Efficient scheme for realizing a multiplex-controlled phase gate with photonic qubits in circuit quantum electrodynamics
Qi-Ping Su, Yu Zhang, Liang Bin, Chui-Ping Yang
Efficient scheme for realizing a multiplex-controlled phase gate with photonic qubits in circuit quantum electrodynamics
We propose an efficient scheme to implement a multiplex-controlled phase gate with multiple photonic qubits simultaneously controlling one target photonic qubit based on circuit quantum electrodynamics (QED). For convenience, we denote this multiqubit gate as MCP gate. The gate is realized by using a two-level coupler to couple multiple cavities. The coupler here is a superconducting qubit. This scheme is simple because the gate implementation requires only one step of operation. In addition, this scheme is quite general because the two logic states of each photonic qubit can be encoded with a vacuum state and an arbitrary non-vacuum state |φ> (e.g., a Fock state, a superposition of Fock states, a cat state, or a coherent state, etc.) which is orthogonal or quasi-orthogonal to the vacuum state. The scheme has some additional advantages: because only two levels of the coupler are used, i.e., no auxiliary levels are utilized, decoherence from higher energy levels of the coupler is avoided; the gate operation time does not depend on the number of qubits; and the gate is implemented deterministically because no measurement is applied. As an example, we numerically analyze the circuit-QED based experimental feasibility of implementing a three-qubit MCP gate with photonic qubits each encoded via a vacuum state and a cat state. The scheme can be applied to accomplish the same task in a wide range of physical system, which consists of multiple microwave or optical cavities coupled to a two-level coupler such as a natural or artificial atom.
multiplex controlled / phase gate / circuit QED
[1] |
P. W. Shor , in: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, edited by S. Goldwasser, IEEE Computer Society, Los Alamitos, CA, 1994, page 124
|
[2] |
L. K. Grover , Quantum computers can search rapidly by using almost any transformation, Phys. Rev. Lett. 80 (19), 4329 (1998)
CrossRef
ADS
Google scholar
|
[3] |
T. Beth and M. Röteler , in: Quantum Information, Springer, Berlin, 2001 Vol. 173, Chap. 4, p. 96
|
[4] |
P. W. Shor , Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A 52 (4), R2493 (1995)
CrossRef
ADS
Google scholar
|
[5] |
A. M. Steane , Error correcting codes in quantum theory, Phys. Rev. Lett. 77 (5), 793 (1996)
CrossRef
ADS
Google scholar
|
[6] |
F. Gaitan , in: Quantum Error Correction and Fault Tolerant Quantum Computing, CRC Press, Boca Raton, FL, 2008, pp 1 312
|
[7] |
S. L. Braunstein , V. Bužek , and M. Hillery , Quantum information distributors: Quantum network for symmetric and asymmetric cloning in arbitrary dimension and continuous limit, Phys. Rev. A 63 (5), 052313 (2001)
CrossRef
ADS
Google scholar
|
[8] |
M. Šašura and V. Bužek , Multiparticle entanglement with quantum logic networks: Application to cold trapped ions, Phys. Rev. A 64 (1), 012305 (2001)
CrossRef
ADS
Google scholar
|
[9] |
A. Barenco , C. H. Bennett , R. Cleve , D. P. DiVincenzo , N. Margolus , P. Shor , T. Sleator , J. A. Smolin , and H. Weinfurter , Elementary gates for quantum computation, Phys. Rev. A 52 (5), 3457 (1995)
CrossRef
ADS
Google scholar
|
[10] |
N. Khaneja and S. J. Glaser , Cartan decomposition of SU(2n) and control of spin systems, Chem. Phys. 267 (1-3), 11 (2001)
CrossRef
ADS
Google scholar
|
[11] |
M. Möttönen , J. J. Vartiainen , V. Bergholm , and M. M. Salomaa , Quantum circuits for general multiqubit gates, Phys. Rev. Lett. 93 (13), 130502 (2004)
CrossRef
ADS
Google scholar
|
[12] |
Y. Liu , G. L. Long , and Y. Sun , Analytic one-bit and CNOT gate constructions of general n-qubit controlled gates, Int. J. Quant. Inf. 6 (3), 447 (2008)
CrossRef
ADS
Google scholar
|
[13] |
M. A. Nielsen and I. L. Chuang , Quantum Computation and Quantum Information, Cambridge University Press, Cam bridge, England, 2001
|
[14] |
X. Wang , A. Sørensen , and K. Mølmer , Multibit gates for quantum computing, Phys. Rev. Lett. 86 (17), 3907 (2001)
CrossRef
ADS
Google scholar
|
[15] |
T. Monz , K. Kim , W. Hänsel , M. Riebe , A. S. Villar , P. Schindler , M. Chwalla , M. Hennrich , and R. Blatt , Realization of the quantum Toffoli gate with trapped ions, Phys. Rev. Lett. 102 (4), 040501 (2009)
CrossRef
ADS
Google scholar
|
[16] |
P. Z. Zhao , G. F. Xu , and D. M. Tong , Nonadiabatic holonomic multiqubit controlled gates, Phys. Rev. A 99 (5), 052309 (2019)
CrossRef
ADS
Google scholar
|
[17] |
H. R. Wei and F. G. Deng , Universal quantum gates for hybrid systems assisted by quantum dots inside doublesided optical microcavities, Phys. Rev. A 87 (2), 022305 (2013)
CrossRef
ADS
Google scholar
|
[18] |
L. M. Duan , B. Wang , and H. J. Kimble , Robust quantum gates on neutral atoms with cavity-assisted photonscattering, Phys. Rev. A 72 (3), 032333 (2005)
CrossRef
ADS
Google scholar
|
[19] |
X. Zou , Y. Dong , and G. C. Guo , Implementing a conditional z gate by a combination of resonant interaction and quantum interference, Phys. Rev. A 74 (3), 032325 (2006)
CrossRef
ADS
Google scholar
|
[20] |
M. Waseem , M. Irfan , and S. Qamar , Realization of quantum gates with multiple control qubits or multiple target qubits in a cavity, Quantum Inform. Process. 14 (6), 1869 (2015)
CrossRef
ADS
Google scholar
|
[21] |
Y. Liang , Q. C. Wu , S. L. Su , X. Ji , and S. Zhang , Shortcuts to adiabatic passage for multiqubit controlled-phase gate, Phys. Rev. A 91 (3), 032304 (2015)
CrossRef
ADS
Google scholar
|
[22] |
S. L. Su , H. Z. Shen , E. Liang , and S. Zhang , One-step construction of the multiple-qubit Rydberg controlled-PHASE gate, Phys. Rev. A 98 (3), 032306 (2018)
CrossRef
ADS
Google scholar
|
[23] |
Y. Hao , G. Lin , Y. Niu , and S. Gong , One-step implementation of a multiqubit controlled phase-flip gate in coupled cavities, Quantum Inform. Process. 18 (1), 18 (2019)
CrossRef
ADS
Google scholar
|
[24] |
T. H. Xing , X. Wu , and G. F. Xu , Nonadiabatic holonomic three-qubit controlled gates realized by one-shot implementation, Phys. Rev. A 101 (1), 012306 (2020)
CrossRef
ADS
Google scholar
|
[25] |
M. Khazali and K. Mølmer , Fast multiqubit gates by adiabatic evolution in interacting excited-state manifolds of Rydberg atoms and superconducting circuits, Phys. Rev. X 10 (2), 021054 (2020)
CrossRef
ADS
Google scholar
|
[26] |
W. L. Yang , Z. Q. Yin , Z. Y. Xu , M. Feng , and J. F. Du , One step implementation of multi-qubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity, Appl. Phys. Lett. 96 (24), 241113 (2010)
CrossRef
ADS
Google scholar
|
[27] |
T. Wang and Y. Zhang , Scalable multi-qubit quantum gates in quantum networks based on the microtoroidalresonator mediated nitrogen-vacancy centers in diamond, J. Opt. Soc. Am. B 37 (5), 1372 (2020)
CrossRef
ADS
Google scholar
|
[28] |
C. P. Yang and S. Han , n-qubit-controlled phase gate with superconducting quantum interference devices coupled to a resonator, Phys. Rev. A 72 (3), 032311 (2005)
CrossRef
ADS
Google scholar
|
[29] |
