Reconstructing unknown quantum states using variational layerwise method
Junxiang Xiao, Jingwei Wen, Shijie Wei, Guilu Long
Reconstructing unknown quantum states using variational layerwise method
In order to gain comprehensive knowledge of an arbitrary unknown quantum state, one feasible way is to reconstruct it, which can be realized by finding a series of quantum operations that can refactor the unitary evolution producing the unknown state. We design an adaptive framework that can reconstruct unknown quantum states at high fidelities, which utilizes SWAP test, parameterized quantum circuits (PQCs) and layerwise learning strategy. We conduct benchmarking on the framework using numerical simulations and reproduce states of up to six qubits at more than 96% overlaps with original states on average using PQCs trained by our framework, revealing its high applicability to quantum systems of different scales theoretically. Moreover, we perform experiments on a five-qubit IBM Quantum hardware to reconstruct random unknown single qubit states, illustrating the practical performance of our framework. For a certain reconstructing fidelity, our method can effectively construct a PQC of suitable length, avoiding barren plateaus of shadow circuits and overuse of quantum resources by deep circuits, which is of much significance when the scale of the target state is large and there is no a priori information on it. This advantage indicates that it can learn credible information of unknown states with limited quantum resources, giving a boost to quantum algorithms based on parameterized circuits on near-term quantum processors.
variational quantum algorithm / layerwise learning / quantum state reconstructing
[1] |
S. Lloyd, Universal quantum simulators, Science 273(5278), 1073 (1996)
CrossRef
ADS
Google scholar
|
[2] |
X. Qiang, T. Loke, A. Montanaro, K. Aungskunsiri, X. Zhou, J. L. O’Brien, J. B. Wang, and J. C. F. Matthews, Efficient quantum walk on a quantum processor, Nat. Commun. 7(1), 11511 (2016)
CrossRef
ADS
Google scholar
|
[3] |
N. N. Zhang, M. J. Tao, W. T. He, X. Y. Chen, X. Y. Kong, F. G. Deng, N. Lambert, and Q. Ai, Efficient quantum simulation of open quantum dynamics at various Hamiltonians and spectral densities, Front. Phys. 16(5), 51501 (2021)
CrossRef
ADS
Google scholar
|
[4] |
P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput. 26(5), 1484 (1997)
CrossRef
ADS
Google scholar
|
[5] |
L. K. Grover, Quantum computers can search arbitrarily large databases by a single query, Phys. Rev. Lett. 79(23), 4709 (1997)
CrossRef
ADS
Google scholar
|
[6] |
G. L. Long, General quantum interference principle and duality computer, Commum. Theor. Phys. 45(5), 825 (2006)
CrossRef
ADS
Google scholar
|
[7] |
G. L. Long, Duality quantum computing and duality quantum information processing, Int. J. Theor. Phys. 50(4), 1305 (2011)
CrossRef
ADS
Google scholar
|
[8] |
A. W. Harrow, A. Hassidim, and S. Lloyd, Quantum algorithm for linear systems of equations, Phys. Rev. Lett. 103(15), 150502 (2009)
CrossRef
ADS
Google scholar
|
[9] |
C. H. Bennett and G. Brassard, in: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, (1984), pp 175–179
|
[10] |
A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67(6), 661 (1991)
CrossRef
ADS
Google scholar
|
[11] |
C. H. Bennett, Quantum cryptography using any two nonorthogonal states, Phys. Rev. Lett. 68(21), 3121 (1992)
CrossRef
ADS
Google scholar
|
[12] |
G. L. Long and X. S. Liu, Theoretically efficient high-capacity quantum-key-distribution scheme, Phys. Rev. A 65(3), 032302 (2002)
CrossRef
ADS
Google scholar
|
[13] |
Z. D. Ye, D. Pan, Z. Sun, C. G. Du, L. G. Yin, and G. L. Long, Generic security analysis framework for quantum secure direct communication, Front. Phys. 16(2), 21503 (2021)
CrossRef
ADS
Google scholar
|
[14] |
Z. X. Cui, W. Zhong, L. Zhou, and Y. B. Sheng, Measurement-device-independent quantum key distribution with hyper-encoding, Sci. China Phys. Mech. Astron. 62(11), 110311 (2019)
CrossRef
ADS
Google scholar
|
[15] |
Z. Qi, Y. Li, Y. Huang, J. Feng, Y. Zheng, and X. Chen, A 15-user quantum secure direct communication network, Light Sci. Appl. 10(1), 183 (2021)
CrossRef
ADS
Google scholar
|
[16] |
G. L. Long and H. Zhang, Drastic increase of channel capacity in quantum secure direct communication using masking, Sci. Bull. (Beijing.) 66(13), 1267 (2021)
CrossRef
ADS
Google scholar
|
[17] |
X. Liu, Z. Li, D. Luo, C. Huang, D. Ma, M. Geng, J. Wang, Z. Zhang, and K. Wei, Practical decoy-state quantum secure direct communication, Sci. China Phys. Mech. Astron. 64(12), 120311 (2021)
CrossRef
ADS
Google scholar
|
[18] |
Y. B. Sheng, L. Zhou, and G. L. Long, One-step quantum secure direct communication, Sci. Bull. (Beijing.) 67(4), 367 (2022)
CrossRef
ADS
Google scholar
|
[19] |
G. M. D’Ariano, M. D. Laurentis, M. G. A. Paris, A. Porzio, and S. Solimeno, Quantum tomography as a tool for the characterization of optical devices, J. Opt. B 4(3), S127 (2002)
CrossRef
ADS
Google scholar
|
[20] |
F. Albarrán-Arriagada, J. C. Retamal, E. Solano, and L. Lamata, Measurement-based adaptation protocol with quantum reinforcement learning, Phys. Rev. A 98(4), 042315 (2018)
CrossRef
ADS
Google scholar
|
[21] |
X. Xu, J. Sun, S. Endo, Y. Li, S. C. Benjamin, and X. Yuan, Variational algorithms for linear algebra, arXiv: 1909.03898 [quant-ph] (2019)
|
[22] |
C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, and P. J. Coles, Variational quantum linear solver, arXiv: 1909.05820 [quant-ph] (2019)
|
[23] |
X. Wang, Z. Song, and Y. Wang, Variational quantum singular value decomposition, arXiv: 2006.02336 [quant49 ph] (2020)
|
[24] |
M. Cerezo, K. Sharma, A. Arrasmith, and P. J. Coles, Variational quantum state eigensolver, arXiv: 2004.01372 [quant-ph] (2020)
|
[25] |
S. McArdle, S. Endo, A. Aspuru-Guzik, S. Benjamin, and X. Yuan, Quantum computational chemistry, arXiv: 1808.10402 [quant-ph] (2018)
|
[26] |
A. Peruzzo, J. McClean, P. Shadbolt, M. H. Yung, X. Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien,, A variational eigenvalue solver on a photonic quantum processor, Nat. Commun. 5(1), 4213 (2014)
CrossRef
ADS
Google scholar
|
[27] |
J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, The theory of variational hybrid quantum–classical algorithms, New J. Phys. 18(2), 023023 (2016)
CrossRef
ADS
Google scholar
|
[28] |
A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, and J. M. Gambetta, Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets, Nature 549(7671), 242 (2017)
CrossRef
ADS
Google scholar
|
[29] |
I. G. Ryabinkin, T. C. Yen, S. N. Genin, and A. F. Izmaylov, Qubit coupled cluster method: A systematic approach to quantum chemistry on a quantum computer, J. Chem. Theory Comput. 14(12), 6317 (2018)
CrossRef
ADS
Google scholar
|
[30] |
I. G. Ryabinkin, R. A. Lang, S. N. Genin, and A. F. Izmaylov, Iterative qubit coupled cluster approach with efficient screening of generators, arXiv: 1906.11192 [quant-ph] (2019)
|
[31] |
D. B. Zhang, Z. H. Yuan, and T. Yin, Variational quantum eigensolvers by variance minimization, arXiv: 2006.15781 [quant-ph] (2020)
|
[32] |
E. Farhi and H. Neven, Classification with quantum neural networks on near term processors, arXiv: 1802.06002 [quant-ph] (2018)
|
[33] |
A. Skolik, J. R. McClean, M. Mohseni, P. van der Smagt, and M. Leib, Layerwise learning for quantum neural networks, arXiv: 2006.14904 [quant-ph] (2020)
CrossRef
ADS
Google scholar
|
[34] |
K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, Quantum circuit learning, Phys. Rev. A 98(3), 032309 (2018)
CrossRef
ADS
Google scholar
|
[35] |
J. Preskill, Quantum computing in the NISQ era and beyond, Quantum 2, 79 (2018)
CrossRef
ADS
Google scholar
|
[36] |
J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, Quantum machine learning, Nature 549(7671), 195 (2017)
CrossRef
ADS
Google scholar
|
[37] |
M. Benedetti, E. Lloyd, S. Sack, and M. Fiorentini, Parameterized quantum circuits as machine learning models, Quantum Sci. Technol. 4(4), 043001 (2019)
CrossRef
ADS
Google scholar
|
[38] |
S. Wei, Y. Chen, Z. Zhou, and G. Long, A quantum convolutional neural network on NISQ devices, arXiv: 2104.06918 [quant-ph] (2021)
|
[39] |
F. Hu, B. N. Wang, N. Wang, and C. Wang, Quantum machine learning with D-wave quantum computer, Quantum Engineering 1(2), e12 (2019)
CrossRef
ADS
Google scholar
|
[40] |
J. Li, X. Yang, X. Peng, and C. P. Sun, Hybrid quantum-classical approach to quantum optimal control, Phys. Rev. Lett. 118(15), 150503 (2017)
CrossRef
ADS
Google scholar
|
[41] |
M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Killoran, Evaluating analytic gradients on quantum hardware, Phys. Rev. A 99(3), 032331 (2019)
CrossRef
ADS
Google scholar
|
[42] |
IBM quantum, 2021
|
[43] |
A. Mari, T. R. Bromley, and N. Killoran, Estimating the gradient and higher-order derivatives on quantum hardware, Phys. Rev. A 103(1), 012405 (2021)
CrossRef
ADS
Google scholar
|
[44] |
T. Xin, X. Nie, X. Kong, J. Wen, D. Lu, and J. Li, Quantum pure state tomography via variational hybrid quantum-classical method, Phys. Rev. Appl. 13(2), 024013 (2020)
CrossRef
ADS
Google scholar
|
[45] |
J. Xiao, Paulicirq, 2020
|
[46] |
Quantum AI Team and Collaborators, Cirq, 2020
|
[47] |
M. Broughton, G. Verdon, T. McCourt, A. J. Martinez, J. H. Yoo, S. V. Isakov, P. Massey, M. Y. Niu, R. Halavati, E. Peters, M. Leib, A. Skolik, M. Streif, D. V. Dollen, J. R. McClean, S. Boixo, D. Bacon, A. K. Ho, H. Neven, and M. Mohseni, Tensorflow quantum: A software framework for quantum machine learning, arXiv: 2003.02989 [quant-ph] (2020)
|
[48] |
Qiskit: An open-source framework for quantum computing, 2019
|
[49] |
J. C. Garcia-Escartin and P. Chamorro-Posada, SWAP test and Hong–Ou–Mandel effect are equivalent, Phys. Rev. A 87(5), 052330 (2013)
CrossRef
ADS
Google scholar
|
[50] |
F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, et al., Quantum supremacy using a programmable superconducting processor, Nature 574(7779), 505 (2019)
|
[51] |
X. Z. Luo, J. G. Liu, P. Zhang, and L. Wang, Yao.jl: Extensible, efficient framework for quantum algorithm design, Quantum 4, 341 (2020)
CrossRef
ADS
Google scholar
|
[52] |
R. E. Plessix, A review of the adjoint-state method for computing the gradient of a functional with geophysical applications, Geophys. J. Int. 167(2), 495 (2006)
CrossRef
ADS
Google scholar
|
[53] |
T. Dozat, in: ICLR (2016)
|
[54] |
D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv: 1412.6980 [cs.LG] (2014)
|
/
〈 | 〉 |