Lattice Boltzmann study of three-dimensional immiscible Rayleigh–Taylor instability in turbulent mixing stage
Bin Liu, Chunhua Zhang, Qin Lou, Hong Liang
Lattice Boltzmann study of three-dimensional immiscible Rayleigh–Taylor instability in turbulent mixing stage
In this paper, we numerically studied the late-time evolutional mechanism of three-dimensional (3D) single-mode immiscible Rayleigh–Taylor instability (RTI) by using an improved lattice Boltzmann multiphase method implemented on graphics processing units. The influences of extensive dimensionless Reynolds numbers and Atwood numbers on phase interfacial dynamics, spike and bubble growth were investigated in details. The longtime numerical experiments indicate that the development of 3D singlemode RTI with a high Reynolds number can be summarized into four different stages: linear growth stage, saturated velocity growth stage, reacceleration stage and turbulent mixing stage. A series of complex interfacial structures with large topological changes can be observed at the turbulent mixing stage, which always preserve the symmetries with respect to the middle axis for a low Atwood number, and the lines of symmetry within spike and bubble are broken as the Atwood number is increased. Five statistical methods for computing the spike and bubble growth rates were then analyzed to reveal the growth law of 3D single-mode RTI in turbulent mixing stage. It is found that the spike late-time growth rate shows an overall increase with the Atwood number, while the bubble growth rate experiences a slight decrease with the Atwood number at first and then basically maintains a steady value of around 0.1. When the Reynolds number decreases, the later stages cannot be reached gradually and the evolution of phase interface presents a laminar flow state.
lattice Boltzmann / phase field / Rayleigh–Taylor instability / computational fluid dynamics / interfacial instability
[1] |
A. Burrows , Supernova explosions in the universe, Nature 403 (6771), 727 (2000)
CrossRef
ADS
Google scholar
|
[2] |
M. Chertkov , Phenomenology of Rayleigh–Taylor turbulence, Phys. Rev. Lett. 91 (11), 115001 (2003)
CrossRef
ADS
Google scholar
|
[3] |
R. Betti and O. A. Hurricane , Inertial-confinement fusion with lasers, Nat. Phys. 12 (5), 435 (2016)
CrossRef
ADS
Google scholar
|
[4] |
L. Rayleigh , Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density, Proc. Lond. Math. Soc. 14, 170 (1883)
|
[5] |
G. I. Taylor , The instability of liquid surfaces when accelerated in a direction perpendicular to their plane, Proc. R. Soc. Lond. A 201 (1065), 192 (1950)
CrossRef
ADS
Google scholar
|
[6] |
Y. Zhou , Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing (I), Phys. Rep. 720-722, 1 (2017)
CrossRef
ADS
Google scholar
|
[7] |
Y. Zhou , Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing (II), Phys. Rep. 723–725, 1 (2017)
CrossRef
ADS
Google scholar
|
[8] |
G. Boffetta and A. Mazzino , Incompressible Rayleigh– Taylor turbulence, Annu. Rev. Fluid Mech. 49 (1), 119 (2017)
CrossRef
ADS
Google scholar
|
[9] |
D. Livescu , Turbulence with large thermal and compositional density variations, Annu. Rev. Fluid Mech. 52 (1), 309 (2020)
CrossRef
ADS
Google scholar
|
[10] |
H. Liang , X. L. Hu , X. F. Huang , and J. R. Xu , Direct numerical simulations of multi-mode immiscible Rayleigh– Taylor instability with high Reynolds numbers, Phys. Fluids 31 (11), 112104 (2019)
CrossRef
ADS
Google scholar
|
[11] |
H. S. Tavares , L. Biferale , M. Sbragaglia , and A. A. Mailybaev , Immiscible Rayleigh–Taylor turbulence using mesoscopic lattice Boltzmann algorithms, Phys. Rev. Fluids 6 (5), 054606 (2021)
CrossRef
ADS
Google scholar
|
[12] |
P. Ramaprabhu , G. Dimonte , P. Woodward , C. Fryer , G. Rockefeller , K. Muthuraman , P. H. Lin , and J. Jayaraj , The late-time dynamics of the single-mode Rayleigh– Taylor instability, Phys. Fluids 24 (7), 074107 (2012)
CrossRef
ADS
Google scholar
|
[13] |
T. Wei and D. Livescu , Late-time quadratic growth in single-mode Rayleigh–Taylor instability, Phys. Rev. E 86 (4), 046405 (2012)
CrossRef
ADS
Google scholar
|
[14] |
D. J. Lewis , The instability of liquid surfaces when accelerated in a direction perpendicular to their planes (II), Proc. R. Soc. Lond. A 202 (1068), 81 (1950)
CrossRef
ADS
Google scholar
|
[15] |
R. Bellman and R. H. Pennington , Effects of surface tension and viscosity on Taylor instability, Q. Appl. Math. 12 (2), 151 (1954)
CrossRef
ADS
Google scholar
|
[16] |
R. Menikoff , R. C. Mjolsness , D. H. Sharp , and C. Zemach , Unstable normal mode for Rayleigh–Taylor instability in viscous fluids, Phys. Fluids 20 (12), 2000 (1977)
CrossRef
ADS
Google scholar
|
[17] |
D. Layzer , On the instability of superposed fluids in a gravitational field, Astrophys. J. 122, 1 (1955)
CrossRef
ADS
Google scholar
|
[18] |
V. N. Goncharov , Analytical model of nonlinear, singlemode, classical Rayleigh–Taylor instability at arbitrary Atwood numbers, Phys. Rev. Lett. 88 (13), 134502 (2002)
CrossRef
ADS
Google scholar
|
[19] |
S. I. Sohn , Effects of surface tension and viscosity on the growth rates of Rayleigh–Taylor and Richtmyer–Meshkov instabilities, Phys. Rev. E 80 (5), 055302 (2009)
CrossRef
ADS
Google scholar
|
[20] |
R. Betti and J. Sanz , Bubble acceleration in the ablative Rayleigh–Taylor instability, Phys. Rev. Lett. 97 (20), 205002 (2006)
CrossRef
ADS
Google scholar
|
[21] |
J. T. Waddell , C. E. Niederhaus , and J. W. Jacobs , Experimental study of Rayleigh–Taylor instability: Low Atwood number liquid systems with single-mode initial perturbations, Phys. Fluids 13 (5), 1263 (2001)
CrossRef
ADS
Google scholar
|
[22] |
J. Glimm , X. L. Li , and A. D. Lin , Nonuniform approach to terminal velocity for single mode Rayleigh–Taylor instability, Acta Math. Appl. Sin. 18 (1), 1 (2002)
CrossRef
ADS
Google scholar
|
[23] |
P. Ramaprabhu , G. Dimonte , Y. N. Young , A. C. Calder , and B. Fryxell , Limits of the potential flow approach to the single-mode Rayleigh–Taylor problem, Phys. Rev. E 74 (6), 066308 (2006)
CrossRef
ADS
Google scholar
|
[24] |
J. P. Wilkinson , and J. W. Jacobs , Experimental study of the single-mode three-dimensional Rayleigh–Taylor instability, Phys. Fluids 19 (12), 124102 (2007)
CrossRef
ADS
Google scholar
|
[25] |
X. Bian , H. Aluie , D. X. Zhao , H. S. Zhang , and D. Livescu , Revisiting the late-time growth of single-mode Rayleigh–Taylor instability and the role of vorticity, Physica D 403, 132250 (2020)
CrossRef
ADS
Google scholar
|
[26] |
H. Liang , Z. H. Xia , and H. W. Huang , Late-time description of immiscible Rayleigh–Taylor instability: A lattice Boltzmann study, Phys. Fluids 33 (8), 082103 (2021)
CrossRef
ADS
Google scholar
|
[27] |
X. L. Hu , H. Liang , and H. L. Wang , Lattice Boltzmann method simulations of the immiscible Rayleigh–Taylor instability with high Reynolds numbers, Wuli Xuebao 69 (4), 044701 (2020)
CrossRef
ADS
Google scholar
|
[28] |
H. Liang , Q. X. Li , B. C. Shi , and Z. H. Chai , Lattice Boltzmann simulation of three-dimensional Rayleigh– Taylor instability, Phys. Rev. E 93 (3), 033113 (2016)
CrossRef
ADS
Google scholar
|
[29] |
Z. X. Hu , Y. S. Zhang , B. L. Tian , Z. W. He , and L. Li , Effect of viscosity on two-dimensional single-mode Rayleigh–Taylor instability during and after the reacceleration stage, Phys. Fluids 31 (10), 104108 (2019)
CrossRef
ADS
Google scholar
|
[30] |
A. Xu , G. Zhang , Y. Gan , F. Chen , and X. Yu , Lattice Boltzmann modeling and simulation of compressible flows, Front. Phys. 7 (5), 582 (2012)