C. P. Yang and S. Han , Realization of an n-qubit controlled-U gate with superconducting quantum interference devices or atoms in cavity QED, Phys. Rev. A 73 (3), 032317 (2006)
CrossRef
ADS
Google scholar
|
[30] |
W. A. Li and Y. Chen , Simplified proposal for realizing a multiqubit tunable phase gate in circuit QED, J. Opt. Soc. Am. B 34 (7), 1560 (2017)
CrossRef
ADS
Google scholar
|
[31] |
B. Ye , Z. F. Zheng , and C. P. Yang , Multiplex-controlled phase gate with qubits distributed in a multicavity system, Phys. Rev. A 97 (6), 062336 (2018)
CrossRef
ADS
Google scholar
|
[32] |
J. Zhang , W. Liu , Z. Deng , Z. Lu , and G. L. Long , Modularization of a multi-qubit controlled phase gate and its nuclear magnetic resonance implementation, J. Opt. B 7 (1), 22 (2005)
CrossRef
ADS
Google scholar
|
[33] |
A. Fedorov , L. Steffen , M. Baur , M. P. da Silva , and A. Wallraff , Implementation of a Toffoli gate with superconducting circuits, Nature 481 (7380), 170 (2012)
CrossRef
ADS
Google scholar
|
[34] |
C. Song , S. B. Zheng , P. Zhang , K. Xu , L. Zhang , Q. Guo , W. Liu , D. Xu , H. Deng , K. Huang , D. Zheng , X. Zhu , and H. Wang , Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit, Nat. Commun. 8 (1), 1061 (2017)
CrossRef
ADS
Google scholar
|
[35] |
H. Levine , A. Keesling , G. Semeghini , A. Omran , T. T. Wang , S. Ebadi , H. Bernien , M. Greiner , V. Vuletić , H. Pichler , and M. D. Lukin , Parallel implementation of highfidelity multiqubit gates with neutral atoms, Phys. Rev. Lett. 123 (17), 170503 (2019)
CrossRef
ADS
Google scholar
|
[36] |
J. Fiurášek , Linear-optics quantum Toffoli and Fredkin gates, Phys. Rev. A 73 (6), 062313 (2006)
CrossRef
ADS
Google scholar
|
[37] |
T. C. Ralph , K. J. Resch , and A. Gilchrist , Effcient Toffoli gates using qudits, Phys. Rev. A 75 (2), 022313 (2007)
CrossRef
ADS
Google scholar
|
[38] |
H. L. Huang , W. S. Bao , T. Li , F. G. Li , X. Q. Fu , S. Zhang , H. L. Zhang , and X. Wang , Deterministic linear optical quantum Toffoli gate, Phys. Lett. A 381 (33), 2673 (2017)
CrossRef
ADS
Google scholar
|
[39] |
L. Dong , S. L. Wang , C. Cui , X. Geng , Q. Y. Li , H. K. Dong , X. M. Xiu , and Y. J. Gao , Polarization Toffoli gate assisted by multiple degrees of freedom, Opt. Lett. 43 (19), 4635 (2018)
CrossRef
ADS
Google scholar
|
[40] |
X. Zou , K. Li , and G. Guo , Linear optical scheme for direct implementation of a nondestructive N-qubit controlled phase gate, Phys. Rev. A 74 (4), 044305 (2006)
CrossRef
ADS
Google scholar
|
[41] |
H. R. Wei and G. L. Long , Universal photonic quantum gates assisted by ancilla diamond nitrogen-vacancy centers coupled to resonators, Phys. Rev. A 91 (3), 032324 (2015)
CrossRef
ADS
Google scholar
|
[42] |
H. R. Wei , F. G. Deng , and G. L. Long , Hyper-parallel Toffoli gate on three-photon system with two degrees of freedom assisted by single-sided optical microcavities, Opt. Express 24 (16), 18619 (2016)
CrossRef
ADS
Google scholar
|
[43] |
B. Y. Xia , C. Cao , Y. H. Han , and R. Zhang , Universal photonic three-qubit quantum gates with two degrees of freedom assisted by charged quantum dots inside singlesided optical microcavities, Laser Phys. 28 (9), 095201 (2018)
CrossRef
ADS
Google scholar
|
[44] |
M. Mičuda , M. Sedlák , I. Straka , M. Miková , M. Dušek , M. Ježek , and J. Fiurášek , Effcient experimental estimation of fidelity of linear optical quantum Toffoli gate, Phys. Rev. Lett. 111 (16), 160407 (2013)
CrossRef
ADS
Google scholar
|
[45] |
S. Ru , Y. Wang , M. An , F. Wang , P. Zhang , and F. Li , Realization of deterministic quantum Toffoli gate with a single photon, Phys. Rev. A 103 (2), 022606 (2021)
CrossRef
ADS
Google scholar
|
[46] |
P. M. Lu , J. Song , and Y. Xia , Implementing a multi-qubit quantum phase gate encoded by photonic qubit, Chin. Phys. Lett. 27 (3), 030302 (2010)
CrossRef
ADS
Google scholar
|
[47] |
M. Hua , M. J. Tao , and F. G. Deng , Universal quantum gates on microwave photons assisted by circuit quantum electrodynamics, Phys. Rev. A 90 (1), 012328 (2014)
CrossRef
ADS
Google scholar
|
[48] |
M. Hua , M. J. Tao , and F. G. Deng , Fast universal quantum gates on microwave photons with all-resonance operations in circuit QED, Sci. Rep. 5 (1), 9274 (2015)
CrossRef
ADS
Google scholar
|
[49] |
J. X. Han , J. L. Wu , Y. Wang , Y. Y. Jiang , Y. Xian , and J. Song , Multi-qubit phase gate on multiple resonators mediated by a superconducting bus, Opt. Express 28 (2), 1954 (2020)
CrossRef
ADS
Google scholar
|
[50] |
C. P. Yang , S. I. Chu , and S. Han , Possible realization of entanglement, logical gates and quantum information transfer with superconducting-quantum-interferencedevice qubits in cavity QED, Phys. Rev. A 67 (4), 042311 (2003)
CrossRef
ADS
Google scholar
|
[51] |
J. Q. You and F. Nori , Quantum information processing with superconducting qubits in a microwave field, Phys. Rev. B 68 (6), 064509 (2003)
CrossRef
ADS
Google scholar
|
[52] |
A. Blais , R. S. Huang , A. Wallraff , S. M. Girvin , and R. J. Schoelkopf , Cavity quantum electrodynamics for superconduct ing electrical circuits: An architecture for quantum computation, Phys. Rev. A 69 (6), 062320 (2004)
CrossRef
ADS
Google scholar
|
[53] |
J. Q. You and F. Nori , Superconducting circuits and quantum information, Phys. Today 58 (11), 42 (2005)
CrossRef
ADS
Google scholar
|
[54] |
J. Q. You and F. Nori , Atomic physics and quantum optics using superconducting circuits, Nature 474 (7353), 589 (2011)
CrossRef
ADS
Google scholar
|
[55] |
I. Buluta , S. Ashhab , and F. Nori , Natural and artificial atoms for quantum computation, Rep. Prog. Phys. 74 (10), 104401 (2011)
CrossRef
ADS
Google scholar
|
[56] |
Z. L. Xiang , S. Ashhab , J. Q. You , and F. Nori , Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems, Rev. Mod. Phys. 85 (2), 623 (2013)
CrossRef
ADS
Google scholar
|
[57] |
X. Gu , A. F. Kockum , A. Miranowicz , Y. X. Liu , and F. Nori , Microwave photonics with superconducting quantum circuits, Phys. Rep. 718–719, 1 (2017)
CrossRef
ADS
Google scholar
|
[58] |
Q. P. Su , H. Zhang , and C. P. Yang , Transferring quantum entangled states between multiple single-photon-state qubits and coherent-state qubits in circuit QED, Front. Phys. 16 (6), 61501 (2021)
CrossRef
ADS
Google scholar
|
[59] |
M. H. Devoret and R. J. Schoelkopf , Superconducting circuits for quantum information: An outlook, Science 339 (6124), 1169 (2013)
CrossRef
ADS
Google scholar
|
[60] |
C. H. Bai , D. Y. Wang , S. Hu , W. X. Cui , X. X. Jiang , and H. F. Wang , Scheme for implementing multitarget qubit controlled-NOT gate of photons and controlled-phase gate of electron spins via quantum dot-microcavity coupled system, Quantum Inform. Process. 15 (4), 1485 (2016)
CrossRef
ADS
Google scholar
|
[61] |
B. Ye , Z. F. Zheng , Y. Zhang , and C. P. Yang , QED circuit single-step realization of a multiqubit controlled phase gate with one microwave photonic qubit simultaneously controlling n–1 microwave photonic qubits, Opt. Express 26 (23), 30689 (2018)
CrossRef
ADS
Google scholar
|
[62] |
C. P. Yang , Y. X. Liu , and F. Nori , Phase gate of one qubit simultaneously controlling n qubits in a cavity, Phys. Rev. A 81 (6), 062323 (2010)
CrossRef
ADS
Google scholar
|
[63] |
C. P. Yang , S. B. Zheng , and F. Nori , Multiqubit tunable phase gate of one qubit simultaneously controlling n qubits in a cavity, Phys. Rev. A 82 (6), 062326 (2010)
CrossRef
ADS
Google scholar
|
[64] |
M. Waseem , M. Irfan , and S. Qamar , Multiqubit quantum phase gate using four-level superconducting quantum interference devices coupled to superconducting resonator, Physica C 477, 24 (2012)
CrossRef
ADS
Google scholar
|
[65] |
C. P. Yang , Q. P. Su , F. Y. Zhang , and S. B. Zheng , Single-step implementation of a multipletarget-qubit controlled phase gate without need of classical pulses, Opt. Lett. 39 (11), 3312 (2014)
CrossRef
ADS
Google scholar
|
[66] |
H. F. Wang , A. D. Zhu , and S. Zhang , One-step implementation of a multiqubit phase gate with one control qubit and multiple target qubits in coupled cavities, Opt. Lett. 39 (6), 1489 (2014)
CrossRef
ADS
Google scholar
|
[67] |
T. Liu , X. Z. Cao , Q. P. Su , S. J. Xiong , and C. P. Yang , Multi-target-qubit unconventional geometric phase gate in a multicavity system, Sci. Rep. 6 (1), 21562 (2016)
CrossRef
ADS
Google scholar
|
[68] |
Y. J. Fan , Z. F. Zheng , Y. Zhang , D. M. Lu , and C. P. Yang , One-step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED, Front. Phys. 14 (2), 21602 (2019)
CrossRef
ADS
Google scholar
|
[69] |
P. J. Leek , S. Filipp , P. Maurer , M. Baur , R. Bianchetti , J. M. Fink , M. Göppl , L. Steffen , and A. Wallraff , Using sideband transitions for two-qubit operations in superconducting circuits, Phys. Rev. B 79 (18), 180511 (2009)
CrossRef
ADS
Google scholar
|
[70] |
R. Barends , J. Kelly , A. Megrant , D. Sank , E. Jeffrey , Y. Chen , Y. Yin , B. Chiaro , J. Mutus , C. Neill , P. O’Malley , P. Roushan , J. Wenner , T. C. White , A. N. Cleland , and J. M. Martinis , Coherent Josephson qubit suitable for scalable quantum integrated circuits, Phys. Rev. Lett. 111 (8), 080502 (2013)
CrossRef
ADS
Google scholar
|
[71] |
M. Neeley , M. Ansmann , R. C. Bialczak , M. Hofheinz , N. Katz , E. Lucero , A. O’Connell , H. Wang , A. N. Cleland , and J. M. Martinis , Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state, Nat. Phys. 4 (7), 523 (2008)
CrossRef
ADS
Google scholar
|
[72] |
A. Sørensen and K. Mølmer , Quantum Computation with Ions in Thermal Motion, Phys. Rev. Lett. 82 (9), 1971 (1999)
CrossRef
ADS
Google scholar
|
[73] |
D. F. V. James and J. Jerke , Effective Hamiltonian theory and its applications in quantum information, Can. J. Phys. 85 (6), 625 (2007)
CrossRef
ADS
Google scholar
|
[74] |
Y. Xu , Y. Ma , W. Cai , X. Mu , W. Dai , W. Wang , L. Hu , X. Li , J. Han , H. Wang , Y. P. Song , Z. B. Yang , S. B. Zheng , and L. Sun , Demonstration of controlled-phase gates between two error-correctable photonic qubits, Phys. Rev. Lett. 124 (12), 120501 (2020)
CrossRef
ADS
Google scholar
|
[75] |
M. Sandberg , C. M. Wilson , F. Persson , T. Bauch , G. Johansson , V. Shumeiko , T. Duty , and P. Delsing , Tuning the field in a microwave resonator faster than the photon lifetime, Appl. Phys. Lett. 92 (20), 203501 (2008)
CrossRef
ADS
Google scholar
|
[76] |
Z. L. Wang , Y. P. Zhong , L. J. He , H. Wang , J. M. Martinis , A. N. Cleland , and Q. W. Xie , Quantum state characterization of a fast tunable superconducting resonator, Appl. Phys. Lett. 102 (16), 163503 (2013)
CrossRef
ADS
Google scholar
|
[77] |
Z. Leghtas , G. Kirchmair , B. Vlastakis , R. J. Schoelkopf , M. H. Devoret , and M. Mirrahimi , Hardware-effcient autonomous quantum memory protection, Phys. Rev. Lett. 111 (12), 120501 (2013)
CrossRef
ADS
Google scholar
|
[78] |
M. Mirrahimi , Z. Leghtas , V. V. Albert , S. Touzard , R. J. Schoelkopf , L. Jiang , and M. H. Devoret , Dynamically protected cat-qubits: A new paradigm for universal quantum computation, New J. Phys. 16 (4), 045014 (2014)
CrossRef
ADS
Google scholar
|
[79] |
J. Guillaud and M. Mirrahimi , Repetition cat qubits for fault-tolerant quantum computation, Phys. Rev. X 9 (4), 041053 (2019)
CrossRef
ADS
Google scholar
|
[80] |
C. Chamberland , K. Noh , P. Arrangoiz-Arriola , E. T. Campbell , C. T. Hann , J. Iverson , H. Putterman , T. C. Bohdanowicz , S. T. Flammia , A. Keller , et al. , Building a fault-tolerant quantum computer using concatenated cat codes, PRX Quantum 3, 010329 (2022)
CrossRef
ADS
Google scholar
|
[81] |
T. Liu , Z. F. Zheng , Y. Zhang , Y. L. Fang , and C. P. Yang , Transferring entangled states of photonic cat-state qubits in circuit QED, Front. Phys. 15 (2), 21603 (2020)
CrossRef
ADS
Google scholar
|
[82] |
A. O. Niskanen , K. Harrabi , F. Yoshihara , Y. Nakamura , S. Lloyd , and J. S. Tsai , Quantum coherent tunable coupling of superconducting qubits, Science 316 (5825), 723 (2007)
CrossRef
ADS
Google scholar
|
[83] |
K. Inomata , T. Yamamoto , P. M. Billangeon , Y. Nakamura , and J. S. Tsai , Large dispersive shift of cavity resonance induced by a superconducting flux qubit in the straddling regime, Phys. Rev. B 86 (14), 140508 (2012)
CrossRef
ADS
Google scholar
|
[84] |
Z. H. Peng , Y. X. Liu , J. T. Peltonen , T. Yamamoto , J. S. Tsai , and O. Astafiev , Correlated emission lasing in harmonic oscillators coupled via a single three-level artificial atom, Phys. Rev. Lett. 115 (22), 223603 (2015)
CrossRef
ADS
Google scholar
|
[85] |
Y. X. Liu , J. Q. You , L. F. Wei , C. P. Sun , and F. Nori , Optical selection rules and phase dependent adiabatic state control in a superconducting quantum circuit, Phys. Rev. Lett. 95 (8), 087001 (2005)
CrossRef
ADS
Google scholar
|
[86] |
T. Niemczyk , F. Deppe , H. Huebl , E. P. Menzel , F. Hocke , M. J. Schwarz , J. J. Garcia-Ripoll , D. Zueco , T. Hümmer , E. Solano , A. Marx , and R. Gross , Circuit quantum electrodynamics in the ultrastrong coupling regime, Nat. Phys. 6 (10), 772 (2010)
CrossRef
ADS
Google scholar
|
[87] |
F. Yan , S. Gustavsson , A. Kamal , J. Birenbaum , A. P. Sears , D. Hover , T. J. Gudmundsen , D. Rosenberg , G. Samach , S. Weber , J. L. Yoder , T. P. Orlando , J. Clarke , A. J. Kerman , and W. D. Oliver , The flux qubit revisited to enhance coherence and reproducibility, Nat. Commun. 7 (1), 12964 (2016)
CrossRef
ADS
Google scholar
|
[88] |
J. Q. You , X. Hu , S. Ashhab , and F. Nori , Lowdecoherence flux qubit, Phys. Rev. B 75 (14), 140515 (2007)
CrossRef
ADS
Google scholar
|
[89] |
C. P. Yang , Q. P. Su , and S. Han , Generation of Greenberger–Horne–Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction, Phys. Rev. A 86 (2), 022329 (2012)
CrossRef
ADS
Google scholar
|
[90] |
G. Calusine , A. Melville , W. Woods , R. Das , C. Stull , V. Bolkhovsky , D. Braje , D. Hover , D. K. Kim , X. Miloshi , D. Rosenberg , A. Sevi , J. L. Yoder , E. Dauler , and W. D. Oliver , Analysis and mitigation of interface losses in trenched superconducting coplanar waveguide resonators, Appl. Phys. Lett. 112 (6), 062601 (2018)
CrossRef
ADS
Google scholar
|
[91] |
W. Woods , G. Calusine , A. Melville , A. Sevi , E. Golden , D. K. Kim , D. Rosenberg , J. L. Yoder , and W. D. Oliver , Determining interface dielectric losses in superconducting coplanar waveguide resonators, Phys. Rev. Appl. 12 (1), 014012 (2019)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |