Tan, and G. Cheng, Generation of squeezed states and single-phonon states via homodyne detection and photon subtraction on the filtered output of an optomechanical cavity, Phys. Rev. A 99, 043819 (2019)
CrossRef ADS Google scholar
[93]
J. Li, S.-Y. Zhu, and G. S. Agarwal, Magnon–photon– phonon entanglement in cavity magnomechanics, Phys. Rev. Lett. 121, 203601 (2018)
CrossRef ADS Google scholar
[94]
Z.-B. Yang, J.-S. Liu, H. Jin, Q.-H. Zhu, A.-D. Zhu, H.-Y. Liu, Y. Ming, and R.-C. Yang, Entanglement enhanced by Kerr nonlinearity in a cavity-optomagnonics system, Opt. Express 28, 31862-31871 (2020)
CrossRef ADS Google scholar
[95]
J. Li, S.-Y. Zhu, and G. S. Agarwal, Squeezed states of magnons and phonons in cavity magnomechanics, Phys. Rev. A 99, 021801 (2019)
CrossRef ADS Google scholar
[96]
W. Zhang, D.-Y. Wang, C.-H. Bai, T. Wang, S. Zhang, and H.-F. Wang, Generation and transfer of squeezed states in a cavity magnomechanical system by two-tone microwave fields, Opt. Express 29, 11773 (2021)
CrossRef ADS Google scholar
[97]
J. R. Eshbach and R. W. Damon, Surface magnetostatic modes and surface spin waves, Phys. Rev. 118, 1208 (1960)
CrossRef ADS Google scholar
[98]
R. W. Damon and J. R. Eshbach, Magnetostatic modes of a ferromagnet slab, J. Phys. Chem. Solids 19, 308 (1961)
CrossRef ADS Google scholar
[99]
J. Graf, S. Sharma, H. Huebl, and S. V. Kusminskiy, Design of an optomagnonic crystal: Towards optimal magnon–photon mode matching at the microscale, Phys. Rev. Research 3, 013277 (2021)
CrossRef ADS Google scholar
[100]
T. Liu, X. Zhang, H. X. Tang, and M. E. Flatté, Optomagnonics in magnetic solids, Phys. Rev. B 94, 060405 (2016)
CrossRef ADS Google scholar
[101]
Y.-P. Gao, C. Cao, T.-J. Wang, Y. Zhang, and C. Wang, Cavity-mediated coupling of phonons and magnons, Phys. Rev. A 96, 023826 (2017)
CrossRef ADS Google scholar
[102]
V. A. S. V. Bittencourt, V. Feulner, and S. Viola Kusminskiy, Magnon heralding in cavity optomagnonics, Phys. Rev. A 100, 013810 (2019)
CrossRef ADS Google scholar
[103]
H. Dery, P. Dalal, Ł. Cywiński, and L. J. Sham, Spinbased logic in semiconductors for reconfigurable largescale circuits, Nature 447, 573 (2007)
CrossRef ADS Google scholar
[104]
V. E. Demidov, S. Urazhdin, R. Liu, B. Divinskiy, A. Telegin, and S. O. Demokritov, Excitation of coherent propagating spin waves by pure spin currents, Nat. Commun. 7, 10446 (2016)
CrossRef ADS Google scholar
[105]
Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi, S. Maekawa, and E. Saitoh, Transmission of electrical signals by spin-wave interconversion in a magnetic insulator, Nature 464, 262 (2010)
CrossRef ADS Google scholar
[106]
V. E. Demidov, H. Ulrichs, S. V. Gurevich, S. O. Demokritov, V. S. Tiberkevich, A. N. Slavin, A. Zholud, and S. Urazhdin, Synchronization of spin Hall nanooscillators to external microwave signals, Nat. Commun. 5, 3179 (2014)
CrossRef ADS Google scholar
[107]
G. Talmelli, F. Ciubotaru, K. Garello, X. Sun, M. Heyns, I. P. Radu, C. Adelmann, and T. Devolder, Spin-wave emission by spin–orbit-torque antennas, Phys. Rev. Appl. 10, 044060 (2018)
CrossRef ADS Google scholar
[108]
X. Zhang, A. Galda, X. Han, D. Jin, and V. M. Vinokur, Broadband nonreciprocity enabled by strong coupling of magnons and microwave photons, Phys. Rev. Appl. 13, 044039 (2020)
CrossRef ADS Google scholar
[109]
A. Kord, D. L. Sounas, and A. Alù, Microwave nonreciprocity, Proc. IEEE 108, 1728 (2020)
CrossRef ADS Google scholar
[110]
N. Crescini, C. Braggio, G. Carugno, R. Di Vora, A. Ortolan, and G. Ruoso, Magnon-driven dynamics of a hybrid system excited with ultrafast optical pulses, Commun. Phys. 3, 164 (2020)
CrossRef ADS Google scholar
[111]
Q. Cai, J. Liao, and Q. Zhou, Stationary entanglement between light and microwave via ferromagnetic magnons, Ann. Phys. 532, 2000250 (2020)
CrossRef ADS Google scholar
[112]
D.-W. Luo, X.-F. Qian, and T. Yu, Nonlocal magnon entanglement generation in coupled hybrid cavity systems, Opt. Lett. 46, 1073 (2021)
CrossRef ADS Google scholar
[113]
S. Sharma, V. A. S. V. Bittencourt, A. D. Karenowska, and S. V. Kusminskiy, Spin cat states in ferromagnetic insulators, Phys. Rev. B 103, L100403 (2021)
CrossRef ADS Google scholar
[114]
Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, Coherent coupling between a ferromagnetic magnon and a superconducting qubit, Science 349, 405 (2015)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 The Author(s) 2022
AI Summary AI Mindmap
PDF(5239 KB)

Accesses

Citations

Detail

Sections
Recommended

/