Probing two Higgs oscillations in a one-dimensional Fermi superfluid with Raman-type spin–orbit coupling

Genwang Fan, Xiao-Long Chen, Peng Zou

PDF(588 KB)
PDF(588 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 52502. DOI: 10.1007/s11467-022-1155-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Probing two Higgs oscillations in a one-dimensional Fermi superfluid with Raman-type spin–orbit coupling

Author information +
History +

Abstract

We theoretically investigate the Higgs oscillation in a one-dimensional Raman-type spin–orbit-coupled Fermi superfluid with the time-dependent Bogoliubov–de Gennes equations. By linearly ramping or abruptly changing the effective Zeeman field in both the Bardeen–Cooper–Schrieffer state and the topological superfluid state, we find the amplitude of the order parameter exhibits an oscillating behaviour over time with two different frequencies (i.e., two Higgs oscillations) in contrast to the single one in a conventional Fermi superfluid. The observed period of oscillations has a great agreement with the one calculated using the previous prediction [Volkov and Kogan, J. Exp. Theor. Phys. 38, 1018 (1974)], where the oscillating periods are now determined by the minimums of two quasi-particle spectrum in this system. We further verify the existence of two Higgs oscillations using a periodic ramp strategy with theoretically calculated driving frequency. Our predictions would be useful for further theoretical and experimental studies of these Higgs oscillations in spin–orbit-coupled systems.

Graphical abstract

Keywords

Higgs mode / spin–orbit coupled Fermi superfluid

Cite this article

Download citation ▾
Genwang Fan, Xiao-Long Chen, Peng Zou. Probing two Higgs oscillations in a one-dimensional Fermi superfluid with Raman-type spin–orbit coupling. Front. Phys., 2022, 17(5): 52502 https://doi.org/10.1007/s11467-022-1155-4

References

[1]
P. B. Littlewood and C. M. Varma, Gauge-invariant theory of the dynamical interaction of charge density waves and superconductivity, Phys. Rev. Lett. 47, 811 (1981)
CrossRef ADS Google scholar
[2]
P. B. Littlewood and C. M. Varma, Amplitude collective modes in superconductors and their coupling to chargedensity waves, Phys. Rev. B 26, 4883 (1982)
CrossRef ADS Google scholar
[3]
R. Sooryakumar and M. V. Klein, Raman scattering by superconducting-gap excitations and their coupling to charge-density waves, Phys. Rev. Lett. 45, 660 (1980)
CrossRef ADS Google scholar
[4]
R. Sooryakumar and M. V. Klein, Raman scattering from superconducting gap excitations in the presence of a magnetic field, Phys. Rev. B 23, 3213 (1981)
CrossRef ADS Google scholar
[5]
M. Matsumoto, B. Normand, T. M. Rice, and M. Sigrist, Field- and pressure-induced magnetic quantum phase transitions in TlCuCl3, Phys. Rev. B 69, 054423 (2004)
CrossRef ADS Google scholar
[6]
C. Rüegg, B. Normand, M. Matsumoto, A. Furrer, D. F. McMorrow, K. W. Krämer, H. U. Güdel, S. N. Gvasaliya, H. Mutka, and M. Boehm, Quantum magnets under ressure: Controlling elementary excitations in TlCuCl3, Phys. Rev. Lett. 100, 205701 (2008)
CrossRef ADS Google scholar
[7]
R. G. Scott, F. Dalfovo, L. P. Pitaevskii, and S. Stringari, Rapid ramps across the BEC–BCS crossover: A route to measuring the superfluid gap, Phys. Rev. A 86, 053604 (2012)
CrossRef ADS Google scholar
[8]
E. Altman and A. Auerbach, Oscillating superfluidity of bosons in optical lattices, Phys. Rev. Lett. 89, 250404 (2002)
CrossRef ADS Google scholar
[9]
L. Pollet and N. Prokof’ev, Higgs mode in a two dimensional superfluid, Phys. Rev. Lett. 109, 010401 (2012)
CrossRef ADS Google scholar
[10]
U. Bissbort, S. Götze, Y. Li, J. Heinze, J. S. Krauser, M. Weinberg, C. Becker, K. Sengstock, and W. Hofstetter, Detecting the amplitude mode of strongly interacting lattice bosons by Bragg scattering, Phys. Rev. Lett. 106, 205303 (2011)
CrossRef ADS Google scholar
[11]
M. Endres, T. Fukuhara, D. Pekker, M. Cheneau, P. Schauβ, C. Gross, E. Demler, S. Kuhr, and I. Bloch, The “Higgs” amplitude mode at the two-dimensional superfluid/Mott insulator transition, Nature 487, 454 (2012)
CrossRef ADS Google scholar
[12]
D. Pekker and C. Varma, Amplitude/Higgs modes in condensed matter physics, Annual Review of Condensed Matter Physics 6, 269 (2015)
CrossRef ADS Google scholar
[13]
R. Matsunaga, Y. I. Hamada, K. Makise, Y. Uzawa, H. Terai, Z. Wang, and R. Shimano, Higgs amplitude mode in the BCS superconductors Nb1-xTixN induced by terahertz pulse excitation, Phys. Rev. Lett. 111, 057002 (2013)
CrossRef ADS Google scholar
[14]
D. Sherman, U. S. Pracht, B. Gorshunov, S. Poran, J. Jesudasan, M. Chand, P. Raychaudhuri, M. Swanson, N. Trivedi, A. Auerbach, et al., The Higgs mode in disordered superconductors close to a quantum phase transition, Nature Phys. 11, 188 (2015)
CrossRef ADS Google scholar
[15]
E. A. Yuzbashyan and M. Dzero, Dynamical vanishing of the order parameter in a fermionic condensate, Phys. Rev. Lett. 96, 230404 (2006)
CrossRef ADS Google scholar
[16]
S. Hannibal, P. Kettmann, M. D. Croitoru, A. Vagov, V. M. Axt, and T. Kuhn, Quench dynamics of an ultracold Fermi gas in the BCS regime: Spectral properties and confinement-induced breakdown of the Higgs mode, Phys. Rev. A 91, 043630 (2015)
CrossRef ADS Google scholar
[17]
E. Altman and A. Vishwanath, Dynamic projection on feshbach molecules: A probe of pairing and phase fluctuations, Phys. Rev. Lett. 95, 110404 (2005)
CrossRef ADS Google scholar
[18]
A. Perali, P. Pieri, and G. C. Strinati, Extracting the condensate density from projection experiments with Fermi gases, Phys. Rev. Lett. 95, 010407 (2005)
CrossRef ADS Google scholar
[19]
S. Matyjaśkiewicz, M. H. Szymańska, and K. Góral, Probing fermionic condensates by fast-sweep projection onto Feshbach molecules, Phys. Rev. Lett. 101, 150410 (2008)
CrossRef ADS Google scholar
[20]
A. Behrle, T. Harrison, J. Kombe, K. Gao, M. Link, J.- S. Bernier, C. Kollath, and M. Köhl, Higgs mode in a strongly interacting fermionic superfluid, Nature Phys. 14, 781 (2018)
CrossRef ADS Google scholar
[21]
B. Liu, H. Zhai, and S. Zhang, Evolution of the Higgs mode in a fermion superfluid with tunable interactions, Phys. Rev. A 93, 033641 (2016)
CrossRef ADS Google scholar
[22]
X. Han, B. Liu, and J. Hu, Observability of Higgs mode in a system without Lorentz invariance, Phys. Rev. A 94, 033608 (2016)
CrossRef ADS Google scholar
[23]
H. Kurkjian, S. N. Klimin, J. Tempere, and Y. Castin, Pair-breaking collective branch in BCS superconductors and superfluid Fermi gases, Phys. Rev. Lett. 122, 093403 (2019)
CrossRef ADS Google scholar
[24]
A. Volkov and S. M. Kogan, Collisionless relaxation of the energy gap in superconductors, Soviet J. Exp. Theor. Phys. 38, 1018 (1974)
[25]
P. Wang, Z.-Q. Yu, Z. Fu, J. Miao, L. Huang, S. Chai, H. Zhai, and J. Zhang, Spin–orbit coupled degenerate Fermi gases, Phys. Rev. Lett. 109, 095301 (2012)
CrossRef ADS Google scholar
[26]
L. W. Cheuk, A. T. Sommer, Z. Hadzibabic, T. Yefsah, W. S. Bakr, and M. W. Zwierlein, Spin-injection spectroscopy of a spin–orbit coupled Fermi gas, Phys. Rev. Lett. 109, 095302 (2012)
CrossRef ADS Google scholar
[27]
P. Wang, W. Yi, and G. Xianlong, Topological phase transition in the quench dynamics of a one-dimensional fermi gas with spin–orbit coupling, New J. Phys. 17, 013029 (2015)
CrossRef ADS Google scholar
[28]
Y. Dong, L. Dong, M. Gong, and H. Pu, Dynamical phases in quenched spin–orbit-coupled degenerate Fermi gas, Nature Commun. 6, 6103 (2015)
CrossRef ADS Google scholar
[29]
L. Kong, G. Fan, S.-G. Peng, X.-L. Chen, H. Zhao, and P. Zou, Dynamical generation of solitons in one dimensional Fermi superfluids with and without spin–orbit coupling, Phys. Rev. A 103, 063318 (2021)
CrossRef ADS Google scholar
[30]
R. Wei and E. J. Mueller, Majorana fermions in onedimensional spin–orbit-coupled Fermi gases, Phys. Rev. A 86, 063604 (2012)
CrossRef ADS Google scholar
[31]
M. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and M. Rigol, One dimensional bosons: From condensed matter systems to ultracold gases, Rev. Mod. Phys. 83, 1405 (2011)
CrossRef ADS Google scholar
[32]
X.-W. Guan, M. T. Batchelor, and C. Lee, Fermi gases in one dimension: From Bethe ansatz to experiments, Rev. Mod. Phys. 85, 1633 (2013)
CrossRef ADS Google scholar
[33]
M. Olshanii, Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons, Phys. Rev. Lett. 81, 938 (1998)
CrossRef ADS Google scholar
[34]
E. Haller, M. Gustavsson, M. J. Mark, J. G. Danzl, R. Hart, G. Pupillo, and H.-C. Nägerl, Nägerl, Realization of an excited, strongly correlated quantum gas phase, Science 325, 1224 (2009)
CrossRef ADS Google scholar
[35]
E. Haller, M. J. Mark, R. Hart, J. G. Danzl, L. Reichsöllner, V. Melezhik, P. Schmelcher, and H.-C. Nägerl, Confinement-induced resonances in low dimensional quantum systems, Phys. Rev. Lett. 104, 153203 (2010)
CrossRef ADS Google scholar
[36]
S.-G. Peng, S. S. Bohloul, X.-J. Liu, H. Hu, and P. D. Drummond, Confinement-induced resonance in quasionedimensional systems under transversely anisotropic confinement, Phys. Rev. A 82, 063633 (2010)
CrossRef ADS Google scholar
[37]
S.-G. Peng, H. Hu, X.-J. Liu, and P. D. Drummond, Confinement-induced resonances in anharmonic waveguides, Phys. Rev. A 84, 043619 (2011)
CrossRef ADS Google scholar
[38]
S.-G. Peng, S. Tan, and K. Jiang, Manipulation of p-wave scattering of cold atoms in low dimensions using the magnetic field vector, Phys. Rev. Lett. 112, 250401 (2014)
CrossRef ADS Google scholar
[39]
Y.-J. Lin, K. Jiménez-García, and I. B. Spielman, Spin–orbit-coupled Bose–Einstein condensates, Nature 471, 83 (2011)
CrossRef ADS Google scholar
[40]
J.-Y. Zhang, S.-C. Ji, Z. Chen, L. Zhang, Z.-D. Du, B. Yan, G.-S. Pan, B. Zhao, Y.-J. Deng, H. Zhai, S. Chen, and J.-W. Pan, Collective dipole oscillations of a spin–orbit coupled Bose–Einstein condensate, Phys. Rev. Lett. 109, 115301 (2012)
CrossRef ADS Google scholar
[41]
R. A. Williams, M. C. Beeler, L. J. LeBlanc, K. JiménezGarcía, and I. B. Spielman, Raman-induced interactions in a single-component Fermi gas near an s-wave Feshbach resonance, Phys. Rev. Lett. 111, 095301 (2013)
CrossRef ADS Google scholar
[42]
C. Qu, C. Hamner, M. Gong, C. Zhang, and P. Engels, Observation of Zitterbewegung in a spin–orbit coupled Bose–Einstein condensate, Phys. Rev. A 88, 021604 (2013)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(588 KB)

Accesses

Citations

Detail

Sections
Recommended

/