Quantum entanglement in the Sachdev–Ye–Kitaev model and its generalizations
Pengfei Zhang
Quantum entanglement in the Sachdev–Ye–Kitaev model and its generalizations
Entanglement is one of the most important concepts in quantum physics. We review recent progress in understanding the quantum entanglement in many-body systems using large-N solvable models: the Sachdev–Ye–Kitaev (SYK) model and its generalizations. We present the study of entanglement entropy in the original SYK model using three different approaches: the exact diagonalization, the eigenstate thermalization hypothesis, and the pathintegral representation. For coupled SYK models, the entanglement entropy shows linear growth and saturation at the thermal value. The saturation is related to replica wormholes in gravity. Finally, we consider the steady-state entanglement entropy of quantum many-body systems under repeated measurements. The traditional symmetry breaking in the enlarged replica space leads to the measurement-induced entanglement phase transition.
SYK model / entanglement entropy / large-N expansion
[1] |
R. Jozsa, Entanglement and quantum computation, arXiv: Quant-ph/9707034 (1997)
|
[2] |
R. Jozsa and N. Linden, On the role of entanglement in quantum-computational speed-up, Proc. Royal Soc. Lond. A 459(2036), 2011 (2003)
CrossRef
ADS
Google scholar
|
[3] |
S. Ding and Z. Jin, Review on the study of entanglement in quantum computation speedup, Chin. Sci. Bull. 52(16), 2161 (2007)
CrossRef
ADS
Google scholar
|
[4] |
A. Pal and D. A. Huse, Many-body localization phase transition, Phys. Rev. B 82(17), 174411 (2010)
CrossRef
ADS
Google scholar
|
[5] |
R. Nandkishore and D. A. Huse, Many-body localization and thermalization in quantum statistical mechanics, Annu. Rev. Condens. Matter Phys. 6(1), 15 (2015)
CrossRef
ADS
Google scholar
|
[6] |
D. A. Abanin, E. Altman, I. Bloch, and M. Serbyn, Many-body localization, thermalization, and entanglement, Rev. Mod. Phys. 91(2), 021001 (2019)
CrossRef
ADS
Google scholar
|
[7] |
J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43(4), 2046 (1991)
CrossRef
ADS
Google scholar
|
[8] |
M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50(2), 888 (1994)
CrossRef
ADS
Google scholar
|
[9] |
A. Kitaev and J. Preskill, Topological entanglement entropy, Phys. Rev. Lett. 96(11), 110404 (2006)
CrossRef
ADS
Google scholar
|
[10] |
M. Levin and X. G. Wen, Detecting topological order in a ground state wave function, Phys. Rev. Lett. 96(11), 110405 (2006)
CrossRef
ADS
Google scholar
|
[11] |
S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from the anti – de Sitter space/conformal field theory correspondence, Phys. Rev. Lett. 96(18), 181602 (2006)
CrossRef
ADS
Google scholar
|
[12] |
S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, J. High Energy Phys. 08, 045 (2006)
CrossRef
ADS
Google scholar
|
[13] |
A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, J. High Energy Phys. 2013, 90 (2013)
CrossRef
ADS
Google scholar
|
[14] |
V. E. Hubeny, M. Rangamani, and T. Takayanagi, A covariant holographic entanglement entropy proposal, J. High Energy Phys. 07, 062 (2007)
CrossRef
ADS
Google scholar
|
[15] |
T. Faulkner, A. Lewkowycz, and J. Maldacena, Quantum corrections to holographic entanglement entropy, J. High Energy Phys. 2013, 74 (2013)
CrossRef
ADS
Google scholar
|
[16] |
N. Engelhardt and A. C. Wall, Quantum extremal surfaces: Holographic entanglement entropy beyond the classical regime, J. High Energy Phys. 2015, 73 (2015)
CrossRef
ADS
Google scholar
|
[17] |
G. Penington, Entanglement wedge reconstruction and the information paradox, J. High Energy Phys. 2020(9), 1 (2020)
CrossRef
ADS
Google scholar
|
[18] |
A. Almheiri, N. Engelhardt, D. Marolf, and H. Maxfield, The entropy of bulk quantum fields and the entanglement wedge of an evaporating black hole, J. High Energy Phys. 2019(12), 1 (2019)
CrossRef
ADS
Google scholar
|
[19] |
A. Almheiri, R. Mahajan, J. Maldacena, and Y. Zhao, The Page curve of Hawking radiation from semiclassical geometry, arXiv: 1908.10996 (2019)
CrossRef
ADS
Google scholar
|
[20] |
A. Almheiri, R. Mahajan, and J. Maldacena, Islands outside the horizon, arXiv: 1910.11077 (2019)
|
[21] |
A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian, and A. Tajdini, Replica wormholes and the entropy of Hawking radiation, arXiv: 1911.12333 (2019)
CrossRef
ADS
Google scholar
|
[22] |
G. Penington, S. H. Shenker, D. Stanford, and Z. Yang, Replica wormholes and the black hole interior, arXiv: 1911.11977 (2019)
|
[23] |
P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42, 504005 (2009)
CrossRef
ADS
Google scholar
|
[24] |
M. Rangamani and T. Takayanagi, in Holographic Entanglement Entropy, Springer, 2017, pp 35–47
CrossRef
ADS
Google scholar
|
[25] |
M. A. Metlitski, C. A. Fuertes, and S. Sachdev, Entanglement entropy in the O(N) model, Phys. Rev. B 80(11), 115122 (2009)
CrossRef
ADS
Google scholar
|
[26] |
S. Whitsitt, W. Witczak-Krempa, and S. Sachdev, Entanglement entropy of large-N Wilson–Fisher conformal field theory, Phys. Rev. B 95(4), 045148 (2017)
CrossRef
ADS
Google scholar
|
[27] |
W. Donnelly, S. Timmerman, and N. Valdes-Meller, Entanglement entropy and the large N expansion of two-dimensional Yang–Mills theory, arXiv: 1911.09302 (2019)
|
[28] |
A. Kitaev, in: Talk given at the Fundamental Physics Prize Symposium, Vol. 10 (2014)
|
[29] |
S. Sachdev and J. Ye, Gapless spin-fluid ground state in a random quantum Heisenberg magnet, Phys. Rev. Lett. 70(21), 3339 (1993)
CrossRef
ADS
Google scholar
|
[30] |
J. Maldacena and D. Stanford, Remarks on the Sachdev–Ye–Kitaev model, Phys. Rev. D 94(10), 106002 (2016)
CrossRef
ADS
Google scholar
|
[31] |
J. Maldacena, D. Stanford, and Z. Yang, Conformal symmetry and its breaking in two dimensional nearly Anti-de Sitter space, Prog. Theor. Exp. Phys. 2016(12), 12C104 (2016)
CrossRef
ADS
Google scholar
|
[32] |
A. Kitaev, and S. J. Suh, The soft mode in the Sachdev–Ye–Kitaev model and its gravity dual, J. High Energy Phys. 2018(5), 1 (2018)
CrossRef
ADS
Google scholar
|
[33] |
J. Maldacena, S. H. Shenker, and D. Stanford, A bound on chaos, J. High Energy Phys. 2016(8), 1 (2016)
CrossRef
ADS
Google scholar
|
[34] |
A. Eberlein, V. Kasper, S. Sachdev, and J. Steinberg, Quantum quench of the Sachdev–Ye–Kitaev model, Phys. Rev. B 96(20), 205123 (2017)
CrossRef
ADS
Google scholar
|
[35] |
J. C. Louw and S. Kehrein, Thermalization of many many-body interacting SYK models, Phys. Rev. B 105, 075117 (2022)
CrossRef
ADS
Google scholar
|
[36] |
P. Zhang and Y. Chen, Violation and revival of Kramers’ degeneracy in open quantum systems, arXiv: 2108.05493 (2021)
|
[37] |
D. Chowdhury, A. Georges, O. Parcollet, and S. Sachdev, Sachdev–Ye–Kitaev models and beyond: A window into non-Fermi liquids, arXiv: 2109.05037 (2021).