CrossRef
ADS
Google scholar
|
[31] |
B. Yan , A. Xu , G. Zhang , Y. Ying , and H. Li , Lattice Boltzmann model for combustion and detonation, Front. Phys. 8 (1), 94 (2013)
CrossRef
ADS
Google scholar
|
[32] |
F. Chen , A. Xu , and G. Zhang , Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh–Taylor instability, Front. Phys. 11 (6), 114703 (2016)
CrossRef
ADS
Google scholar
|
[33] |
L. Chen , H. L. Lai , C. D. Lin , and D. M. Li , Specific heat ratio effects of compressible Rayleigh–Taylor instability studied by discrete Boltzmann method, Front. Phys. 16 (5), 52500 (2021)
CrossRef
ADS
Google scholar
|
[34] |
F. Chen , A. Xu , Y. Zhang , Y. Gan , B. Liu , and S. Wang , Effects of the initial perturbations on the Rayleigh–Taylor–Kelvin–Helmholtz instability system, Front. Phys. 17 (3), 33505 (2022)
CrossRef
ADS
Google scholar
|
[35] |
Z. L. Guo and C. Shu , Lattice Boltzmann Method and Its Applications in Engineering, World Scientific, Singapore, 2013
|
[36] |
H. Liu , Q. Kang , C. R. Leonardi , S. Schmieschek , A. Narvaez , B. D. Jones , J. R. Williams , A. J. Valocchi , and J. Harting , Multiphase lattice Boltzmann simulations for porous media applications, Computat. Geosci. 20 (4), 777 (2016)
|
[37] |
H. Liang , B. C. Shi , and Z. H. Chai , Lattice Boltzmann modeling of three-phase incompressible flows, Phys. Rev. E 93 (1), 013308 (2016)
CrossRef
ADS
Google scholar
|
[38] |
D. Jacqmin , Calculation of two-phase Navier–Stokes flows using phase-field modeling, J. Comput. Phys. 155 (1), 96 (1999)
CrossRef
ADS
Google scholar
|
[39] |
H. Liang , B. C. Shi , Z. L. Guo , and Z. H. Chai , Phase-field-based multiple-relaxation-time lattice Boltzmann model for incompressible multiphase flows, Phys. Rev. E 89 (5), 053320 (2014)
CrossRef
ADS
Google scholar
|
[40] |
H. Liang , B. C. Shi , and Z. H. Chai , An effcient phasefield-based multiple-relaxation-time lattice Boltzmann model for three-dimensional multiphase flows, Comput. Math. Appl. 73 (7), 1524 (2017)
CrossRef
ADS
Google scholar
|
[41] |
D. d’Humières , I. Ginzburg , M. Krafczyk , P. Lallemand , and L. S. Luo , Multiple-relaxation-time lattice Boltzmann models in three dimensions, Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci. 360 (1792), 437 (2002)
CrossRef
ADS
Google scholar
|
[42] |
S. I. Abarzhi , A. Gorobets , and K. R. Sreenivasan , Rayleigh–Taylor turbulent mixing of immiscible, miscible and stratified fluids, Phys. Fluids 17 (8), 081705 (2005)
CrossRef
ADS
Google scholar
|
[43] |
K. R. Sreenivasan , On the scaling of the turbulence energy dissipation rate, Phys. Fluids 27 (5), 1048 (1984)
CrossRef
ADS
Google scholar
|
[44] |
J. R. Ristorcelli and T. T. Clark , Rayleigh–Taylor turbulence: Self-similar analysis and direct numerical simulations, J. Fluid Mech. 507, 213 (2004)
CrossRef
ADS
Google scholar
|
[45] |
A. W. Cook , W. Cabot , and P. L. Miller , The mixing transition in Rayleigh–Taylor instability, J. Fluid Mech. 511, 333 (2004)
CrossRef
ADS
Google scholar
|
[46] |
W. H. Cabot and A. W. Cook , Reynolds number effects on Rayleigh–Taylor instability with possible implications for type Ia supernovae, Nat. Phys. 2 (8), 562 (2006)
CrossRef
ADS
Google scholar
|
[47] |
T. T. Clark , A numerical study of the statistics of a twodimensional Rayleigh–Taylor mixing layer, Phys. Fluids 15 (8), 2413 (2003)
CrossRef
ADS
Google scholar
|
[48] |
D. H. Olson and J. W. Jacobs , Experimental study of Rayleigh–Taylor instability with a complex initial perturbation, Phys. Fluids 21 (3), 034103 (2009)
CrossRef
ADS
Google scholar
|
[49] |
B. Akula and D. Ranjan , Dynamics of buoyancy-driven flows at moderately high Atwood numbers, J. Fluid Mech. 795, 313 (2016)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |