Galactic cosmic ray propagation: sub-PeV diffuse gamma-ray and neutrino emission

Bing-Qiang Qiao, Wei Liu, Meng-Jie Zhao, Xiao-Jun Bi, Yi-Qing Guo

PDF(546 KB)
PDF(546 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (4) : 44501. DOI: 10.1007/s11467-022-1160-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Galactic cosmic ray propagation: sub-PeV diffuse gamma-ray and neutrino emission

Author information +
History +

Abstract

The Tibet ASγ experiment just reported their measurement of sub-PeV diffuse gamma-ray emission from the Galactic disk, with the highest energy up to 957 TeV. These diffuse gamma rays are most likely the hadronic origin by cosmic ray (CR) interaction with interstellar gas in the galaxy. This measurement provides direct evidence to the hypothesis that the Galactic Cosmic Rays (GCRs) can be accelerated beyond PeV energies. In this work, we try to explain the sub-PeV diffuse gamma-ray spectrum with different CR propagation models. We find that there is a tension between the sub-PeV diffuse gamma-ray and the local CR spectrum. To describe the sub-PeV diffuse gamma-ray flux, it generally requires larger local CR flux than measurement in the knee region. We further calculate the PeV neutrino flux from the CR propagation model. Even all of these sub-PeV diffuse gamma rays originate from the propagation, the Galactic Neutrinos (GNs) only account for less than ~15% of observed flux, most of which are still from extragalactic sources.

Graphical abstract

Keywords

Galactic cosmic ray / diffuse gamma ray / neutrino

Cite this article

Download citation ▾
Bing-Qiang Qiao, Wei Liu, Meng-Jie Zhao, Xiao-Jun Bi, Yi-Qing Guo. Galactic cosmic ray propagation: sub-PeV diffuse gamma-ray and neutrino emission. Front. Phys., 2022, 17(4): 44501 https://doi.org/10.1007/s11467-022-1160-7

References

[1]
M. Nagano , T. Hara , Y. Hatano , N. Hayashida , S. Kawaguchi , K. Kamata , T. Kifune , and Y. Mizumoto , Energy spectrum of primary cosmic rays between 1014.5 and 1018 eV, J. Phys. G 10 (9), 1295 (1984)
CrossRef ADS Google scholar
[2]
M. A. K. Glasmacher , M. A. Catanese , M. C. Chantell , et al., The cosmic ray energy spectrum between 1014 and 1016 eV, Astropart. Phys. 10 (4), 291 (1999)
CrossRef ADS Google scholar
[3]
M. Aglietta , B. Alessandro , P. Antonioli , F. Arneodo , L. Bergamasco , et al., The cosmic ray primary composition in the “knee” region through the EAS electromagnetic and muon measurements at EAS-TOP, Astropart. Phys. 21 (6), 583 (2004)
CrossRef ADS Google scholar
[4]
T. Antoni , W. D. Apel , A. F. Badea , K. Bekk , A. Bercuci , et al., KASCADE measurements of energy spectra for elemental groups of cosmic rays: Results and open problems, Astropart. Phys. 24 (2), 1-2 (2005)
CrossRef ADS Google scholar
[5]
M. Amenomori , X. J. Bi , D. Chen , S. W. Cui , Danzengluobu, et al., The all-particle spectrum of primary cosmic rays in the wide energy range from 1014 to 1017 eV observed with the Tibet-III air-shower array, Astrophys. J. 678 (2), 1165 (2008)
CrossRef ADS Google scholar
[6]
K. H. Kampert and M. Unger , Measurements of the cosmic ray composition with air shower experiments, Astropart. Phys. 35 (10), 660 (2012)
CrossRef ADS Google scholar
[7]
R. Aloisio , P. Blasi , I. De Mitri , and S. Petrera , Selected topics in cosmic ray physics, arXiv: 1707.06147 (2017)
[8]
W. Baade and F. Zwicky , Cosmic rays from super-novae, Contributions from the Mount Wilson Observatory 3, 79 (1934)
[9]
R. Abbasi , Y. Abdou , T. Abu-Zayyad , M. Ackermann , J. Adams , et al., Observation of anisotropy in the Galactic cosmic-ray arrival directions at 400 TeV with IceCube, Astrophys. J. 746 (1), 33 (2012)
CrossRef ADS Google scholar
[10]
M. G. Aartsen , K. Abraham , M. Ackermann , J. Adams , J. A. Aguilar , et al., Anisotropy in cosmic-ray arrival directions in the southern hemisphere based on six years of data from the IceCube detector, Astrophys. J. 826 (2), 220 (2016)
CrossRef ADS Google scholar
[11]
M. Amenomori , X. J. Bi , D. Chen , T. L. Chen , W. Y. Chen , et al., Northern sky Galactic cosmic ray anisotropy between 10 and 1000 TeV with the Tibet air shower array, Astrophys. J. 836 (2), 153 (2017)
CrossRef ADS Google scholar
[12]
HESS Collaboration, Acceleration of petaelectronvolt protons in the Galactic centre, Nature 531 (7595), 476 (2016)
CrossRef ADS Google scholar
[13]
The Tibet ASγ Collaboration, M. Amenomori, Y. W. Bao, et al., Potential PeVatron supernova remnant G106.3+2.7 seen in the highest-energy gamma rays, Nat. Astron. 5, 460 (2021)
CrossRef ADS Google scholar
[14]
A. U. Abeysekara , A. Albert , R. Alfaro , et al., HAWC observations of the acceleration of very-high-energy cosmic rays in the Cygnus Cocoon, arXiv: 2103.06820 (2021)
[15]
DAMPE Collaboration, Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons, Nature 552 (7683), 63 (2017)
CrossRef ADS Google scholar
[16]
D. Kerszberg for the HESS Collaboration, The cosmic-ray electron spectrum measured with H.E.S.S. (2017)
[17]
A. Borione , M. A. Catanese , M. C. Chantell , C. E. Covault , J. W. Cronin , et al., Constraints on gamma-ray emission from the Galactic plane at 300 TeV, Astrophys. J. 493 (1), 175 (1998)
CrossRef ADS Google scholar
[18]
W. D. Apel , J. C. Arteaga-Velázquez , K. Bekk , M. Bertaina , J. Blümer , et al., KASCADE-Grande limits on the isotropic diffuse gamma-ray flux between 100 TeV and 1 EeV, Astrophys. J. 848 (1), 1 (2017)
CrossRef ADS Google scholar
[19]
M. Amenomori , Y. W. Bao , X. J. Bi , D. Chen , T. L. Chen , et al., First detection of sub-PeV diffuse gamma rays from the Galactic disk: Evidence for ubiquitous Galactic cosmic rays beyond PeV energies, Phys. Rev. Lett. 126 (14), 141101 (2021)
CrossRef ADS Google scholar
[20]
R. Y. Liu and X. Y. Wang , Origin of Galactic sub PeV diffuse gamma-ray emission: Constraints from high-energy neutrino observations, Astrophys. J. Lett. 914 (1), L7 (2021)
CrossRef ADS Google scholar
[21]
V. Vecchiotti , F. Zuccarini , F. L. Villante , and G. Pagliaroli , Unresolved sources naturally contribute to PeV γ-ray diffuse emission observed by Tibet ASγ, arXiv: 2107.14584 (2021)
[22]
S. Koldobskiy , A. Neronov , and D. Semikoz , Pion decay model of the Tibet-ASγ PeV gamma-ray signal, Phys. Rev. D 104 (4), 043010 (2021)
CrossRef ADS Google scholar
[23]
P. P. Zhang , B. Q. Qiao , Q. Yuan , S. W. Cui , and Y. Q. Guo , Ultrahigh-energy diffuse gamma ray emission from cosmic-ray interactions with the medium surrounding acceleration sources, Phys. Rev. D 105 (2), 023002 (2022)
CrossRef ADS Google scholar
[24]
IceCube Collaboration, Evidence for high-energy extraterrestrial neutrinos at the IceCube detector, Science 342 (6161), 1242856 (2013)
CrossRef ADS Google scholar
[25]
M. G. Aartsen , R. Abbasi , Y. Abdou , M. Ackermann , J. Adams , et al., First observation of PeV-energy neutrinos with IceCube, Phys. Rev. Lett. 111 (2), 021103 (2013)
CrossRef ADS Google scholar
[26]
M. G. Aartsen , M. Ackermann , J. Adams , J. A. Aguilar , M. Ahlers , et al., Observation of high-energy astrophysical neutrinos in three years of IceCube data, Phys. Rev. Lett. 113 (10), 101101 (2014)
CrossRef ADS Google scholar
[27]
M. G. Aartsen , M. Ackermann , J. Adams , J. A. Aguilar , M. Ahlers , et al., Time integrated neutrino source searches with 10 years of IceCube data, Phys. Rev. Lett. 124 (5), 051103 (2020)
CrossRef ADS Google scholar
[28]
M. Aartsen , M. Ackermann , J. Adams , J. A. Aguilar , M. Ahlers , et al., Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A, Science 361 (6398), eaat1378 (2018)
CrossRef ADS Google scholar
[29]
M. Aartsen , M. Ackermann , J. Adams , J. A. Aguilar , M. Ahlers , et al., Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert, Science 361 (6398), 147 (2018)
CrossRef ADS Google scholar
[30]
M. G. Aartsen , K. Abraham , M. Ackermann , J. Adams , J. A. Aguilar , et al., A combined maximum-likelihood analysis of the high energy astrophysical neutrino flux measured with Ice Cube, Astrophys. J. 809 (1), 98 (2015)
CrossRef ADS Google scholar
[31]
Y. Q. Guo , H. B. Hu , Q. Yuan , Z. Tian , and X. J. Gao , Pinpointing the knee of cosmic rays with diffuse PeV γ-rays and neutrinos, Astrophys. J. 795 (1), 100 (2014)
CrossRef ADS Google scholar
[32]
P. Lipari and S. Vernetto , Diffuse Galactic gamma-ray flux at very high energy, Phys. Rev. D 98 (4), 043003 (2018)
CrossRef ADS Google scholar
[33]
Q. Yuan , S. J. Lin , K. Fang , and X. J. Bi , Propagation of cosmic rays in the AMS-02 era, Phys. Rev. D 95 (8), 083007 (2017)
CrossRef ADS Google scholar
[34]
O. Adriani , G. C. Barbarino , G. A. Bazilevskaya , R. Bellotti , M. Boezio , et al., PAMELA measurements of cosmicray proton and helium spectra, Science 332 (6025), 69 (2011)
CrossRef ADS Google scholar
[35]
P. Blasi and E. Amato , Diffusive propagation of cos mic rays from supernova remnants in the Galaxy (II): Anisotropy, J. Cosmol. Astropart. Phys. 2012 (1), 11 (2012)
CrossRef ADS Google scholar
[36]
W. Liu , X. J. Bi , S. J. Lin , B. B. Wang , and P. F. Yin , Excesses of cosmic ray spectra from a single nearby source, Phys. Rev. D 96 (2), 023006 (2017)
CrossRef ADS Google scholar
[37]
N. Tomassetti , Origin of the cosmic-ray spectral hardening, Astrophys. J. Lett. 752 (1), L13 (2012)
CrossRef ADS Google scholar
[38]
W. Liu , Y.-Q. Guo , and Q. Yuan , Indication of nearby source signatures of cosmic rays from energy spectra and anisotropies, J. Cosmol. Astropart. Phys. 2019 (10), 010 (2019)
CrossRef ADS Google scholar
[39]
B.-Q. Qiao , W. Liu , Y.-Q. Guo , and Q. Yuan , Anisotropies of different mass compositions of cosmic rays, J. Cosmol. Astropart. Phys. 2019 (12), 007 (2019)
CrossRef ADS Google scholar
[40]
Y. Q. Guo and Q. Yuan , Understanding the spectral hard-enings and radial distribution of Galactic cosmic rays and Fermi diffuse γ rays with spatially-dependent propagation, Phys. Rev. D 97 (6), 063008 (2018)
CrossRef ADS Google scholar
[41]
Y. Q. Guo , Z. Tian , and C. Jin , Spatial-dependent propagation of cosmic rays results in the spectrum of proton, ratios of P/P, and B/C, and anisotropy of nuclei, Astrophys. J. 819, 54 (2016)
CrossRef ADS Google scholar
[42]
W. Liu , Y. H. Yao , and Y. Q. Guo , Revisiting the spatially dependent propagation model with the latest observations of cosmic-ray nuclei, Astrophys. J. 869 (2), 176 (2018)
CrossRef ADS Google scholar
[43]
P. Blasi , E. Amato , and P. D. Serpico , Spectral breaks as a signature of cosmic ray induced turbulence in the galaxy, Phys. Rev. Lett. 109 (6), 061101 (2012)
CrossRef ADS Google scholar
[44]
E. S. Seo and V. S. Ptuskin , Stochastic reacceleration of cosmic rays in the interstellar medium, Astrophys. J. 431, 705 (1994)
CrossRef ADS Google scholar
[45]
G. Case and D. Bhattacharya , Revisiting the Galactic supernova remnant distribution, Astron. Astrophys. Suppl. 120, 437 (1996)
[46]
M. Ahlers , Deciphering the dipole anisotropy of Galactic cosmic rays, Phys. Rev. Lett. 117 (15), 151103 (2016)
CrossRef ADS Google scholar
[47]
M. Aguilar , L. A. Cavasonza , G. Ambrosi , et al., Precision measurement of the boron to carbon flux ratio in cosmic rays from 1.9 GV to 2.6 TV with the alpha magnetic spectrometer on the International Space Station, Phys. Rev. Lett. 117 (23), 231102 (2016)
CrossRef ADS Google scholar
[48]
Y. S. Yoon , T. Anderson , A. Barrau , N. B. Conklin , S. Coutu , et al., Proton and helium spectra from the CREAM-III flight, Astrophys. J. 839 (1), 5 (2017)
CrossRef ADS Google scholar
[49]
Q. An , R. Asfandiyarov , P. Azzarello , P. Bernardini , X. J. Bi , et al., Measurement of the cosmic ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite, Sci. Adv. 5 (9), eaax3793 (2019)
CrossRef ADS Google scholar
[50]
M. Aguilar , D. Aisa , B. Alpat , A. Alvino , G. Ambrosi , et al., Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the alpha magnetic spectrometer on the International Space Station, Phys. Rev. Lett. 114 (17), 171103 (2015)
CrossRef ADS Google scholar
[51]
M. Aguilar , L. A. Cavasonza , B. Alpat , et al., Observation of the identical rigidity dependence of He, C, and O cosmic rays at high rigidities by the alpha magnetic spectrometer on the International Space Station, Phys. Rev. Lett. 119 (25), 251101 (2017)
CrossRef ADS Google scholar
[52]
E. Atkin , V. Bulatov , V. Dorokhov , N. Gorbunov , S. Filippov , et al., First results of the cosmic ray NUCLEON experiment, J. Cosmol. Astropart. Phys. 07, 020 (2017)
CrossRef ADS Google scholar
[53]
W. D. Apel , J. C. Arteaga-Velázquez , K. Bekk , M. Bertaina , J. Blümer , et al., KASCADE-Grande measurements of energy spectra for elemental groups of cosmic rays, Astropart. Phys. 47, 54 (2013)
CrossRef ADS Google scholar
[54]
M. G. Aartsen , M. Ackermann , J. Adams , J. A. Aguilar , M. Ahlers , et al., Cosmic ray spectrum and composition from PeV to EeV using 3 years of data from IceTop and IceCube, Phys. Rev. D 100 (8), 082002 (2019)
CrossRef ADS Google scholar
[55]
J. C. Arteaga-Velázquez , HAWC measurements of the energy spectra of cosmic ray protons, helium and heavy nuclei in the TeV range, arXiv: 2108.03208 (2021)
[56]
J. R. Hörandel , On the knee in the energy spectrum of cosmic rays, Astropart. Phys. 19 (2), 193 (2003)
CrossRef ADS Google scholar
[57]
M. G. Aartsen , R. Abbasi , M. Ackermann , J. Adams , J. A. Aguilar , et al., Cosmic ray spectrum from 250 TeV to 10 PeV using IceTop, Phys. Rev. D 102 (12), 122001 (2020)
CrossRef ADS Google scholar
[58]
R. Alfaro , C. Alvarez , J. D. Álvarez , R. Arceo , J. C. Arteaga-Velázquez , et al., All particle cosmic ray energy spectrum measured by the HAWC experiment from 10 to 500 TeV, Phys. Rev. D 96 (12), 122001 (2017)
CrossRef ADS Google scholar
[59]
G. Di Sciascio , Measurement of the Cosmic Ray Energy Spectrum with ARGO-YBJ, arXiv: 1408.6739 (2014)
[60]
A. D. Panov , J. H. Jr Adams , H. S. Ahn , G. L. Bashinzhagyan , et al., Energy spectra of abundant nuclei of primary cosmic rays from the data of ATIC-2 experiment: Final results, Bull. Russ. Acad. Sci, Physics 73 (5), 564 (2009)
CrossRef ADS Google scholar
[61]
E. V. Atkin , V. L. Bulatov , O. A. Vasiliev , A. G. Voronin , N. V. Gorbunov , et al., Energy Spectra of Cosmic-Ray Protons and Nuclei Measured in the NUCLEON Experiment Using a New Method, Astron. Rep. 63 (1), 66 (2019)
CrossRef ADS Google scholar
[62]
J.-L. Zhang , X.-J. Bi , and H.-B. Hu , Very high energy γ ray absorption by the Galactic interstellar radiation field, Astron. & Astrophys. 449, 641 (2006)
CrossRef ADS Google scholar
[63]
I. V. Moskalenko , T. A. Porter , and A. W. Strong , Attenuation of very high energy gamma rays by the milky way interstellar radiation field, Astrophys. J. 640 (2), L155 (2006)
CrossRef ADS Google scholar
[64]
B. Bartoli , P. Bernardini , X. J. Bi , P. Branchini , A. Budano , et al., Study of the diffuse gamma-ray emission from the Galactic plane with ARGO-YBJ, Astrophys. J. 806 (1), 20 (2015)
CrossRef ADS Google scholar
[65]
M. D. Kistler and J. F. Beacom , Guaranteed and prospective Galactic TeV neutrino sources, Phys. Rev. D 74 (6), 063007 (2006)
CrossRef ADS Google scholar
[66]
R. Abbasi , M. Ackermann , J. Adams , et al., The IceCube high-energy starting event sample: Description and flux characterization with 7.5 years of data, arXiv: 2011.03545 (2020)
[67]
S. Adrián-Martínez , A. Albert , M. André , M. Anghinolfi , G. Anton , et al., Constraints on the neutrino emission from the Galactic Ridge with the ANTARES telescope, Phys. Lett. B 760, 143 (2016)
CrossRef ADS Google scholar
[68]
M. G. Aartsen , M. Ackermann , J. Adams , J. A. Aguilar , M. Ahlers , et al., Constraints on Galactic neutrino emission with seven years of IceCube data, Astrophys. J. 849 (1), 67 (2017)
CrossRef ADS Google scholar
[69]
F. Aharonian , R. Yang , and E. de Oña Wilhelmi , Massive stars as major factories of Galactic cosmic rays, Nat. Astron. 3 (6), 561 (2019)
CrossRef ADS Google scholar
[70]
P. Cristofari , The hunt for pevatrons: The case of supernova remnants, Universe 7 (9), 324 (2021)
CrossRef ADS Google scholar
[71]
A. M. Bykov , D. C. Ellison , P. E. Gladilin , and S. M. Osipov , Ultrahard spectra of PeV neutrinos from supernovae in compact star clusters, Mon. Not. R. Astron. Soc. 453 (1), 113 (2015)
CrossRef ADS Google scholar
[72]
A. M. Bykov , A. E. Petrov , M. E. Kalyashova , and S. V. Troitsky , PeV photon and neutrino flares from Galactic gamma-ray binaries, Astrophys. J. Lett. 921 (1), L10 (2021)
CrossRef ADS Google scholar
[73]
R. Yang , F. Aharonian , and C. Evoli , Radial distribution of the diffuse γ-ray emissivity in the Galactic disk, Phys. Rev. D 93 (12), 123007 (2016)
CrossRef ADS Google scholar
[74]
A. W. Strong and I. V. Moskalenko , Propagation of cosmic-ray nucleons in the galaxy, Astrophys. J. 509 (1), 212 (1998)
CrossRef ADS Google scholar
[75]
A. W. Strong , I. V. Moskalenko , and O. Reimer , Diffuse continuum gamma rays from the galaxy, Astrophys. J. 537 (2), 763 (2000)
CrossRef ADS Google scholar
[76]
C. Evoli , D. Gaggero , D. Grasso , and L. Maccione . Cosmic ray nuclei, antiprotons and gamma rays in the galaxy: A new diffusion model, J. Cosmol. Astropart. Phys. 10, 018 (2008)
CrossRef ADS Google scholar
[77]
C. Evoli , D. Gaggero , A. Vittino , G. Di Bernardo , M. Di Mauro , et al., Cosmic-ray propagation with DRAGON2 (I): Numerical solver and astrophysical ingredients, J. Cosmol. Astropart. Phys. 02, 015 (2017)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(546 KB)

Accesses

Citations

Detail

Sections
Recommended

/