Lattice Boltzmann study of three-dimensional immiscible Rayleigh–Taylor instability in turbulent mixing stage

Bin Liu, Chunhua Zhang, Qin Lou, Hong Liang

PDF(2185 KB)
PDF(2185 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 53506. DOI: 10.1007/s11467-022-1164-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Lattice Boltzmann study of three-dimensional immiscible Rayleigh–Taylor instability in turbulent mixing stage

Author information +
History +

Abstract

In this paper, we numerically studied the late-time evolutional mechanism of three-dimensional (3D) single-mode immiscible Rayleigh–Taylor instability (RTI) by using an improved lattice Boltzmann multiphase method implemented on graphics processing units. The influences of extensive dimensionless Reynolds numbers and Atwood numbers on phase interfacial dynamics, spike and bubble growth were investigated in details. The longtime numerical experiments indicate that the development of 3D singlemode RTI with a high Reynolds number can be summarized into four different stages: linear growth stage, saturated velocity growth stage, reacceleration stage and turbulent mixing stage. A series of complex interfacial structures with large topological changes can be observed at the turbulent mixing stage, which always preserve the symmetries with respect to the middle axis for a low Atwood number, and the lines of symmetry within spike and bubble are broken as the Atwood number is increased. Five statistical methods for computing the spike and bubble growth rates were then analyzed to reveal the growth law of 3D single-mode RTI in turbulent mixing stage. It is found that the spike late-time growth rate shows an overall increase with the Atwood number, while the bubble growth rate experiences a slight decrease with the Atwood number at first and then basically maintains a steady value of around 0.1. When the Reynolds number decreases, the later stages cannot be reached gradually and the evolution of phase interface presents a laminar flow state.

Graphical abstract

Keywords

lattice Boltzmann / phase field / Rayleigh–Taylor instability / computational fluid dynamics / interfacial instability

Cite this article

Download citation ▾
Bin Liu, Chunhua Zhang, Qin Lou, Hong Liang. Lattice Boltzmann study of three-dimensional immiscible Rayleigh–Taylor instability in turbulent mixing stage. Front. Phys., 2022, 17(5): 53506 https://doi.org/10.1007/s11467-022-1164-3

References

[1]
A. Burrows , Supernova explosions in the universe, Nature 403 (6771), 727 (2000)
CrossRef ADS Google scholar
[2]
M. Chertkov , Phenomenology of Rayleigh–Taylor turbulence, Phys. Rev. Lett. 91 (11), 115001 (2003)
CrossRef ADS Google scholar
[3]
R. Betti and O. A. Hurricane , Inertial-confinement fusion with lasers, Nat. Phys. 12 (5), 435 (2016)
CrossRef ADS Google scholar
[4]
L. Rayleigh , Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density, Proc. Lond. Math. Soc. 14, 170 (1883)
[5]
G. I. Taylor , The instability of liquid surfaces when accelerated in a direction perpendicular to their plane, Proc. R. Soc. Lond. A 201 (1065), 192 (1950)
CrossRef ADS Google scholar
[6]
Y. Zhou , Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing (I), Phys. Rep. 720-722, 1 (2017)
CrossRef ADS Google scholar
[7]
Y. Zhou , Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing (II), Phys. Rep. 723–725, 1 (2017)
CrossRef ADS Google scholar
[8]
G. Boffetta and A. Mazzino , Incompressible Rayleigh– Taylor turbulence, Annu. Rev. Fluid Mech. 49 (1), 119 (2017)
CrossRef ADS Google scholar
[9]
D. Livescu , Turbulence with large thermal and compositional density variations, Annu. Rev. Fluid Mech. 52 (1), 309 (2020)
CrossRef ADS Google scholar
[10]
H. Liang , X. L. Hu , X. F. Huang , and J. R. Xu , Direct numerical simulations of multi-mode immiscible Rayleigh– Taylor instability with high Reynolds numbers, Phys. Fluids 31 (11), 112104 (2019)
CrossRef ADS Google scholar
[11]
H. S. Tavares , L. Biferale , M. Sbragaglia , and A. A. Mailybaev , Immiscible Rayleigh–Taylor turbulence using mesoscopic lattice Boltzmann algorithms, Phys. Rev. Fluids 6 (5), 054606 (2021)
CrossRef ADS Google scholar
[12]
P. Ramaprabhu , G. Dimonte , P. Woodward , C. Fryer , G. Rockefeller , K. Muthuraman , P. H. Lin , and J. Jayaraj , The late-time dynamics of the single-mode Rayleigh– Taylor instability, Phys. Fluids 24 (7), 074107 (2012)
CrossRef ADS Google scholar
[13]
T. Wei and D. Livescu , Late-time quadratic growth in single-mode Rayleigh–Taylor instability, Phys. Rev. E 86 (4), 046405 (2012)
CrossRef ADS Google scholar
[14]
D. J. Lewis , The instability of liquid surfaces when accelerated in a direction perpendicular to their planes (II), Proc. R. Soc. Lond. A 202 (1068), 81 (1950)
CrossRef ADS Google scholar
[15]
R. Bellman and R. H. Pennington , Effects of surface tension and viscosity on Taylor instability, Q. Appl. Math. 12 (2), 151 (1954)
CrossRef ADS Google scholar
[16]
R. Menikoff , R. C. Mjolsness , D. H. Sharp , and C. Zemach , Unstable normal mode for Rayleigh–Taylor instability in viscous fluids, Phys. Fluids 20 (12), 2000 (1977)
CrossRef ADS Google scholar
[17]
D. Layzer , On the instability of superposed fluids in a gravitational field, Astrophys. J. 122, 1 (1955)
CrossRef ADS Google scholar
[18]
V. N. Goncharov , Analytical model of nonlinear, singlemode, classical Rayleigh–Taylor instability at arbitrary Atwood numbers, Phys. Rev. Lett. 88 (13), 134502 (2002)
CrossRef ADS Google scholar
[19]
S. I. Sohn , Effects of surface tension and viscosity on the growth rates of Rayleigh–Taylor and Richtmyer–Meshkov instabilities, Phys. Rev. E 80 (5), 055302 (2009)
CrossRef ADS Google scholar
[20]
R. Betti and J. Sanz , Bubble acceleration in the ablative Rayleigh–Taylor instability, Phys. Rev. Lett. 97 (20), 205002 (2006)
CrossRef ADS Google scholar
[21]
J. T. Waddell , C. E. Niederhaus , and J. W. Jacobs , Experimental study of Rayleigh–Taylor instability: Low Atwood number liquid systems with single-mode initial perturbations, Phys. Fluids 13 (5), 1263 (2001)
CrossRef ADS Google scholar
[22]
J. Glimm , X. L. Li , and A. D. Lin , Nonuniform approach to terminal velocity for single mode Rayleigh–Taylor instability, Acta Math. Appl. Sin. 18 (1), 1 (2002)
CrossRef ADS Google scholar
[23]
P. Ramaprabhu , G. Dimonte , Y. N. Young , A. C. Calder , and B. Fryxell , Limits of the potential flow approach to the single-mode Rayleigh–Taylor problem, Phys. Rev. E 74 (6), 066308 (2006)
CrossRef ADS Google scholar
[24]
J. P. Wilkinson , and J. W. Jacobs , Experimental study of the single-mode three-dimensional Rayleigh–Taylor instability, Phys. Fluids 19 (12), 124102 (2007)
CrossRef ADS Google scholar
[25]
X. Bian , H. Aluie , D. X. Zhao , H. S. Zhang , and D. Livescu , Revisiting the late-time growth of single-mode Rayleigh–Taylor instability and the role of vorticity, Physica D 403, 132250 (2020)
CrossRef ADS Google scholar
[26]
H. Liang , Z. H. Xia , and H. W. Huang , Late-time description of immiscible Rayleigh–Taylor instability: A lattice Boltzmann study, Phys. Fluids 33 (8), 082103 (2021)
