Probing two Higgs oscillations in a one-dimensional Fermi superfluid with Raman-type spin–orbit coupling
Genwang Fan, Xiao-Long Chen, Peng Zou
Probing two Higgs oscillations in a one-dimensional Fermi superfluid with Raman-type spin–orbit coupling
We theoretically investigate the Higgs oscillation in a one-dimensional Raman-type spin–orbit-coupled Fermi superfluid with the time-dependent Bogoliubov–de Gennes equations. By linearly ramping or abruptly changing the effective Zeeman field in both the Bardeen–Cooper–Schrieffer state and the topological superfluid state, we find the amplitude of the order parameter exhibits an oscillating behaviour over time with two different frequencies (i.e., two Higgs oscillations) in contrast to the single one in a conventional Fermi superfluid. The observed period of oscillations has a great agreement with the one calculated using the previous prediction [Volkov and Kogan, J. Exp. Theor. Phys. 38, 1018 (1974)], where the oscillating periods are now determined by the minimums of two quasi-particle spectrum in this system. We further verify the existence of two Higgs oscillations using a periodic ramp strategy with theoretically calculated driving frequency. Our predictions would be useful for further theoretical and experimental studies of these Higgs oscillations in spin–orbit-coupled systems.
Higgs mode / spin–orbit coupled Fermi superfluid
[1] |
P. B. Littlewood and C. M. Varma, Gauge-invariant theory of the dynamical interaction of charge density waves and superconductivity, Phys. Rev. Lett. 47, 811 (1981)
CrossRef
ADS
Google scholar
|
[2] |
P. B. Littlewood and C. M. Varma, Amplitude collective modes in superconductors and their coupling to chargedensity waves, Phys. Rev. B 26, 4883 (1982)
CrossRef
ADS
Google scholar
|
[3] |
R. Sooryakumar and M. V. Klein, Raman scattering by superconducting-gap excitations and their coupling to charge-density waves, Phys. Rev. Lett. 45, 660 (1980)
CrossRef
ADS
Google scholar
|
[4] |
R. Sooryakumar and M. V. Klein, Raman scattering from superconducting gap excitations in the presence of a magnetic field, Phys. Rev. B 23, 3213 (1981)
CrossRef
ADS
Google scholar
|
[5] |
M. Matsumoto, B. Normand, T. M. Rice, and M. Sigrist, Field- and pressure-induced magnetic quantum phase transitions in TlCuCl3, Phys. Rev. B 69, 054423 (2004)
CrossRef
ADS
Google scholar
|
[6] |
C. Rüegg, B. Normand, M. Matsumoto, A. Furrer, D. F. McMorrow, K. W. Krämer, H. U. Güdel, S. N. Gvasaliya, H. Mutka, and M. Boehm, Quantum magnets under ressure: Controlling elementary excitations in TlCuCl3, Phys. Rev. Lett. 100, 205701 (2008)
CrossRef
ADS
Google scholar
|
[7] |
R. G. Scott, F. Dalfovo, L. P. Pitaevskii, and S. Stringari, Rapid ramps across the BEC–BCS crossover: A route to measuring the superfluid gap, Phys. Rev. A 86, 053604 (2012)
CrossRef
ADS
Google scholar
|
[8] |
E. Altman and A. Auerbach, Oscillating superfluidity of bosons in optical lattices, Phys. Rev. Lett. 89, 250404 (2002)
CrossRef
ADS
Google scholar
|
[9] |
L. Pollet and N. Prokof’ev, Higgs mode in a two dimensional superfluid, Phys. Rev. Lett. 109, 010401 (2012)
CrossRef
ADS
Google scholar
|
[10] |
U. Bissbort, S. Götze, Y. Li, J. Heinze, J. S. Krauser, M. Weinberg, C. Becker, K. Sengstock, and W. Hofstetter, Detecting the amplitude mode of strongly interacting lattice bosons by Bragg scattering, Phys. Rev. Lett. 106, 205303 (2011)
CrossRef
ADS
Google scholar
|
[11] |
M. Endres, T. Fukuhara, D. Pekker, M. Cheneau, P. Schauβ, C. Gross, E. Demler, S. Kuhr, and I. Bloch, The “Higgs” amplitude mode at the two-dimensional superfluid/Mott insulator transition, Nature 487, 454 (2012)
CrossRef
ADS
Google scholar
|
[12] |
D. Pekker and C. Varma, Amplitude/Higgs modes in condensed matter physics, Annual Review of Condensed Matter Physics 6, 269 (2015)
CrossRef
ADS
Google scholar
|
[13] |
R. Matsunaga, Y. I. Hamada, K. Makise, Y. Uzawa, H. Terai, Z. Wang, and R. Shimano, Higgs amplitude mode in the BCS superconductors Nb1-xTixN induced by terahertz pulse excitation, Phys. Rev. Lett. 111, 057002 (2013)
CrossRef
ADS
Google scholar
|
[14] |
D. Sherman, U. S. Pracht, B. Gorshunov, S. Poran, J. Jesudasan, M. Chand, P. Raychaudhuri, M. Swanson, N. Trivedi, A. Auerbach, et al., The Higgs mode in disordered superconductors close to a quantum phase transition, Nature Phys. 11, 188 (2015)
CrossRef
ADS
Google scholar
|
[15] |
E. A. Yuzbashyan and M. Dzero, Dynamical vanishing of the order parameter in a fermionic condensate, Phys. Rev. Lett. 96, 230404 (2006)
CrossRef
ADS
Google scholar
|
[16] |
S. Hannibal, P. Kettmann, M. D. Croitoru, A. Vagov, V. M. Axt, and T. Kuhn, Quench dynamics of an ultracold Fermi gas in the BCS regime: Spectral properties and confinement-induced breakdown of the Higgs mode, Phys. Rev. A 91, 043630 (2015)
CrossRef
ADS
Google scholar
|
[17] |
E. Altman and A. Vishwanath, Dynamic projection on feshbach molecules: A probe of pairing and phase fluctuations, Phys. Rev. Lett. 95, 110404 (2005)
CrossRef
ADS
Google scholar
|
[18] |
A. Perali, P. Pieri, and G. C. Strinati, Extracting the condensate density from projection experiments with Fermi gases, Phys. Rev. Lett. 95, 010407 (2005)
CrossRef
ADS
Google scholar
|
[19] |
S. Matyjaśkiewicz, M. H. Szymańska, and K. Góral, Probing fermionic condensates by fast-sweep projection onto Feshbach molecules, Phys. Rev. Lett. 101, 150410 (2008)
CrossRef
ADS
Google scholar
|
[20] |
A. Behrle, T. Harrison, J. Kombe, K. Gao, M. Link, J.- S. Bernier, C. Kollath, and M. Köhl, Higgs mode in a strongly interacting fermionic superfluid, Nature Phys. 14, 781 (2018)
CrossRef
ADS
Google scholar
|
[21] |
B. Liu, H. Zhai, and S. Zhang, Evolution of the Higgs mode in a fermion superfluid with tunable interactions, Phys. Rev. A 93, 033641 (2016)
CrossRef
ADS
Google scholar
|
[22] |
X. Han, B. Liu, and J. Hu, Observability of Higgs mode in a system without Lorentz invariance, Phys. Rev. A 94, 033608 (2016)
CrossRef
ADS
Google scholar
|
[23] |
H. Kurkjian, S. N. Klimin, J. Tempere, and Y. Castin, Pair-breaking collective branch in BCS superconductors and superfluid Fermi gases, Phys. Rev. Lett. 122, 093403 (2019)
CrossRef
ADS
Google scholar
|
[24] |
A. Volkov and S. M. Kogan, Collisionless relaxation of the energy gap in superconductors, Soviet J. Exp. Theor. Phys. 38, 1018 (1974)
|
[25] |
P. Wang, Z.-Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai, and J. Zhang, Spin–orbit coupled degenerate Fermi gases, Phys. Rev. Lett. 109, 095301 (2012)
CrossRef
ADS
Google scholar
|
[26] |
L. W. Cheuk, A. T. Sommer, Z. Hadzibabic, T. Yefsah, W. S. Bakr, and M. W. Zwierlein, Spin-injection spectroscopy of a spin–orbit coupled Fermi gas, Phys. Rev. Lett. 109, 095302 (2012)
CrossRef
ADS
Google scholar
|
[27] |
P. Wang, W. Yi, and G. Xianlong, Topological phase transition in the quench dynamics of a one-dimensional fermi gas with spin–orbit coupling, New J. Phys. 17, 013029 (2015)
CrossRef
ADS
Google scholar
|
[28] |
Y. Dong, L. Dong, M. Gong, and H. Pu, Dynamical phases in quenched spin–orbit-coupled degenerate Fermi gas, Nature Commun. 6, 6103 (2015)
CrossRef
ADS
Google scholar
|
[29] |
L. Kong, G. Fan, S.-G. Peng, X.-L. Chen, H. Zhao, and P. Zou, Dynamical generation of solitons in one dimensional Fermi superfluids with and without spin–orbit coupling, Phys. Rev. A 103, 063318 (2021)
CrossRef
ADS
Google scholar
|
[30] |
R. Wei and E. J. Mueller, Majorana fermions in onedimensional spin–orbit-coupled Fermi gases, Phys. Rev. A 86, 063604 (2012)
CrossRef
ADS
Google scholar
|
[31] |
M. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and M. Rigol, One dimensional bosons: From condensed matter systems to ultracold gases, Rev. Mod. Phys. 83, 1405 (2011)
CrossRef
ADS
Google scholar
|
[32] |
X.-W. Guan, M. T. Batchelor, and C. Lee, Fermi gases in one dimension: From Bethe ansatz to experiments, Rev. Mod. Phys. 85, 1633 (2013)
CrossRef
ADS
Google scholar
|
[33] |
M. Olshanii, Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons, Phys. Rev. Lett. 81, 938 (1998)
CrossRef
ADS
Google scholar
|
[34] |
E. Haller, M. Gustavsson, M. J. Mark, J. G. Danzl, R. Hart, G. Pupillo, and H.-C. Nägerl, Nägerl, Realization of an excited, strongly correlated quantum gas phase, Science 325, 1224 (2009)
CrossRef
ADS
Google scholar
|
[35] |
E. Haller, M. J. Mark, R. Hart, J. G. Danzl, L. Reichsöllner, V. Melezhik, P. Schmelcher, and H.-C. Nägerl, Confinement-induced resonances in low dimensional quantum systems, Phys. Rev. Lett. 104, 153203 (2010)
CrossRef
ADS
Google scholar
|
[36] |
S.-G. Peng, S. S. Bohloul, X.-J. Liu, H. Hu, and P. D. Drummond, Confinement-induced resonance in quasionedimensional systems under transversely anisotropic confinement, Phys. Rev. A 82, 063633 (2010)
CrossRef
ADS
Google scholar
|
[37] |
S.-G. Peng, H. Hu, X.-J. Liu, and P. D. Drummond, Confinement-induced resonances in anharmonic waveguides, Phys. Rev. A 84, 043619 (2011)
CrossRef
ADS
Google scholar
|
[38] |
S.-G. Peng, S. Tan, and K. Jiang, Manipulation of p-wave scattering of cold atoms in low dimensions using the magnetic field vector, Phys. Rev. Lett. 112, 250401 (2014)
CrossRef
ADS
Google scholar
|
[39] |
Y.-J. Lin, K. Jiménez-García, and I. B. Spielman, Spin–orbit-coupled Bose–Einstein condensates, Nature 471, 83 (2011)
CrossRef
ADS
Google scholar
|
[40] |
J.-Y. Zhang, S.-C. Ji, Z. Chen, L. Zhang, Z.-D. Du, B. Yan, G.-S. Pan, B. Zhao, Y.-J. Deng, H. Zhai, S. Chen, and J.-W. Pan, Collective dipole oscillations of a spin–orbit coupled Bose–Einstein condensate, Phys. Rev. Lett. 109, 115301 (2012)
CrossRef
ADS
Google scholar
|
[41] |
R. A. Williams, M. C. Beeler, L. J. LeBlanc, K. JiménezGarcía, and I. B. Spielman, Raman-induced interactions in a single-component Fermi gas near an s-wave Feshbach resonance, Phys. Rev. Lett. 111, 095301 (2013)
CrossRef
ADS
Google scholar
|
[42] |
C. Qu, C. Hamner, M. Gong, C. Zhang, and P. Engels, Observation of Zitterbewegung in a spin–orbit coupled Bose–Einstein condensate, Phys. Rev. A 88, 021604 (2013)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |