Detecting a single atom in a cavity using the χ(2) nonlinear medium
Dong-Liang Chen, Ye-Hong Chen, Yang Liu, Zhi-Cheng Shi, Jie Song, Yan Xia
Detecting a single atom in a cavity using the χ(2) nonlinear medium
We propose a protocol for detecting a single atom in a cavity with the help of the χ(2) nonlinear medium. When the χ(2) nonlinear medium is driven by an external laser field, the cavity mode will be squeezed, and thus one can obtain an exponentially enhanced light-matter coupling. Such a strong coupling between the atom and the cavity field can significantly change the output photon flux, the quantum fluctuations, the quantum statistical property, and the photon number distributions of the cavity field. This provides practical strategies to determine the presence or absence of an atom in a cavity. The proposed protocol exhibits some advantages, such as controllable squeezing strength and exponential increase of atom-cavity coupling strength, which make the experimental phenomenon more obvious. We hope that this protocol can supplement the existing intracavity single-atom detection protocols and provide a promise for quantum sensing in different quantum systems.
single atom / nonlinear medium / cavity QED
[1] |
S. M. Dutra , Cavity Quantum Electrodynamics: The Strange Theory of Light in a Box, John Wiley & Sons, New York, 2005
|
[2] |
S. Haroche and J. M. Raimond , Exploring the Quantum: Atoms, Cavities, and Photons, Oxford University Press, Oxford, 2006
|
[3] |
J. Weiner and P. T. Ho , Light-Matter Interaction: Fundamentals and Applications, Vol. 1, John Wiley & Sons, New York, 2008
|
[4] |
M. O. Scully and M. S. Zubairy , Quantum Optics, Cambridge University Press, Cambridge, 1997
|
[5] |
E. T. Jaynes and F. W. Cummings , Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proc. IEEE 51 (1), 89 (1963)
CrossRef
ADS
Google scholar
|
[6] |
B. W. Shore and P. L. Knight , The Jaynes–Cummings model, J. Mod. Opt. 40 (7), 1195 (1993)
CrossRef
ADS
Google scholar
|
[7] |
M. Tavis and F. W. Cummings , Exact solution for an N-molecule — Radiation-field Hamiltonian, Phys. Rev. 170 (2), 379 (1968)
CrossRef
ADS
Google scholar
|
[8] |
M. Brune , J. M. Raimond , and S. Haroche , Theory of the Rydberg-atom two-photon micromaser, Phys. Rev. A 35 (1), 154 (1987)
CrossRef
ADS
Google scholar
|
[9] |
S. C. Gou , Dynamics of the two-mode Jaynes–Cummings model modified by Stark shifts, Phys. Lett. A 147 (4), 218 (1990)
CrossRef
ADS
Google scholar
|
[10] |
N. Bogolubov , M. Rasulova , and I. Tishabaev , in: 2011 2nd International Conference on Photonics, 2011
|
[11] |
A. S. Obada and A. Abdel-Hafez , Time evolution for a three-level atom in interaction with two modes, J. Mod. Opt. 34 (5), 665 (1987)
CrossRef
ADS
Google scholar
|
[12] |
Y. Wang , J. L. Wu , J. Song , Z. J. Zhang , Y. Y. Jiang , and Y. Xia , Enhancing atom-field interaction in the reduced multiphoton Tavis–Cummings model, Phys. Rev. A 101 (5), 053826 (2020)
CrossRef
ADS
Google scholar
|
[13] |
D. Hagenmüller , S. Schütz , G. Pupillo , and J. Schachenmayer , Adiabatic elimination for ensembles of emitters in cavities with dissipative couplings, Phys. Rev. A 102 (1), 013714 (2020)
CrossRef
ADS
Google scholar
|
[14] |
T. Yoshie , A. Scherer , J. Hendrickson , G. Khitrova , H. Gibbs , G. Rupper , C. Ell , O. Shchekin , and D. Deppe , Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity, Nature 432 (7014), 200 (2004)
CrossRef
ADS
Google scholar
|
[15] |
R. Loudon and P. Knight , Squeezed light, J. Mod. Opt. 34 (6-7), 709 (1987)
CrossRef
ADS
Google scholar
|
[16] |
J. R. Kukliński and J. L. Madajczyk , Strong squeezing in the Jaynes-Cummings model, Phys. Rev. A 37, 3175(R) (1988)
CrossRef
ADS
Google scholar
|
[17] |
S. B. Zheng , Z. B. Yang , and Y. Xia , Generation of twomode squeezed states for two separated atomic ensembles via coupled cavities, Phys. Rev. A 81 (1), 015804 (2010)
CrossRef
ADS
Google scholar
|
[18] |