CrossRef ADS Google scholar
[27]
X. L. Hu , H. Liang , and H. L. Wang , Lattice Boltzmann method simulations of the immiscible Rayleigh–Taylor instability with high Reynolds numbers, Wuli Xuebao 69 (4), 044701 (2020)
CrossRef ADS Google scholar
[28]
H. Liang , Q. X. Li , B. C. Shi , and Z. H. Chai , Lattice Boltzmann simulation of three-dimensional Rayleigh– Taylor instability, Phys. Rev. E 93 (3), 033113 (2016)
CrossRef ADS Google scholar
[29]
Z. X. Hu , Y. S. Zhang , B. L. Tian , Z. W. He , and L. Li , Effect of viscosity on two-dimensional single-mode Rayleigh–Taylor instability during and after the reacceleration stage, Phys. Fluids 31 (10), 104108 (2019)
CrossRef ADS Google scholar
[30]
A. Xu , G. Zhang , Y. Gan , F. Chen , and X. Yu , Lattice Boltzmann modeling and simulation of compressible flows, Front. Phys. 7 (5), 582 (2012)
CrossRef ADS Google scholar
[31]
B. Yan , A. Xu , G. Zhang , Y. Ying , and H. Li , Lattice Boltzmann model for combustion and detonation, Front. Phys. 8 (1), 94 (2013)
CrossRef ADS Google scholar
[32]
F. Chen , A. Xu , and G. Zhang , Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh–Taylor instability, Front. Phys. 11 (6), 114703 (2016)
CrossRef ADS Google scholar
[33]
L. Chen , H. L. Lai , C. D. Lin , and D. M. Li , Specific heat ratio effects of compressible Rayleigh–Taylor instability studied by discrete Boltzmann method, Front. Phys. 16 (5), 52500 (2021)
CrossRef ADS Google scholar
[34]
F. Chen , A. Xu , Y. Zhang , Y. Gan , B. Liu , and S. Wang , Effects of the initial perturbations on the Rayleigh–Taylor–Kelvin–Helmholtz instability system, Front. Phys. 17 (3), 33505 (2022)
CrossRef ADS Google scholar
[35]
Z. L. Guo and C. Shu , Lattice Boltzmann Method and Its Applications in Engineering, World Scientific, Singapore, 2013
[36]
H. Liu , Q. Kang , C. R. Leonardi , S. Schmieschek , A. Narvaez , B. D. Jones , J. R. Williams , A. J. Valocchi , and J. Harting , Multiphase lattice Boltzmann simulations for porous media applications, Computat. Geosci. 20 (4), 777 (2016)
[37]
H. Liang , B. C. Shi , and Z. H. Chai , Lattice Boltzmann modeling of three-phase incompressible flows, Phys. Rev. E 93 (1), 013308 (2016)
CrossRef ADS Google scholar
[38]
D. Jacqmin , Calculation of two-phase Navier–Stokes flows using phase-field modeling, J. Comput. Phys. 155 (1), 96 (1999)
CrossRef ADS Google scholar
[39]
H. Liang , B. C. Shi , Z. L. Guo , and Z. H. Chai , Phase-field-based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows, Phys. Rev. E 89 (5), 053320 (2014)
CrossRef ADS Google scholar
[40]
H. Liang , B. C. Shi , and Z. H. Chai , An effcient phasefield-based multiple-relaxation-time lattice Boltzmann model for three-dimensional multiphase flows, Comput. Math. Appl. 73 (7), 1524 (2017)
CrossRef ADS Google scholar
[41]
D. d’Humières , I. Ginzburg , M. Krafczyk , P. Lallemand , and L. S. Luo , Multiple-relaxation-time lattice Boltzmann models in three dimensions, Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci. 360 (1792), 437 (2002)
CrossRef ADS Google scholar
[42]
S. I. Abarzhi , A. Gorobets , and K. R. Sreenivasan , Rayleigh–Taylor turbulent mixing of immiscible, miscible and stratified fluids, Phys. Fluids 17 (8), 081705 (2005)
CrossRef ADS Google scholar
[43]
K. R. Sreenivasan , On the scaling of the turbulence energy dissipation rate, Phys. Fluids 27 (5), 1048 (1984)
CrossRef ADS Google scholar
[44]
J. R. Ristorcelli and T. T. Clark , Rayleigh–Taylor turbulence: Self-similar analysis and direct numerical simulations, J. Fluid Mech. 507, 213 (2004)
CrossRef ADS Google scholar
[45]
A. W. Cook , W. Cabot , and P. L. Miller , The mixing transition in Rayleigh–Taylor instability, J. Fluid Mech. 511, 333 (2004)
CrossRef ADS Google scholar
[46]
W. H. Cabot and A. W. Cook , Reynolds number effects on Rayleigh–Taylor instability with possible implications for type Ia supernovae, Nat. Phys. 2 (8), 562 (2006)
CrossRef ADS Google scholar
[47]
T. T. Clark , A numerical study of the statistics of a twodimensional Rayleigh–Taylor mixing layer, Phys. Fluids 15 (8), 2413 (2003)
CrossRef ADS Google scholar
[48]
D. H. Olson and J. W. Jacobs , Experimental study of Rayleigh–Taylor instability with a complex initial perturbation, Phys. Fluids 21 (3), 034103 (2009)
CrossRef ADS Google scholar
[49]
B. Akula and D. Ranjan , Dynamics of buoyancy-driven flows at moderately high Atwood numbers, J. Fluid Mech. 795, 313 (2016)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(2185 KB)

Accesses

Citations

Detail

Sections
Recommended

/