Quantum entanglement in the Sachdev–Ye–Kitaev model and its generalizations

Pengfei Zhang

PDF(4753 KB)
PDF(4753 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (4) : 43201. DOI: 10.1007/s11467-022-1162-5
TOPICAL REVIEW
TOPICAL REVIEW

Quantum entanglement in the Sachdev–Ye–Kitaev model and its generalizations

Author information +
History +

Abstract

Entanglement is one of the most important concepts in quantum physics. We review recent progress in understanding the quantum entanglement in many-body systems using large-N solvable models: the Sachdev–Ye–Kitaev (SYK) model and its generalizations. We present the study of entanglement entropy in the original SYK model using three different approaches: the exact diagonalization, the eigenstate thermalization hypothesis, and the pathintegral representation. For coupled SYK models, the entanglement entropy shows linear growth and saturation at the thermal value. The saturation is related to replica wormholes in gravity. Finally, we consider the steady-state entanglement entropy of quantum many-body systems under repeated measurements. The traditional symmetry breaking in the enlarged replica space leads to the measurement-induced entanglement phase transition.

Graphical abstract

Keywords

SYK model / entanglement entropy / large-N expansion

Cite this article

Download citation ▾
Pengfei Zhang. Quantum entanglement in the Sachdev–Ye–Kitaev model and its generalizations. Front. Phys., 2022, 17(4): 43201 https://doi.org/10.1007/s11467-022-1162-5

References

[1]
R. Jozsa, Entanglement and quantum computation, arXiv: Quant-ph/9707034 (1997)
[2]
R. Jozsa and N. Linden, On the role of entanglement in quantum-computational speed-up, Proc. Royal Soc. Lond. A 459(2036), 2011 (2003)
CrossRef ADS Google scholar
[3]
S. Ding and Z. Jin, Review on the study of entanglement in quantum computation speedup, Chin. Sci. Bull. 52(16), 2161 (2007)
CrossRef ADS Google scholar
[4]
A. Pal and D. A. Huse, Many-body localization phase transition, Phys. Rev. B 82(17), 174411 (2010)
CrossRef ADS Google scholar
[5]
R. Nandkishore and D. A. Huse, Many-body localization and thermalization in quantum statistical mechanics, Annu. Rev. Condens. Matter Phys. 6(1), 15 (2015)
CrossRef ADS Google scholar
[6]
D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Many-body localization, thermalization, and entanglement, Rev. Mod. Phys. 91(2), 021001 (2019)
CrossRef ADS Google scholar
[7]
J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43(4), 2046 (1991)
CrossRef ADS Google scholar
[8]
M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50(2), 888 (1994)
CrossRef ADS Google scholar
[9]
A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96(11), 110404 (2006)
CrossRef ADS Google scholar
[10]
M. Levin and X. G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett. 96(11), 110405 (2006)
CrossRef ADS Google scholar
[11]
S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from the anti – de Sitter space/conformal field theory correspondence, Phys. Rev. Lett. 96(18), 181602 (2006)
CrossRef ADS Google scholar
[12]
S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, J. High Energy Phys. 08, 045 (2006)
CrossRef ADS Google scholar
[13]
A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, J. High Energy Phys. 2013, 90 (2013)
CrossRef ADS Google scholar
[14]
V. E. Hubeny, M. Rangamani, and T. Takayanagi, A covariant holographic entanglement entropy proposal, J. High Energy Phys. 07, 062 (2007)
CrossRef ADS Google scholar
[15]
T. Faulkner, A. Lewkowycz, and J. Maldacena, Quantum corrections to holographic entanglement entropy, J. High Energy Phys. 2013, 74 (2013)
CrossRef ADS Google scholar
[16]
N. Engelhardt and A. C. Wall, Quantum extremal surfaces: Holographic entanglement entropy beyond the classical regime, J. High Energy Phys. 2015, 73 (2015)
CrossRef ADS Google scholar
[17]
G. Penington, Entanglement wedge reconstruction and the information paradox, J. High Energy Phys. 2020(9), 1 (2020)
CrossRef ADS Google scholar
[18]
A. Almheiri, N. Engelhardt, D. Marolf, and H. Maxfield, The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole, J. High Energy Phys. 2019(12), 1 (2019)
CrossRef ADS Google scholar
[19]
A. Almheiri, R. Mahajan, J. Maldacena, and Y. Zhao, The Page curve of Hawking radiation from semiclassical geometry, arXiv: 1908.10996 (2019)
CrossRef ADS Google scholar
[20]
A. Almheiri, R. Mahajan, and J. Maldacena, Islands outside the horizon, arXiv: 1910.11077 (2019)
[21]
A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian, and A. Tajdini, Replica wormholes and the entropy of Hawking radiation, arXiv: 1911.12333 (2019)
CrossRef ADS Google scholar
[22]
G. Penington, S. H. Shenker, D. Stanford, and Z. Yang, Replica wormholes and the black hole interior, arXiv: 1911.11977 (2019)
[23]
P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42, 504005 (2009)
CrossRef ADS Google scholar
[24]
M. Rangamani and T. Takayanagi, in Holographic Entanglement Entropy, Springer, 2017, pp 35–47
CrossRef ADS Google scholar
[25]
M. A. Metlitski, C. A. Fuertes, and S. Sachdev, Entanglement entropy in the O(N) model, Phys. Rev. B 80(11), 115122 (2009)
CrossRef ADS Google scholar
[26]
S. Whitsitt, W. Witczak-Krempa, and S. Sachdev, Entanglement entropy of large-N Wilson–Fisher conformal field theory, Phys. Rev. B 95(4), 045148 (2017)
CrossRef ADS Google scholar
[27]
W. Donnelly, S. Timmerman, and N. Valdes-Meller, Entanglement entropy and the large N expansion of two-dimensional Yang–Mills theory, arXiv: 1911.09302 (2019)
[28]
A. Kitaev, in: Talk given at the Fundamental Physics Prize Symposium, Vol. 10 (2014)
[29]
S. Sachdev and J. Ye, Gapless spin-fluid ground state in a random quantum Heisenberg magnet, Phys. Rev. Lett. 70(21), 3339 (1993)
CrossRef ADS Google scholar
[30]
J. Maldacena and D. Stanford, Remarks on the Sachdev–Ye–Kitaev model, Phys. Rev. D 94(10), 106002 (2016)
CrossRef ADS Google scholar
[31]
J. Maldacena, D. Stanford, and Z. Yang, Conformal symmetry and its breaking in two dimensional nearly Anti-de Sitter space, Prog. Theor. Exp. Phys. 2016(12), 12C104 (2016)
CrossRef ADS Google scholar
[32]
A. Kitaev, and S. J. Suh, The soft mode in the Sachdev–Ye–Kitaev model and its gravity dual, J. High Energy Phys. 2018(5), 1 (2018)
CrossRef ADS Google scholar
[33]
J. Maldacena, S. H. Shenker, and D. Stanford, A bound on chaos, J. High Energy Phys. 2016(8), 1 (2016)
CrossRef ADS Google scholar
[34]
A. Eberlein, V. Kasper, S. Sachdev, and J. Steinberg, Quantum quench of the Sachdev–Ye–Kitaev model, Phys. Rev. B 96(20), 205123 (2017)
CrossRef ADS Google scholar
[35]
J. C. Louw and S. Kehrein, Thermalization of many many-body interacting SYK models, Phys. Rev. B 105, 075117 (2022)
CrossRef ADS Google scholar
[36]
P. Zhang and Y. Chen, Violation and revival of Kramers’ degeneracy in open quantum systems, arXiv: 2108.05493 (2021)
[37]
D. Chowdhury, A. Georges, O. Parcollet, and S. Sachdev, Sachdev–Ye–Kitaev models and beyond: A window into non-Fermi liquids, arXiv: 2109.05037 (2021).
[38]
R. A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen, and S. Sachdev, Thermoelectric transport in disordered metals without quasiparticles: The Sachdev–Ye–Kitaev models and holography, Phys. Rev. B 95(15), 155131 (2017)
CrossRef ADS Google scholar
[39]
Y. Gu, A. Kitaev, S. Sachdev, and G. Tarnopolsky, Notes on the complex Sachdev–Ye–Kitaev model, J. High Energy Phys. 02, 157 (2020)
CrossRef ADS Google scholar
[40]
P. Chaturvedi, Y. Gu, W. Song, and B. Yu, A note on the complex SYK model and warped CFTs, J. High Energy Phys. 2018, 101 (2018)
CrossRef ADS Google scholar
[41]
K. Bulycheva, A note on the SYK model with complex fermions, J. High Energy Phys. 2017(12), 1 (2017)
CrossRef ADS Google scholar
[42]
P. Saad, S. H. Shenker, and D. Stanford, A semiclassical ramp in SYK and in gravity, arXiv: 1806.06840 (2018)
[43]
C. Sunderhauf, L. Piroli, X. L. Qi, N. Schuch, and J. I. Cirac, Quantum chaos in the Brownian SYK model with large finite N: OTOCs and tripartite information, J. High Energy Phys. 2019(11), 1 (2019)
CrossRef ADS Google scholar
[44]
Y. Gu, X. L. Qi, and D. Stanford, Local criticality, diffusion and chaos in generalized Sachdev–Ye–Kitaev models, J. High Energy Phys. 2017, 125 (2017)
CrossRef ADS Google scholar
[45]
Y. Gu, A. Lucas, and X.-L. Qi, Energy diffusion and the butterfly effect in inhomogeneous Sachdev–Ye–Kitaev chains, SciPost Phys. 2, 018 (2017)
CrossRef ADS Google scholar
[46]
S. Banerjee and E. Altman, Solvable model for a dynamical quantum phase transition from fast to slow scrambling, Phys. Rev. B 95(13), 134302 (2017)
CrossRef ADS Google scholar
[47]
X. Chen, R. Fan, Y. Chen, H. Zhai, and P. Zhang, Competition between chaotic and nonchaotic phases in a quadratically coupled Sachdev–Ye–Kitaev model, Phys. Rev. Lett. 119(20), 207603 (2017)
CrossRef ADS Google scholar
[48]
X. Y. Song, C. M. Jian, and L. Balents, Strongly correlated metal built from Sachdev–Ye–Kitaev models, Phys. Rev. Lett. 119(21), 216601 (2017)
CrossRef ADS Google scholar
[49]
S. K. Jian and H. Yao, Solvable Sachdev–Ye–Kitaev models in higher dimensions: From diffusion to many-body localization, Phys. Rev. Lett. 119(20), 206602 (2017)
CrossRef ADS Google scholar
[50]
Y. Chen, H. Zhai, and P. Zhang, Tunable quantum chaos in the Sachdev–Ye–Kitaev model coupled to a thermal bath, J. High Energy Phys. 2017, 150 (2017)
CrossRef ADS Google scholar
[51]
P. Zhang, Dispersive Sachdev–Ye–Kitaev model: Band structure and quantum chaos, Phys. Rev. B 96(20), 205138 (2017)
CrossRef ADS Google scholar
[52]
Z. Bi, C. M. Jian, Y. Z. You, K. A. Pawlak, and C. Xu, Instability of the non-Fermi-liquid state of the Sachdev–Ye–Kitaev model, Phys. Rev. B 95(20), 205105 (2017)
CrossRef ADS Google scholar
[53]
P. Narayan and J. Yoon, SYK-like tensor models on the lattice, J. High Energy Phys. 2017, 83 (2017)
CrossRef ADS Google scholar
[54]
C. Liu, X. Chen, and L. Balents, Quantum entanglement of the Sachdev–Ye–Kitaev models, Phys. Rev. B 97(24), 245126 (2018)
CrossRef ADS Google scholar
[55]
W. Fu and S. Sachdev, Numerical study of fermion and boson models with infinite-range random interactions, Phys. Rev. B 94(3), 035135 (2016)
CrossRef ADS Google scholar
[56]
Y. Huang and Y. Gu, Eigenstate entanglement in the Sachdev–Ye–Kitaev model, Phys. Rev. D 100(4), 041901 (2019)
CrossRef ADS Google scholar
[57]
P. Zhang, C. Liu, and X. Chen, Subsystem Rényi entropy of thermal ensembles for SYK-like models, SciPost Phys. 8, 094 (2020)
CrossRef ADS Google scholar
[58]
P. Zhang, Entanglement entropy and its quench dynamics for pure states of the Sachdev–Ye–Kitaev model, J. High Energy Phys. 06, 143 (2020)
CrossRef ADS Google scholar
[59]
A. Haldar, S. Bera, and S. Banerjee, Rényi entanglement entropy of Fermi and non-Fermi liquids: Sachdev–Ye–Kitaev model and dynamical mean field theories, Phys. Rev. Res. 2(3), 033505 (2020)
CrossRef ADS Google scholar
[60]
J. Kudler-Flam, R. Sohal, and L. Nie, Information scrambling with conservation laws, arXiv: 2107.04043 (2021)
CrossRef ADS Google scholar
[61]
Y. Gu, A. Lucas, and X. L. Qi, Spread of entanglement in a Sachdev–Ye–Kitaev chain, J. High Energy Phys. 2017, 120 (2017)
CrossRef ADS Google scholar
[62]
R. Sohal, L. Nie, X. Q. Sun, and E. Fradkin, Thermalization of randomly coupled SYK models, J. Stat. Mech. 2022(1), 013103 (2022)
CrossRef ADS Google scholar
[63]
Y. Chen, X. L. Qi, and P. Zhang, Replica wormhole and information retrieval in the SYK model coupled to Majorana chains, J. High Energy Phys. 2020, 121 (2020)
CrossRef ADS Google scholar
[64]
Y. Chen, Entropy linear response theory with non-Markovian bath, J. High Energy Phys. 2021, 215 (2021)
CrossRef ADS Google scholar
[65]
P. Dadras and A. Kitaev, Perturbative calculations of entanglement entropy, J. High Energy Phys. 2021(3), 1 (2021)
CrossRef ADS Google scholar
[66]
S. K. Jian, B. Swingle, and Z. Y. Xian, Complexity growth of operators in the SYK model and in JT gravity, J. High Energy Phys. 2021, 14 (2021)
CrossRef ADS Google scholar
[67]
S. K. Jian and B. Swingle, Chaos-protected locality, arXiv: 2109.03825 (2021)
[68]
K. X. Su, P. Zhang, and H. Zhai, Page curve from non-Markovianity, J. High Energy Phys. 2021, 156 (2021)
CrossRef ADS Google scholar
[69]
D. L. Nedel, Time dependent entanglement entropy in SYK models and page curve, Phys. Lett. B 817, 136340 (2021)
CrossRef ADS Google scholar
[70]
Y. M. Chen and P. F. Zhang Entanglement entropy of two coupled SYK models and eternal traversable wormhole, J. High Energy Phys. 2019, 33 (2019)
CrossRef ADS Google scholar
[71]
P. Dadras, Disentangling the thermofield-double state, J. High Energy Phys. 2022, 75 (2022)
CrossRef ADS Google scholar
[72]
S. W. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev. D 14(10), 2460 (1976)
CrossRef ADS Google scholar
[73]
M. A. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2002
[74]
Y. Li, X. Chen, and M. P. Fisher, Quantum Zeno effect and the many-body entanglement transition, Phys. Rev. B 98(20), 205136 (2018)
CrossRef ADS Google scholar
[75]
X. Cao, A. Tilloy, and A. D. Luca, Entanglement in a fermion chain under continuous monitoring, SciPost Phys. 7(2), 24 (2019)
CrossRef ADS Google scholar
[76]
Y. Li, X. Chen, and M. P. Fisher, Measurement-driven entanglement transition in hybrid quantum circuits, Phys. Rev. B 100(13), 134306 (2019)
CrossRef ADS Google scholar
[77]
B. Skinner, J. Ruhman, and A. Nahum, Measurement-induced phase transitions in the dynamics of entanglement, Phys. Rev. X 9(3), 031009 (2019)
CrossRef ADS Google scholar
[78]
A. Chan, R. M. Nandkishore, M. Pretko, and G. Smith, Unitary-projective entanglement dynamics, Phys. Rev. B 99(22), 224307 (2019)
CrossRef ADS Google scholar
[79]
Y. Bao, S. Choi, and E. Altman, Theory of the phase transition in random unitary circuits with measurements, Phys. Rev. B 101(10), 104301 (2020)
CrossRef ADS Google scholar
[80]
S. Choi, Y. Bao, X. L. Qi, and E. Altman, Quantum error correction in scrambling dynamics and measurement-induced phase transition, Phys. Rev. Lett. 125(3), 030505 (2020)
CrossRef ADS Google scholar
[81]
M. J. Gullans and D. A. Huse, Dynamical purification phase transition induced by quantum measurements, Phys. Rev. X 10(4), 041020 (2020)
CrossRef ADS Google scholar
[82]
M. J. Gullans and D. A. Huse, Scalable probes of measurement-induced criticality, Phys. Rev. Lett. 125(7), 070606 (2020)
CrossRef ADS Google scholar
[83]
C. M. Jian, Y. Z. You, R. Vasseur, and A. W. Ludwig, Measurement-induced criticality in random quantum circuits, Phys. Rev. B 101(10), 104302 (2020)
CrossRef ADS Google scholar
[84]
M. Szyniszewski, A. Romito, and H. Schomerus, Entanglement transition from variable-strength weak measurements, Phys. Rev. B 100(6), 064204 (2019)
CrossRef ADS Google scholar
[85]
A. Zabalo, M. J. Gullans, J. H. Wilson, S. Gopalakrishnan, D. A. Huse, and J. Pixley, Critical properties of the measurement-induced transition in random quantum circuits, Phys. Rev. B 101(6), 060301 (2020)
CrossRef ADS Google scholar
[86]
Q. Tang and W. Zhu, Measurement-induced phase transition: A case study in the nonintegrable model by densitymatrix renormalization group calculations, Phys. Rev. Res. 2(1), 013022 (2020)
CrossRef ADS Google scholar
[87]
L. Zhang, J. A. Reyes, S. Kourtis, C. Chamon, E. R. Mucciolo, and A. E. Ruckenstein, Nonuniversal entanglement level statistics in projection-driven quantum circuits, Phys. Rev. B 101(23), 235104 (2020)
CrossRef ADS Google scholar
[88]
S. Goto and I. Danshita, Measurement-induced transitions of the entanglement scaling law in ultracold gases with controllable dissipation, Phys. Rev. A 102(3), 033316 (2020)
CrossRef ADS Google scholar
[89]
C. M. Jian, B. Bauer, A. Keselman, and A. W. Ludwig, Criticality and entanglement in non-unitary quantum circuits and tensor networks of non-interacting fermions, arXiv: 2012.04666 (2020)
[90]
Y. Bao, S. Choi, and E. Altman, Symmetry enriched phases of quantum circuits, Ann. Phys. 2021, 168618 (2021)
CrossRef ADS Google scholar
[91]
O. Alberton, M. Buchhold, and S. Diehl, Entanglement transition in a monitored free fermion chain – from extended criticality to area law, Phys. Rev. Lett. 126, 170602 (2021)
CrossRef ADS Google scholar
[92]
X. Chen, Y. Li, M. P. A. Fisher, and A. Lucas, Emergent conformal symmetry in nonunitary random dynamics of free fermions, Phys. Rev. Research 2, 033017 (2020)
CrossRef ADS Google scholar
[93]
A. Nahum and B. Skinner, Entanglement and dynamics of diffusion-annihilation processes with Majorana defects, Phys. Rev. Research 2, 023288 (2020)
CrossRef ADS Google scholar
[94]
C. Liu, P. Zhang, and X. Chen, Non-unitary dynamics of Sachdev–Ye–Kitaev chain, SciPost Phys. 10, 048 (2021)
CrossRef ADS Google scholar
[95]
P. Zhang, S. K. Jian, C. Liu, and X. Chen, Emergent replica conformal symmetry in non-Hermitian SYK2 chains, Quantum 5, 579 (2021)
CrossRef ADS Google scholar
[96]
S. K. Jian, C. Liu, X. Chen, B. Swingle, and P. Zhang, Measurement-induced phase transition in the monitored Sachdev–Ye–Kitaev model, Phys. Rev. Lett. 127(14), 140601 (2021)
CrossRef ADS Google scholar
[97]
P. Zhang, C. Liu, S. K. Jian, and X. Chen, Universal entanglement transitions of free fermions with long-range non-unitary dynamics, arXiv: 2105.08895 (2021)
[98]
S. Sahu, S. K. Jian, G. Bentsen, and B. Swingle, Entanglement phases in large-N hybrid Brownian circuits with long-range couplings, arXiv: 2109.00013 (2021)
[99]
S. K. Jian, C. Liu, X. Chen, B. Swingle, and P. Zhang, Quantum error as an emergent magnetic field, arXiv: 2106.09635 (2021)
[100]
S. K. Jian and B. Swingle, Phase transition in von Neumann entanglement entropy from replica symmetry breaking, arXiv: 2108.11973 (2021)
[101]
S. Coleman, Aspects of Symmetry: Selected Erice Lectures, Cambridge University Press, 1988
[102]
A. Altland and B. D. Simons, Condensed Matter Field Theory, Cambridge University Press, 2010
CrossRef ADS Google scholar
[103]
C. M. Grinstead and J. L. Snell, Introduction to Probability, American Mathematical Society, 1997
[104]
A. Georges, O. Parcollet, and S. Sachdev, Quantum fluctuations of a nearly critical Heisenberg spin glass, Phys. Rev. B 63(13), 134406 (2001)
CrossRef ADS Google scholar
[105]
A. M. García-García, and J. J. Verbaarschot, Analytical spectral density of the Sachdev–Ye–Kitaev model at finite N, Phys. Rev. D 96(6), 066012 (2017)
CrossRef ADS Google scholar
[106]
D. Bagrets, A. Altland, and A. Kamenev, Sachdev– Ye–Kitaev model as Liouville quantum mechanics, Nucl. Phys. B 911, 191 (2016)
CrossRef ADS Google scholar
[107]
D. Stanford and E. Witten, Fermionic localization of the schwarzian theory, J. High Energy Phys. 2017(10), 1 (2017)
CrossRef ADS Google scholar
[108]
T. G. Mertens, G. J. Turiaci, and H. L. Verlinde, Solving the Schwarzian via the conformal bootstrap, J. High Energy Phys. 2017(8), 1 (2017)
CrossRef ADS Google scholar
[109]
Z. Yang, The quantum gravity dynamics of near extremal black holes, J. High Energy Phys. 2019, 205 (2019)
CrossRef ADS Google scholar
[110]
A. Kamenev, Field Theory of Non-Equilibrium Systems, Cambridge University Press, 2011
[111]
P. F. Zhang, Y. F. Gu, and A. Kitaev, An obstacle to sub-AdS holography for SYK-like models, J. High Energy Phys. 2021, 94 (2021)
CrossRef ADS Google scholar
[112]
D. N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71(9), 1291 (1993)
CrossRef ADS Google scholar
[113]
I. Kourkoulou and J. Maldacena, Pure states in the SYK model and nearly-AdS2 gravity, arXiv: 1707.02325 (2017)
[114]
W. Israel, Thermo-field dynamics of black holes, Phys. Lett. A 57(2), 107 (1976)
CrossRef ADS Google scholar
[115]
P. Łydzba, M. Rigol, and L. Vidmar, Eigenstate entanglement entropy in random quadratic Hamiltonians, Phys. Rev. Lett. 125(18), 180604 (2020)
CrossRef ADS Google scholar
[116]
B. Bhattacharjee, P. Nandy, and T. Pathak, Eigenstate capacity and page curve in fermionic Gaussian states, Phys. Rev. B 104(21), 214306 (2021)
CrossRef ADS Google scholar
[117]
H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A Math. Theor. 42(50), 504007 (2009)
CrossRef ADS Google scholar
[118]
P. J. Forrester, Quantum conductance problems and the Jacobi ensemble, J. Phys. Math. Gen. 39(22), 6861 (2006)
CrossRef ADS Google scholar
[119]
P. J. Forrester, Log-Gases and Random Matrices (LMS-34), Princeton University Press, 2010
CrossRef ADS Google scholar
[120]
E. Bianchi, L. Hackl, and M. Kieburg, Page curve for fermionic Gaussian states, Phys. Rev. B 103(24), L241118 (2021)
CrossRef ADS Google scholar
[121]
There are also studies on subsystem entropy of systems prepared in thermal ensembles and coupled to a bath [68].
[122]
P. Zhang, Evaporation dynamics of the Sachdev–Ye–Kitaev model, Phys. Rev. B 100(24), 245104 (2019)
CrossRef ADS Google scholar
[123]
A. Almheiri, A. Milekhin, and B. Swingle, Universal constraints on energy flow and SYK thermalization, arXiv: 1912.04912 (2019)
[124]
Similar calculations has been carried out in [61] for SYK chains.
[125]
M. P. Do Carmo, Differential geometry of curves and surfaces: Revised and updated second edition, Courier Dover Publications, 2016
[126]
We thank Yingfei Gu for explaining this example.
[127]
X. Dong, D. Harlow, and A. C. Wall, Reconstruction of bulk operators within the entanglement wedge in gauge-gravity duality, Phys. Rev. Lett. 117(2), 021601 (2016)
CrossRef ADS Google scholar
[128]
Y. Chen, Pulling out the island with modular flow, J. High Energy Phys. 2020, 33 (2020)
CrossRef ADS Google scholar
[129]
P. Hayden, S. Nezami, X. L. Qi, N. Thomas, M. Walter, and Z. Yang, Holographic duality from random tensor networks, J. High Energy Phys. 2016(11), 1 (2016)
CrossRef ADS Google scholar
[130]
A. Nahum, S. Vijay, and J. Haah, Operator spreading in random unitary circuits, Phys. Rev. X 8(2), 021014 (2018)
CrossRef ADS Google scholar
[131]
C. Von Keyserlingk, T. Rakovszky, F. Pollmann, and S. L. Sondhi, Operator hydrodynamics, OTOCs, and entanglement growth in systems without conservation laws, Phys. Rev. X 8(2), 021013 (2018)
CrossRef ADS Google scholar
[132]
Here HI is not positive semidefinite. However, we can always make it positive semidefinite by shifting a large enough constant.
[133]
H. Zhai, Ultracold Atomic Physics, Cambridge University Press, 2021
CrossRef ADS Google scholar
[134]
M. Ippoliti, T. Rakovszky, and V. Khemani, Fractal, logarithmic and volume-law entangled non-thermal steady states via spacetime duality, arXiv: 2103.06873 (2021)
CrossRef ADS Google scholar
[135]
X. Dong, The gravity dual of Rényi entropy, Nat. Commun. 7, 12472 (2016)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(4753 KB)

Accesses

Citations

Detail

Sections
Recommended

/