|
[38] |
R. A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen, and S. Sachdev, Thermoelectric transport in disordered metals without quasiparticles: The Sachdev–Ye–Kitaev models and holography, Phys. Rev. B 95(15), 155131 (2017)
CrossRef
ADS
Google scholar
|
[39] |
Y. Gu, A. Kitaev, S. Sachdev, and G. Tarnopolsky, Notes on the complex Sachdev–Ye–Kitaev model, J. High Energy Phys. 02, 157 (2020)
CrossRef
ADS
Google scholar
|
[40] |
P. Chaturvedi, Y. Gu, W. Song, and B. Yu, A note on the complex SYK model and warped CFTs, J. High Energy Phys. 2018, 101 (2018)
CrossRef
ADS
Google scholar
|
[41] |
K. Bulycheva, A note on the SYK model with complex fermions, J. High Energy Phys. 2017(12), 1 (2017)
CrossRef
ADS
Google scholar
|
[42] |
P. Saad, S. H. Shenker, and D. Stanford, A semiclassical ramp in SYK and in gravity, arXiv: 1806.06840 (2018)
|
[43] |
C. Sunderhauf, L. Piroli, X. L. Qi, N. Schuch, and J. I. Cirac, Quantum chaos in the Brownian SYK model with large finite N: OTOCs and tripartite information, J. High Energy Phys. 2019(11), 1 (2019)
CrossRef
ADS
Google scholar
|
[44] |
Y. Gu, X. L. Qi, and D. Stanford, Local criticality, diffusion and chaos in generalized Sachdev–Ye–Kitaev models, J. High Energy Phys. 2017, 125 (2017)
CrossRef
ADS
Google scholar
|
[45] |
Y. Gu, A. Lucas, and X.-L. Qi, Energy diffusion and the butterfly effect in inhomogeneous Sachdev–Ye–Kitaev chains, SciPost Phys. 2, 018 (2017)
CrossRef
ADS
Google scholar
|
[46] |
S. Banerjee and E. Altman, Solvable model for a dynamical quantum phase transition from fast to slow scrambling, Phys. Rev. B 95(13), 134302 (2017)
CrossRef
ADS
Google scholar
|
[47] |
X. Chen, R. Fan, Y. Chen, H. Zhai, and P. Zhang, Competition between chaotic and nonchaotic phases in a quadratically coupled Sachdev–Ye–Kitaev model, Phys. Rev. Lett. 119(20), 207603 (2017)
CrossRef
ADS
Google scholar
|
[48] |
X. Y. Song, C. M. Jian, and L. Balents, Strongly correlated metal built from Sachdev–Ye–Kitaev models, Phys. Rev. Lett. 119(21), 216601 (2017)
CrossRef
ADS
Google scholar
|
[49] |
S. K. Jian and H. Yao, Solvable Sachdev–Ye–Kitaev models in higher dimensions: From diffusion to many-body localization, Phys. Rev. Lett. 119(20), 206602 (2017)
CrossRef
ADS
Google scholar
|
[50] |
Y. Chen, H. Zhai, and P. Zhang, Tunable quantum chaos in the Sachdev–Ye–Kitaev model coupled to a thermal bath, J. High Energy Phys. 2017, 150 (2017)
CrossRef
ADS
Google scholar
|
[51] |
P. Zhang, Dispersive Sachdev–Ye–Kitaev model: Band structure and quantum chaos, Phys. Rev. B 96(20), 205138 (2017)
CrossRef
ADS
Google scholar
|
[52] |
Z. Bi, C. M. Jian, Y. Z. You, K. A. Pawlak, and C. Xu, Instability of the non-Fermi-liquid state of the Sachdev–Ye–Kitaev model, Phys. Rev. B 95(20), 205105 (2017)
CrossRef
ADS
Google scholar
|
[53] |
P. Narayan and J. Yoon, SYK-like tensor models on the lattice, J. High Energy Phys. 2017, 83 (2017)
CrossRef
ADS
Google scholar
|
[54] |
C. Liu, X. Chen, and L. Balents, Quantum entanglement of the Sachdev–Ye–Kitaev models, Phys. Rev. B 97(24), 245126 (2018)
CrossRef
ADS
Google scholar
|
[55] |
W. Fu and S. Sachdev, Numerical study of fermion and boson models with infinite-range random interactions, Phys. Rev. B 94(3), 035135 (2016)
CrossRef
ADS
Google scholar
|
[56] |
Y. Huang and Y. Gu, Eigenstate entanglement in the Sachdev–Ye–Kitaev model, Phys. Rev. D 100(4), 041901 (2019)
CrossRef
ADS
Google scholar
|
[57] |
P. Zhang, C. Liu, and X. Chen, Subsystem Rényi entropy of thermal ensembles for SYK-like models, SciPost Phys. 8, 094 (2020)
CrossRef
ADS
Google scholar
|
[58] |
P. Zhang, Entanglement entropy and its quench dynamics for pure states of the Sachdev–Ye–Kitaev model, J. High Energy Phys. 06, 143 (2020)
CrossRef
ADS
Google scholar
|
[59] |
A. Haldar, S. Bera, and S. Banerjee, Rényi entanglement entropy of Fermi and non-Fermi liquids: Sachdev–Ye–Kitaev model and dynamical mean field theories, Phys. Rev. Res. 2(3), 033505 (2020)
CrossRef
ADS
Google scholar
|
[60] |
J. Kudler-Flam, R. Sohal, and L. Nie, Information scrambling with conservation laws, arXiv: 2107.04043 (2021)
CrossRef
ADS
Google scholar
|
[61] |
Y. Gu, A. Lucas, and X. L. Qi, Spread of entanglement in a Sachdev–Ye–Kitaev chain, J. High Energy Phys. 2017, 120 (2017)
CrossRef
ADS
Google scholar
|
[62] |
R. Sohal, L. Nie, X. Q. Sun, and E. Fradkin, Thermalization of randomly coupled SYK models, J. Stat. Mech. 2022(1), 013103 (2022)
CrossRef
ADS
Google scholar
|
[63] |
Y. Chen, X. L. Qi, and P. Zhang, Replica wormhole and information retrieval in the SYK model coupled to Majorana chains, J. High Energy Phys. 2020, 121 (2020)
CrossRef
ADS
Google scholar
|
[64] |
Y. Chen, Entropy linear response theory with non-Markovian bath, J. High Energy Phys. 2021, 215 (2021)
CrossRef
ADS
Google scholar
|
[65] |
P. Dadras and A. Kitaev, Perturbative calculations of entanglement entropy, J. High Energy Phys. 2021(3), 1 (2021)
CrossRef
ADS
Google scholar
|
[66] |
S. K. Jian, B. Swingle, and Z. Y. Xian, Complexity growth of operators in the SYK model and in JT gravity, J. High Energy Phys. 2021, 14 (2021)
CrossRef
ADS
Google scholar
|
[67] |
S. K. Jian and B. Swingle, Chaos-protected locality, arXiv: 2109.03825 (2021)
|
[68] |
K. X. Su, P. Zhang, and H. Zhai, Page curve from non-Markovianity, J. High Energy Phys. 2021, 156 (2021)
CrossRef
ADS
Google scholar
|
[69] |
D. L. Nedel, Time dependent entanglement entropy in SYK models and page curve, Phys. Lett. B 817, 136340 (2021)
CrossRef
ADS
Google scholar
|
[70] |
Y. M. Chen and P. F. Zhang Entanglement entropy of two coupled SYK models and eternal traversable wormhole, J. High Energy Phys. 2019, 33 (2019)
CrossRef
ADS
Google scholar
|
[71] |
P. Dadras, Disentangling the thermofield-double state, J. High Energy Phys. 2022, 75 (2022)
CrossRef
ADS
Google scholar
|
[72] |
S. W. Hawking, Breakdown of predictability in gravitational collapse, Phys. Rev. D 14(10), 2460 (1976)
CrossRef
ADS
Google scholar
|
[73] |
M. A. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2002
|
[74] |
Y. Li, X. Chen, and M. P. Fisher, Quantum Zeno effect and the many-body entanglement transition, Phys. Rev. B 98(20), 205136 (2018)
CrossRef
ADS
Google scholar
|
[75] |
X. Cao, A. Tilloy, and A. D. Luca, Entanglement in a fermion chain under continuous monitoring, SciPost Phys. 7(2), 24 (2019)
CrossRef
ADS
Google scholar
|
[76] |
Y. Li, X. Chen, and M. P. Fisher, Measurement-driven entanglement transition in hybrid quantum circuits, Phys. Rev. B 100(13), 134306 (2019)
CrossRef
ADS
Google scholar
|
[77] |
B. Skinner, J. Ruhman, and A. Nahum, Measurement-induced phase transitions in the dynamics of entanglement, Phys. Rev. X 9(3), 031009 (2019)
CrossRef
ADS
Google scholar
|
[78] |
A. Chan, R. M. Nandkishore, M. Pretko, and G. Smith, Unitary-projective entanglement dynamics, Phys. Rev. B 99(22), 224307 (2019)
CrossRef
ADS
Google scholar
|
[79] |
Y. Bao, S. Choi, and E. Altman, Theory of the phase transition in random unitary circuits with measurements, Phys. Rev. B 101(10), 104301 (2020)
CrossRef
ADS
Google scholar
|
[80] |
S. Choi, Y. Bao, X. L. Qi, and E. Altman, Quantum error correction in scrambling dynamics and measurement-induced phase transition, Phys. Rev. Lett. 125(3), 030505 (2020)
CrossRef
ADS
Google scholar
|
[81] |
M. J. Gullans and D. A. Huse, Dynamical purification phase transition induced by quantum measurements, Phys. Rev. X 10(4), 041020 (2020)
CrossRef
ADS
Google scholar
|
[82] |
M. J. Gullans and D. A. Huse, Scalable probes of measurement-induced criticality, Phys. Rev. Lett. 125(7), 070606 (2020)
CrossRef
ADS
Google scholar
|
[83] |
C. M. Jian, Y. Z. You, R. Vasseur, and A. W. Ludwig, Measurement-induced criticality in random quantum circuits, Phys. Rev. B 101(10), 104302 (2020)
CrossRef
ADS
Google scholar
|
[84] |
M. Szyniszewski, A. Romito, and H. Schomerus, Entanglement transition from variable-strength weak measurements, Phys. Rev. B 100(6), 064204 (2019)
CrossRef
ADS
Google scholar
|
[85] |
A. Zabalo, M. J. Gullans, J. H. Wilson, S. Gopalakrishnan, D. A. Huse, and J. Pixley, Critical properties of the measurement-induced transition in random quantum circuits, Phys. Rev. B 101(6), 060301 (2020)
CrossRef
ADS
Google scholar
|
[86] |
Q. Tang and W. Zhu, Measurement-induced phase transition: A case study in the nonintegrable model by densitymatrix renormalization group calculations, Phys. Rev. Res. 2(1), 013022 (2020)
CrossRef
ADS
Google scholar
|
[87] |
L. Zhang, J. A. Reyes, S. Kourtis, C. Chamon, E. R. Mucciolo, and A. E. Ruckenstein, Nonuniversal entanglement level statistics in projection-driven quantum circuits, Phys. Rev. B 101(23), 235104 (2020)
CrossRef
ADS
Google scholar
|
[88] |
S. Goto and I. Danshita, Measurement-induced transitions of the entanglement scaling law in ultracold gases with controllable dissipation, Phys. Rev. A 102(3), 033316 (2020)
CrossRef
ADS
Google scholar
|
[89] |
C. M. Jian, B. Bauer, A. Keselman, and A. W. Ludwig, Criticality and entanglement in non-unitary quantum circuits and tensor networks of non-interacting fermions, arXiv: 2012.04666 (2020)
|
[90] |
Y. Bao, S. Choi, and E. Altman, Symmetry enriched phases of quantum circuits, Ann. Phys. 2021, 168618 (2021)
CrossRef
ADS
Google scholar
|
[91] |
O. Alberton, M. Buchhold, and S. Diehl, Entanglement transition in a monitored free fermion chain – from extended criticality to area law, Phys. Rev. Lett. 126, 170602 (2021)
CrossRef
ADS
Google scholar
|
[92] |
X. Chen, Y. Li, M. P. A. Fisher, and A. Lucas, Emergent conformal symmetry in nonunitary random dynamics of free fermions, Phys. Rev. Research 2, 033017 (2020)
CrossRef
ADS
Google scholar
|
[93] |
A. Nahum and B. Skinner, Entanglement and dynamics of diffusion-annihilation processes with Majorana defects, Phys. Rev. Research 2, 023288 (2020)
CrossRef
ADS
Google scholar
|
[94] |
C. Liu, P. Zhang, and X. Chen, Non-unitary dynamics of Sachdev–Ye–Kitaev chain, SciPost Phys. 10, 048 (2021)
CrossRef
ADS
Google scholar
|
[95] |
P. Zhang, S. K. Jian, C. Liu, and X. Chen, Emergent replica conformal symmetry in non-Hermitian SYK2 chains, Quantum 5, 579 (2021)
CrossRef
ADS
Google scholar
|
[96] |
S. K. Jian, C. Liu, X. Chen, B. Swingle, and P. Zhang, Measurement-induced phase transition in the monitored Sachdev–Ye–Kitaev model, Phys. Rev. Lett. 127(14), 140601 (2021)
CrossRef
ADS
Google scholar
|
[97] |
P. Zhang, C. Liu, S. K. Jian, and X. Chen, Universal entanglement transitions of free fermions with long-range non-unitary dynamics, arXiv: 2105.08895 (2021)
|
[98] |
S. Sahu, S. K. Jian, G. Bentsen, and B. Swingle, Entanglement phases in large-N hybrid Brownian circuits with long-range couplings, arXiv: 2109.00013 (2021)
|
[99] |
S. K. Jian, C. Liu, X. Chen, B. Swingle, and P. Zhang, Quantum error as an emergent magnetic field, arXiv: 2106.09635 (2021)
|
[100] |
S. K. Jian and B. Swingle, Phase transition in von Neumann entanglement entropy from replica symmetry breaking, arXiv: 2108.11973 (2021)
|
[101] |
S. Coleman, Aspects of Symmetry: Selected Erice Lectures, Cambridge University Press, 1988
|
[102] |
A. Altland and B. D. Simons, Condensed Matter Field Theory, Cambridge University Press, 2010
CrossRef
ADS
Google scholar
|
[103] |
C. M. Grinstead and J. L. Snell, Introduction to Probability, American Mathematical Society, 1997
|
[104] |
A. Georges, O. Parcollet, and S. Sachdev, Quantum fluctuations of a nearly critical Heisenberg spin glass, Phys. Rev. B 63(13), 134406 (2001)
CrossRef
ADS
Google scholar
|
[105] |
A. M. García-García, and J. J. Verbaarschot, Analytical spectral density of the Sachdev–Ye–Kitaev model at finite N, Phys. Rev. D 96(6), 066012 (2017)
CrossRef
ADS
Google scholar
|
[106] |
D. Bagrets, A. Altland, and A. Kamenev, Sachdev– Ye–Kitaev model as Liouville quantum mechanics, Nucl. Phys. B 911, 191 (2016)
CrossRef
ADS
Google scholar
|
[107] |
D. Stanford and E. Witten, Fermionic localization of the schwarzian theory, J. High Energy Phys. 2017(10), 1 (2017)
CrossRef
ADS
Google scholar
|
[108] |
T. G. Mertens, G. J. Turiaci, and H. L. Verlinde, Solving the Schwarzian via the conformal bootstrap, J. High Energy Phys. 2017(8), 1 (2017)
CrossRef
ADS
Google scholar
|
[109] |
Z. Yang, The quantum gravity dynamics of near extremal black holes, J. High Energy Phys. 2019, 205 (2019)
CrossRef
ADS
Google scholar
|
[110] |
A. Kamenev, Field Theory of Non-Equilibrium Systems, Cambridge University Press, 2011
|
[111] |
P. F. Zhang, Y. F. Gu, and A. Kitaev, An obstacle to sub-AdS holography for SYK-like models, J. High Energy Phys. 2021, 94 (2021)
CrossRef
ADS
Google scholar
|
[112] |
D. N. Page, Average entropy of a subsystem, Phys. Rev. Lett. 71(9), 1291 (1993)
CrossRef
ADS
Google scholar
|
[113] |
I. Kourkoulou and J. Maldacena, Pure states in the SYK model and nearly-AdS2 gravity, arXiv: 1707.02325 (2017)
|
[114] |
W. Israel, Thermo-field dynamics of black holes, Phys. Lett. A 57(2), 107 (1976)
CrossRef
ADS
Google scholar
|
[115] |
P. Łydzba, M. Rigol, and L. Vidmar, Eigenstate entanglement entropy in random quadratic Hamiltonians, Phys. Rev. Lett. 125(18), 180604 (2020)
CrossRef
ADS
Google scholar
|
[116] |
B. Bhattacharjee, P. Nandy, and T. Pathak, Eigenstate capacity and page curve in fermionic Gaussian states, Phys. Rev. B 104(21), 214306 (2021)
CrossRef
ADS
Google scholar
|
[117] |
H. Casini and M. Huerta, Entanglement entropy in free quantum field theory, J. Phys. A Math. Theor. 42(50), 504007 (2009)
CrossRef
ADS
Google scholar
|
[118] |
P. J. Forrester, Quantum conductance problems and the Jacobi ensemble, J. Phys. Math. Gen. 39(22), 6861 (2006)
CrossRef
ADS
Google scholar
|
[119] |
P. J. Forrester, Log-Gases and Random Matrices (LMS-34), Princeton University Press, 2010
CrossRef
ADS
Google scholar
|
[120] |
E. Bianchi, L. Hackl, and M. Kieburg, Page curve for fermionic Gaussian states, Phys. Rev. B 103(24), L241118 (2021)
CrossRef
ADS
Google scholar
|
[121] |
There are also studies on subsystem entropy of systems prepared in thermal ensembles and coupled to a bath [68].
|
[122] |
P. Zhang, Evaporation dynamics of the Sachdev–Ye–Kitaev model, Phys. Rev. B 100(24), 245104 (2019)
CrossRef
ADS
Google scholar
|
[123] |
A. Almheiri, A. Milekhin, and B. Swingle, Universal constraints on energy flow and SYK thermalization, arXiv: 1912.04912 (2019)
|
[124] |
Similar calculations has been carried out in [61] for SYK chains.
|
[125] |
M. P. Do Carmo, Differential geometry of curves and surfaces: Revised and updated second edition, Courier Dover Publications, 2016
|
[126] |
We thank Yingfei Gu for explaining this example.
|
[127] |
X. Dong, D. Harlow, and A. C. Wall, Reconstruction of bulk operators within the entanglement wedge in gauge-gravity duality, Phys. Rev. Lett. 117(2), 021601 (2016)
CrossRef
ADS
Google scholar
|
[128] |
Y. Chen, Pulling out the island with modular flow, J. High Energy Phys. 2020, 33 (2020)
CrossRef
ADS
Google scholar
|
[129] |
P. Hayden, S. Nezami, X. L. Qi, N. Thomas, M. Walter, and Z. Yang, Holographic duality from random tensor networks, J. High Energy Phys. 2016(11), 1 (2016)
CrossRef
ADS
Google scholar
|
[130] |
A. Nahum, S. Vijay, and J. Haah, Operator spreading in random unitary circuits, Phys. Rev. X 8(2), 021014 (2018)
CrossRef
ADS
Google scholar
|
[131] |
C. Von Keyserlingk, T. Rakovszky, F. Pollmann, and S. L. Sondhi, Operator hydrodynamics, OTOCs, and entanglement growth in systems without conservation laws, Phys. Rev. X 8(2), 021013 (2018)
CrossRef
ADS
Google scholar
|
[132] |
Here HI is not positive semidefinite. However, we can always make it positive semidefinite by shifting a large enough constant.
|
[133] |
H. Zhai, Ultracold Atomic Physics, Cambridge University Press, 2021
CrossRef
ADS
Google scholar
|
[134] |
M. Ippoliti, T. Rakovszky, and V. Khemani, Fractal, logarithmic and volume-law entangled non-thermal steady states via spacetime duality, arXiv: 2103.06873 (2021)
CrossRef
ADS
Google scholar
|
[135] |
X. Dong, The gravity dual of Rényi entropy, Nat. Commun. 7, 12472 (2016)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |