Efficient scheme for realizing a multiplex-controlled phase gate with photonic qubits in circuit quantum electrodynamics

Qi-Ping Su , Yu Zhang , Liang Bin , Chui-Ping Yang

Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 53505

PDF (2086KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 53505 DOI: 10.1007/s11467-022-1163-4
RESEARCH ARTICLE

Efficient scheme for realizing a multiplex-controlled phase gate with photonic qubits in circuit quantum electrodynamics

Author information +
History +
PDF (2086KB)

Abstract

We propose an efficient scheme to implement a multiplex-controlled phase gate with multiple photonic qubits simultaneously controlling one target photonic qubit based on circuit quantum electrodynamics (QED). For convenience, we denote this multiqubit gate as MCP gate. The gate is realized by using a two-level coupler to couple multiple cavities. The coupler here is a superconducting qubit. This scheme is simple because the gate implementation requires only one step of operation. In addition, this scheme is quite general because the two logic states of each photonic qubit can be encoded with a vacuum state and an arbitrary non-vacuum state |φ> (e.g., a Fock state, a superposition of Fock states, a cat state, or a coherent state, etc.) which is orthogonal or quasi-orthogonal to the vacuum state. The scheme has some additional advantages: because only two levels of the coupler are used, i.e., no auxiliary levels are utilized, decoherence from higher energy levels of the coupler is avoided; the gate operation time does not depend on the number of qubits; and the gate is implemented deterministically because no measurement is applied. As an example, we numerically analyze the circuit-QED based experimental feasibility of implementing a three-qubit MCP gate with photonic qubits each encoded via a vacuum state and a cat state. The scheme can be applied to accomplish the same task in a wide range of physical system, which consists of multiple microwave or optical cavities coupled to a two-level coupler such as a natural or artificial atom.

Graphical abstract

Keywords

multiplex controlled / phase gate / circuit QED

Cite this article

Download citation ▾
Qi-Ping Su, Yu Zhang, Liang Bin, Chui-Ping Yang. Efficient scheme for realizing a multiplex-controlled phase gate with photonic qubits in circuit quantum electrodynamics. Front. Phys., 2022, 17(5): 53505 DOI:10.1007/s11467-022-1163-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

P. W. Shor , in: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, edited by S. Goldwasser, IEEE Computer Society, Los Alamitos, CA, 1994, page 124

[2]

L. K. Grover , Quantum computers can search rapidly by using almost any transformation, Phys. Rev. Lett. 80 (19), 4329 (1998)

[3]

T. Beth and M. Röteler , in: Quantum Information, Springer, Berlin, 2001 Vol. 173, Chap. 4, p. 96

[4]

P. W. Shor , Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A 52 (4), R2493 (1995)

[5]

A. M. Steane , Error correcting codes in quantum theory, Phys. Rev. Lett. 77 (5), 793 (1996)

[6]

F. Gaitan , in: Quantum Error Correction and Fault Tolerant Quantum Computing, CRC Press, Boca Raton, FL, 2008, pp 1 312

[7]

S. L. Braunstein , V. Bužek , and M. Hillery , Quantum information distributors: Quantum network for symmetric and asymmetric cloning in arbitrary dimension and continuous limit, Phys. Rev. A 63 (5), 052313 (2001)

[8]

M. Šašura and V. Bužek , Multiparticle entanglement with quantum logic networks: Application to cold trapped ions, Phys. Rev. A 64 (1), 012305 (2001)

[9]

A. Barenco , C. H. Bennett , R. Cleve , D. P. DiVincenzo , N. Margolus , P. Shor , T. Sleator , J. A. Smolin , and H. Weinfurter , Elementary gates for quantum computation, Phys. Rev. A 52 (5), 3457 (1995)

[10]

N. Khaneja and S. J. Glaser , Cartan decomposition of SU(2n) and control of spin systems, Chem. Phys. 267 (1-3), 11 (2001)

[11]

M. Möttönen , J. J. Vartiainen , V. Bergholm , and M. M. Salomaa , Quantum circuits for general multiqubit gates, Phys. Rev. Lett. 93 (13), 130502 (2004)

[12]

Y. Liu , G. L. Long , and Y. Sun , Analytic one-bit and CNOT gate constructions of general n-qubit controlled gates, Int. J. Quant. Inf. 6 (3), 447 (2008)

[13]

M. A. Nielsen and I. L. Chuang , Quantum Computation and Quantum Information, Cambridge University Press, Cam bridge, England, 2001

[14]

X. Wang , A. Sørensen , and K. Mølmer , Multibit gates for quantum computing, Phys. Rev. Lett. 86 (17), 3907 (2001)

[15]

T. Monz , K. Kim , W. Hänsel , M. Riebe , A. S. Villar , P. Schindler , M. Chwalla , M. Hennrich , and R. Blatt , Realization of the quantum Toffoli gate with trapped ions, Phys. Rev. Lett. 102 (4), 040501 (2009)

[16]

P. Z. Zhao , G. F. Xu , and D. M. Tong , Nonadiabatic holonomic multiqubit controlled gates, Phys. Rev. A 99 (5), 052309 (2019)

[17]

H. R. Wei and F. G. Deng , Universal quantum gates for hybrid systems assisted by quantum dots inside doublesided optical microcavities, Phys. Rev. A 87 (2), 022305 (2013)

[18]

L. M. Duan , B. Wang , and H. J. Kimble , Robust quantum gates on neutral atoms with cavity-assisted photonscattering, Phys. Rev. A 72 (3), 032333 (2005)

[19]

X. Zou , Y. Dong , and G. C. Guo , Implementing a conditional z gate by a combination of resonant interaction and quantum interference, Phys. Rev. A 74 (3), 032325 (2006)

[20]

M. Waseem , M. Irfan , and S. Qamar , Realization of quantum gates with multiple control qubits or multiple target qubits in a cavity, Quantum Inform. Process. 14 (6), 1869 (2015)

[21]

Y. Liang , Q. C. Wu , S. L. Su , X. Ji , and S. Zhang , Shortcuts to adiabatic passage for multiqubit controlled-phase gate, Phys. Rev. A 91 (3), 032304 (2015)

[22]

S. L. Su , H. Z. Shen , E. Liang , and S. Zhang , One-step construction of the multiple-qubit Rydberg controlled-PHASE gate, Phys. Rev. A 98 (3), 032306 (2018)

[23]

Y. Hao , G. Lin , Y. Niu , and S. Gong , One-step implementation of a multiqubit controlled phase-flip gate in coupled cavities, Quantum Inform. Process. 18 (1), 18 (2019)

[24]

T. H. Xing , X. Wu , and G. F. Xu , Nonadiabatic holonomic three-qubit controlled gates realized by one-shot implementation, Phys. Rev. A 101 (1), 012306 (2020)

[25]

M. Khazali and K. Mølmer , Fast multiqubit gates by adiabatic evolution in interacting excited-state manifolds of Rydberg atoms and superconducting circuits, Phys. Rev. X 10 (2), 021054 (2020)

[26]

W. L. Yang , Z. Q. Yin , Z. Y. Xu , M. Feng , and J. F. Du , One step implementation of multi-qubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity, Appl. Phys. Lett. 96 (24), 241113 (2010)

[27]

T. Wang and Y. Zhang , Scalable multi-qubit quantum gates in quantum networks based on the microtoroidalresonator mediated nitrogen-vacancy centers in diamond, J. Opt. Soc. Am. B 37 (5), 1372 (2020)

[28]

C. P. Yang and S. Han , n-qubit-controlled phase gate with superconducting quantum interference devices coupled to a resonator, Phys. Rev. A 72 (3), 032311 (2005)

[29]

C. P. Yang and S. Han , Realization of an n-qubit controlled-U gate with superconducting quantum interference devices or atoms in cavity QED, Phys. Rev. A 73 (3), 032317 (2006)

[30]

W. A. Li and Y. Chen , Simplified proposal for realizing a multiqubit tunable phase gate in circuit QED, J. Opt. Soc. Am. B 34 (7), 1560 (2017)

[31]

B. Ye , Z. F. Zheng , and C. P. Yang , Multiplex-controlled phase gate with qubits distributed in a multicavity system, Phys. Rev. A 97 (6), 062336 (2018)

[32]

J. Zhang , W. Liu , Z. Deng , Z. Lu , and G. L. Long , Modularization of a multi-qubit controlled phase gate and its nuclear magnetic resonance implementation, J. Opt. B 7 (1), 22 (2005)

[33]

A. Fedorov , L. Steffen , M. Baur , M. P. da Silva , and A. Wallraff , Implementation of a Toffoli gate with superconducting circuits, Nature 481 (7380), 170 (2012)

[34]

C. Song , S. B. Zheng , P. Zhang , K. Xu , L. Zhang , Q. Guo , W. Liu , D. Xu , H. Deng , K. Huang , D. Zheng , X. Zhu , and H. Wang , Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit, Nat. Commun. 8 (1), 1061 (2017)

[35]

H. Levine , A. Keesling , G. Semeghini , A. Omran , T. T. Wang , S. Ebadi , H. Bernien , M. Greiner , V. Vuletić , H. Pichler , and M. D. Lukin , Parallel implementation of highfidelity multiqubit gates with neutral atoms, Phys. Rev. Lett. 123 (17), 170503 (2019)

[36]

J. Fiurášek , Linear-optics quantum Toffoli and Fredkin gates, Phys. Rev. A 73 (6), 062313 (2006)

[37]

T. C. Ralph , K. J. Resch , and A. Gilchrist , Effcient Toffoli gates using qudits, Phys. Rev. A 75 (2), 022313 (2007)

[38]

H. L. Huang , W. S. Bao , T. Li , F. G. Li , X. Q. Fu , S. Zhang , H. L. Zhang , and X. Wang , Deterministic linear optical quantum Toffoli gate, Phys. Lett. A 381 (33), 2673 (2017)

[39]

L. Dong , S. L. Wang , C. Cui , X. Geng , Q. Y. Li , H. K. Dong , X. M. Xiu , and Y. J. Gao , Polarization Toffoli gate assisted by multiple degrees of freedom, Opt. Lett. 43 (19), 4635 (2018)

[40]

X. Zou , K. Li , and G. Guo , Linear optical scheme for direct implementation of a nondestructive N-qubit controlled phase gate, Phys. Rev. A 74 (4), 044305 (2006)

[41]

H. R. Wei and G. L. Long , Universal photonic quantum gates assisted by ancilla diamond nitrogen-vacancy centers coupled to resonators, Phys. Rev. A 91 (3), 032324 (2015)

[42]

H. R. Wei , F. G. Deng , and G. L. Long , Hyper-parallel Toffoli gate on three-photon system with two degrees of freedom assisted by single-sided optical microcavities, Opt. Express 24 (16), 18619 (2016)

[43]

B. Y. Xia , C. Cao , Y. H. Han , and R. Zhang , Universal photonic three-qubit quantum gates with two degrees of freedom assisted by charged quantum dots inside singlesided optical microcavities, Laser Phys. 28 (9), 095201 (2018)

[44]

M. Mičuda , M. Sedlák , I. Straka , M. Miková , M. Dušek , M. Ježek , and J. Fiurášek , Effcient experimental estimation of fidelity of linear optical quantum Toffoli gate, Phys. Rev. Lett. 111 (16), 160407 (2013)

[45]

S. Ru , Y. Wang , M. An , F. Wang , P. Zhang , and F. Li , Realization of deterministic quantum Toffoli gate with a single photon, Phys. Rev. A 103 (2), 022606 (2021)

[46]

P. M. Lu , J. Song , and Y. Xia , Implementing a multi-qubit quantum phase gate encoded by photonic qubit, Chin. Phys. Lett. 27 (3), 030302 (2010)

[47]

M. Hua , M. J. Tao , and F. G. Deng , Universal quantum gates on microwave photons assisted by circuit quantum electrodynamics, Phys. Rev. A 90 (1), 012328 (2014)

[48]

M. Hua , M. J. Tao , and F. G. Deng , Fast universal quantum gates on microwave photons with all-resonance operations in circuit QED, Sci. Rep. 5 (1), 9274 (2015)

[49]

J. X. Han , J. L. Wu , Y. Wang , Y. Y. Jiang , Y. Xian , and J. Song , Multi-qubit phase gate on multiple resonators mediated by a superconducting bus, Opt. Express 28 (2), 1954 (2020)

[50]

C. P. Yang , S. I. Chu , and S. Han , Possible realization of entanglement, logical gates and quantum information transfer with superconducting-quantum-interferencedevice qubits in cavity QED, Phys. Rev. A 67 (4), 042311 (2003)

[51]

J. Q. You and F. Nori , Quantum information processing with superconducting qubits in a microwave field, Phys. Rev. B 68 (6), 064509 (2003)

[52]

A. Blais , R. S. Huang , A. Wallraff , S. M. Girvin , and R. J. Schoelkopf , Cavity quantum electrodynamics for superconduct ing electrical circuits: An architecture for quantum computation, Phys. Rev. A 69 (6), 062320 (2004)

[53]

J. Q. You and F. Nori , Superconducting circuits and quantum information, Phys. Today 58 (11), 42 (2005)

[54]

J. Q. You and F. Nori , Atomic physics and quantum optics using superconducting circuits, Nature 474 (7353), 589 (2011)

[55]

I. Buluta , S. Ashhab , and F. Nori , Natural and artificial atoms for quantum computation, Rep. Prog. Phys. 74 (10), 104401 (2011)

[56]

Z. L. Xiang , S. Ashhab , J. Q. You , and F. Nori , Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems, Rev. Mod. Phys. 85 (2), 623 (2013)

[57]

X. Gu , A. F. Kockum , A. Miranowicz , Y. X. Liu , and F. Nori , Microwave photonics with superconducting quantum circuits, Phys. Rep. 718–719, 1 (2017)

[58]

Q. P. Su , H. Zhang , and C. P. Yang , Transferring quantum entangled states between multiple single-photon-state qubits and coherent-state qubits in circuit QED, Front. Phys. 16 (6), 61501 (2021)

[59]

M. H. Devoret and R. J. Schoelkopf , Superconducting circuits for quantum information: An outlook, Science 339 (6124), 1169 (2013)

[60]

C. H. Bai , D. Y. Wang , S. Hu , W. X. Cui , X. X. Jiang , and H. F. Wang , Scheme for implementing multitarget qubit controlled-NOT gate of photons and controlled-phase gate of electron spins via quantum dot-microcavity coupled system, Quantum Inform. Process. 15 (4), 1485 (2016)

[61]

B. Ye , Z. F. Zheng , Y. Zhang , and C. P. Yang , QED circuit single-step realization of a multiqubit controlled phase gate with one microwave photonic qubit simultaneously controlling n–1 microwave photonic qubits, Opt. Express 26 (23), 30689 (2018)

[62]

C. P. Yang , Y. X. Liu , and F. Nori , Phase gate of one qubit simultaneously controlling n qubits in a cavity, Phys. Rev. A 81 (6), 062323 (2010)

[63]

C. P. Yang , S. B. Zheng , and F. Nori , Multiqubit tunable phase gate of one qubit simultaneously controlling n qubits in a cavity, Phys. Rev. A 82 (6), 062326 (2010)

[64]

M. Waseem , M. Irfan , and S. Qamar , Multiqubit quantum phase gate using four-level superconducting quantum interference devices coupled to superconducting resonator, Physica C 477, 24 (2012)

[65]

C. P. Yang , Q. P. Su , F. Y. Zhang , and S. B. Zheng , Single-step implementation of a multipletarget-qubit controlled phase gate without need of classical pulses, Opt. Lett. 39 (11), 3312 (2014)

[66]

H. F. Wang , A. D. Zhu , and S. Zhang , One-step implementation of a multiqubit phase gate with one control qubit and multiple target qubits in coupled cavities, Opt. Lett. 39 (6), 1489 (2014)

[67]

T. Liu , X. Z. Cao , Q. P. Su , S. J. Xiong , and C. P. Yang , Multi-target-qubit unconventional geometric phase gate in a multicavity system, Sci. Rep. 6 (1), 21562 (2016)

[68]

Y. J. Fan , Z. F. Zheng , Y. Zhang , D. M. Lu , and C. P. Yang , One-step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED, Front. Phys. 14 (2), 21602 (2019)

[69]

P. J. Leek , S. Filipp , P. Maurer , M. Baur , R. Bianchetti , J. M. Fink , M. Göppl , L. Steffen , and A. Wallraff , Using sideband transitions for two-qubit operations in superconducting circuits, Phys. Rev. B 79 (18), 180511 (2009)

[70]

R. Barends , J. Kelly , A. Megrant , D. Sank , E. Jeffrey , Y. Chen , Y. Yin , B. Chiaro , J. Mutus , C. Neill , P. O’Malley , P. Roushan , J. Wenner , T. C. White , A. N. Cleland , and J. M. Martinis , Coherent Josephson qubit suitable for scalable quantum integrated circuits, Phys. Rev. Lett. 111 (8), 080502 (2013)

[71]

M. Neeley , M. Ansmann , R. C. Bialczak , M. Hofheinz , N. Katz , E. Lucero , A. O’Connell , H. Wang , A. N. Cleland , and J. M. Martinis , Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state, Nat. Phys. 4 (7), 523 (2008)

[72]

A. Sørensen and K. Mølmer , Quantum Computation with Ions in Thermal Motion, Phys. Rev. Lett. 82 (9), 1971 (1999)

[73]

D. F. V. James and J. Jerke , Effective Hamiltonian theory and its applications in quantum information, Can. J. Phys. 85 (6), 625 (2007)

[74]

Y. Xu , Y. Ma , W. Cai , X. Mu , W. Dai , W. Wang , L. Hu , X. Li , J. Han , H. Wang , Y. P. Song , Z. B. Yang , S. B. Zheng , and L. Sun , Demonstration of controlled-phase gates between two error-correctable photonic qubits, Phys. Rev. Lett. 124 (12), 120501 (2020)

[75]

M. Sandberg , C. M. Wilson , F. Persson , T. Bauch , G. Johansson , V. Shumeiko , T. Duty , and P. Delsing , Tuning the field in a microwave resonator faster than the photon lifetime, Appl. Phys. Lett. 92 (20), 203501 (2008)

[76]

Z. L. Wang , Y. P. Zhong , L. J. He , H. Wang , J. M. Martinis , A. N. Cleland , and Q. W. Xie , Quantum state characterization of a fast tunable superconducting resonator, Appl. Phys. Lett. 102 (16), 163503 (2013)

[77]

Z. Leghtas , G. Kirchmair , B. Vlastakis , R. J. Schoelkopf , M. H. Devoret , and M. Mirrahimi , Hardware-effcient autonomous quantum memory protection, Phys. Rev. Lett. 111 (12), 120501 (2013)

[78]

M. Mirrahimi , Z. Leghtas , V. V. Albert , S. Touzard , R. J. Schoelkopf , L. Jiang , and M. H. Devoret , Dynamically protected cat-qubits: A new paradigm for universal quantum computation, New J. Phys. 16 (4), 045014 (2014)

[79]

J. Guillaud and M. Mirrahimi , Repetition cat qubits for fault-tolerant quantum computation, Phys. Rev. X 9 (4), 041053 (2019)

[80]

C. Chamberland , K. Noh , P. Arrangoiz-Arriola , E. T. Campbell , C. T. Hann , J. Iverson , H. Putterman , T. C. Bohdanowicz , S. T. Flammia , A. Keller , et al. , Building a fault-tolerant quantum computer using concatenated cat codes, PRX Quantum 3, 010329 (2022)

[81]

T. Liu , Z. F. Zheng , Y. Zhang , Y. L. Fang , and C. P. Yang , Transferring entangled states of photonic cat-state qubits in circuit QED, Front. Phys. 15 (2), 21603 (2020)

[82]

A. O. Niskanen , K. Harrabi , F. Yoshihara , Y. Nakamura , S. Lloyd , and J. S. Tsai , Quantum coherent tunable coupling of superconducting qubits, Science 316 (5825), 723 (2007)

[83]

K. Inomata , T. Yamamoto , P. M. Billangeon , Y. Nakamura , and J. S. Tsai , Large dispersive shift of cavity resonance induced by a superconducting flux qubit in the straddling regime, Phys. Rev. B 86 (14), 140508 (2012)

[84]

Z. H. Peng , Y. X. Liu , J. T. Peltonen , T. Yamamoto , J. S. Tsai , and O. Astafiev , Correlated emission lasing in harmonic oscillators coupled via a single three-level artificial atom, Phys. Rev. Lett. 115 (22), 223603 (2015)

[85]

Y. X. Liu , J. Q. You , L. F. Wei , C. P. Sun , and F. Nori , Optical selection rules and phase dependent adiabatic state control in a superconducting quantum circuit, Phys. Rev. Lett. 95 (8), 087001 (2005)

[86]

T. Niemczyk , F. Deppe , H. Huebl , E. P. Menzel , F. Hocke , M. J. Schwarz , J. J. Garcia-Ripoll , D. Zueco , T. Hümmer , E. Solano , A. Marx , and R. Gross , Circuit quantum electrodynamics in the ultrastrong coupling regime, Nat. Phys. 6 (10), 772 (2010)

[87]

F. Yan , S. Gustavsson , A. Kamal , J. Birenbaum , A. P. Sears , D. Hover , T. J. Gudmundsen , D. Rosenberg , G. Samach , S. Weber , J. L. Yoder , T. P. Orlando , J. Clarke , A. J. Kerman , and W. D. Oliver , The flux qubit revisited to enhance coherence and reproducibility, Nat. Commun. 7 (1), 12964 (2016)

[88]

J. Q. You , X. Hu , S. Ashhab , and F. Nori , Lowdecoherence flux qubit, Phys. Rev. B 75 (14), 140515 (2007)

[89]

C. P. Yang , Q. P. Su , and S. Han , Generation of Greenberger–Horne–Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction, Phys. Rev. A 86 (2), 022329 (2012)

[90]

G. Calusine , A. Melville , W. Woods , R. Das , C. Stull , V. Bolkhovsky , D. Braje , D. Hover , D. K. Kim , X. Miloshi , D. Rosenberg , A. Sevi , J. L. Yoder , E. Dauler , and W. D. Oliver , Analysis and mitigation of interface losses in trenched superconducting coplanar waveguide resonators, Appl. Phys. Lett. 112 (6), 062601 (2018)

[91]

W. Woods , G. Calusine , A. Melville , A. Sevi , E. Golden , D. K. Kim , D. Rosenberg , J. L. Yoder , and W. D. Oliver , Determining interface dielectric losses in superconducting coplanar waveguide resonators, Phys. Rev. Appl. 12 (1), 014012 (2019)

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2086KB)

1063

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/