K. M. Birnbaum , A. Boca , R. Miller , A. D. Boozer , T. E. Northup , and H. J. Kimble , Photon blockade in an optical cavity with one trapped atom, Nature 436 (7047), 87 (2005)
CrossRef
ADS
Google scholar
|
[19] |
K. M. Gheri and H. Ritsch , Single-atom quantum gate for light, Phys. Rev. A 56 (4), 3187 (1997)
CrossRef
ADS
Google scholar
|
[20] |
T. Sleator and H. Weinfurter , Realizable universal quantum logic gates, Phys. Rev. Lett. 74 (20), 4087 (1995)
CrossRef
ADS
Google scholar
|
[21] |
S. B. Zheng and G. C. Guo , Efficient scheme for two-atom entanglement and quantum information processing in cavity QED, Phys. Rev. Lett. 85 (11), 2392 (2000)
CrossRef
ADS
Google scholar
|
[22] |
C. C. Gerry , Preparation of multiatom entangled states through dispersive atom–cavity-field interactions, Phys. Rev. A 53 (4), 2857 (1996)
CrossRef
ADS
Google scholar
|
[23] |
X. Q. Shao , Engineering steady entanglement for trapped ions at finite temperature by dissipation, Phys. Rev. A 98 (4), 042310 (2018)
CrossRef
ADS
Google scholar
|
[24] |
Y. H. Chen , Y. Xia , Q. Q. Chen , and J. Song , Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states, Phys. Rev. A 91 (1), 012325 (2015)
CrossRef
ADS
Google scholar
|
[25] |
D. Ran , Z. C. Shi , J. Song , and Y. Xia , Speeding up adiabatic passage by adding Lyapunov control, Phys. Rev. A 96 (3), 033803 (2017)
CrossRef
ADS
Google scholar
|
[26] |
X. Q. Shao , J. H. Wu , and X. X. Yi , Dissipative stabilization of quantum-feedback-based multipartite entanglement with Rydberg atoms, Phys. Rev. A 95 (2), 022317 (2017)
CrossRef
ADS
Google scholar
|
[27] |
X. Q. Shao , J. B. You , T. Y. Zheng , C. H. Oh , and S. Zhang , Stationary three-dimensional entanglement via dissipative Rydberg pumping, Phys. Rev. A 89 (5), 052313 (2014)
CrossRef
ADS
Google scholar
|
[28] |
X. Q. Shao , Selective Rydberg pumping via strong dipole blockade, Phys. Rev. A 102 (5), 053118 (2020)
CrossRef
ADS
Google scholar
|
[29] |
A. Rauschenbeutel , G. Nogues , S. Osnaghi , P. Bertet , M. Brune , J. M. Raimond , and S. Haroche , Coherent operation of a tunable quantum phase gate in cavity QED, Phys. Rev. Lett. 83 (24), 5166 (1999)
CrossRef
ADS
Google scholar
|
[30] |
A. Imamoglu , D. D. Awschalom , G. Burkard , D. P. Di Vincenzo , D. Loss , M. Sherwin , and A. Small , Quantum information processing using quantum dot spins and cavity QED, Phys. Rev. Lett. 83 (20), 4204 (1999)
CrossRef
ADS
Google scholar
|
[31] |
C. P. Yang , S. I. Chu , and S. Han , Possible realization of entanglement, logical gates, and quantuminformation transfer with superconducting-quantuminterference-device qubits in cavity QED, Phys. Rev. A 67 (4), 042311 (2003)
CrossRef
ADS
Google scholar
|
[32] |
Z. C. Shi , D. Ran , L. T. Shen , Y. Xia , and X. X. Yi , Quantum state engineering by periodical two-step modulation in an atomic system, Opt. Express 26 (26), 34789 (2018)
CrossRef
ADS
Google scholar
|
[33] |
Y. H. Kang , Z. C. Shi , J. Song , and Y. Xia , Heralded atomic nonadiabatic holonomic quantum computation with Rydberg blockade, Phys. Rev. A 102 (2), 022617 (2020)
CrossRef
ADS
Google scholar
|
[34] |
Y. C. Zhang , G. Li , P. F. Zhang , J. M. Wang , and T. C. Zhang , Experimental progress in optical manipulation of single atoms for cavity QED, Front. Phys. 4 (2), 190 (2009)
CrossRef
ADS
Google scholar
|
[35] |
S. Liu , J. H. Shen , R. H. Zheng , Y. H. Kang , Z. C. Shi , J. Song , and Y. Xia , Optimized nonadiabatic holonomic quantum computation based on Förster resonance in Rydberg atoms, Front. Phys. 17 (2), 21502 (2022)
CrossRef
ADS
Google scholar
|
[36] |
X. X. Li , H. D. Yin , D. X. Li , and X. Q. Shao , Deterministic generation of maximally discordant mixed states by dissipation, Phys. Rev. A 101 (1), 012329 (2020)
CrossRef
ADS
Google scholar
|
[37] |
S. Kuhr , W. Alt , D. Schrader , M. Müller , V. Gomer , and D. Meschede , Deterministic delivery of a single atom, Science 293 (5528), 278 (2001)
CrossRef
ADS
Google scholar
|
[38] |
N. Schlosser , G. Reymond , I. Protsenko , and P. Grangier , Sub-poissonian loading of single atoms in a microscopic dipole trap, Nature 411 (6841), 1024 (2001)
CrossRef
ADS
Google scholar
|
[39] |
B. Lev , K. Srinivasan , P. Barclay , O. Painter , and H. Mabuchi , Feasibility of detecting single atoms using photonic bandgap cavities, Nanotechnology 15 (10), S556 (2004)
CrossRef
ADS
Google scholar
|
[40] |
D. Q. Bao , C. J. Zhu , Y. P. Yang , and G. S. Agarwal , Sensing single atoms in a cavity using a broadband squeezed light, Opt. Express 27 (11), 15540 (2019)
CrossRef
ADS
Google scholar
|
[41] |
S. Barzanjeh , D. P. Di Vincenzo , and B. M. Terhal , Dispersive qubit measurement by interferometry with parametric amplifiers, Phys. Rev. B 90 (13), 134515 (2014)
CrossRef
ADS
Google scholar
|
[42] |
J. Goldwin , M. Trupke , J. Kenner , A. Ratnapala , and E. Hinds , Fast cavity-enhanced atom detection with low noise and high fidelity, Nat. Commun. 2 (1), 418 (2011)
CrossRef
ADS
Google scholar
|
[43] |
A. Haase , B. Hessmo , and J. Schmiedmayer , Detecting magnetically guided atoms with an optical cavity, Opt. Lett. 31 (2), 268 (2006)
CrossRef
ADS
Google scholar
|
[44] |
H. Ott , Single atom detection in ultracold quantum gases: A review of current progress, Rep. Prog. Phys. 79 (5), 054401 (2016)
CrossRef
ADS
Google scholar
|
[45] |
K. M. Fortier , S. Y. Kim , M. J. Gibbons , P. Ahmadi , and M. S. Chapman , Deterministic loading of individual atoms to a high-finesse optical cavity, Phys. Rev. Lett. 98 (23), 233601 (2007)
CrossRef
ADS
Google scholar
|
[46] |
P. Horak , B. G. Klappauf , A. Haase , R. Folman , J. Schmiedmayer , P. Domokos , and E. A. Hinds , Possibility of single-atom detection on a chip, Phys. Rev. A 67 (4), 043806 (2003)
CrossRef
ADS
Google scholar
|
[47] |
I. Teper , Y. J. Lin , and V. Vuletić , Resonator-aided singleatom detection on a microfabricated chip, Phys. Rev. Lett. 97 (2), 023002 (2006)
CrossRef
ADS
Google scholar
|
[48] |
H. Mabuchi , Q. A. Turchette , M. S. Chapman , and H. J. Kimble , Real-time detection of individual atoms falling through a high-finesse optical cavity, Opt. Lett. 21 (17), 1393 (1996)
CrossRef
ADS
Google scholar
|
[49] |
C. J. Hood , M. S. Chapman , T. W. Lynn , and H. J. Kimble , Real-time cavity QED with single atoms, Phys. Rev. Lett. 80 (19), 4157 (1998)
CrossRef
ADS
Google scholar
|
[50] |
T. Puppe , I. Schuster , A. Grothe , A. Kubanek , K. Murr , P. W. H. Pinkse , and G. Rempe , Trapping and observing single atoms in a blue-detuned intracavity dipole trap, Phys. Rev. Lett. 99 (1), 013002 (2007)
CrossRef
ADS
Google scholar
|
[51] |
N. Bloembergen and Y. R. Shen , Coupling between vibrations and light waves in Raman laser media, Phys. Rev. Lett. 12 (18), 504 (1964)
CrossRef
ADS
Google scholar
|
[52] |
C. S. Wang , Theory of stimulated Raman scattering, Phys. Rev. 182 (2), 482 (1969)
CrossRef
ADS
Google scholar
|
[53] |
J. A. Giordmaine and R. C. Miller , Tunable coherent parametric oscillation in LiNbO3 at optical frequencies, Phys. Rev. Lett. 14 (24), 973 (1965)
CrossRef
ADS
Google scholar
|
[54] |
R. Baumgartner and R. Byer , Optical parametric amplification, IEEE J. Quantum Electron. 15 (6), 432 (1979)
CrossRef
ADS
Google scholar
|
[55] |
S. Liu , D. Ran , Y. H. Kang , Z. C. Shi , J. Song , and Y. Xia , Accelerated and robust generation of W state by parametric amplification and inverse hamiltonian engineering, Ann. Phys. 532 (6), 2000002 (2020)
CrossRef
ADS
Google scholar
|
[56] |
W. Qin , Y. H. Chen , X. Wang , A. Miranowicz , and F. Nori , Strong spin squeezing induced by weak squeezing of light inside a cavity, Nanophotonics 9 (16), 4853 (2020)
CrossRef
ADS
Google scholar
|
[57] |
A. A. Nejad , H. R. Askari , and H. R. Baghshahi , Optical bistability in coupled optomechanical cavities in the presence of Kerr effect, Appl. Opt. 56 (10), 2816 (2017)
CrossRef
ADS
Google scholar
|
[58] |
R. Y. Chiao , C. H. Townes , and B. P. Stoicheff , Stimulated Brillouin scattering and coherent generation of intense hypersonic waves, Phys. Rev. Lett. 12 (21), 592 (1964)
CrossRef
ADS
Google scholar
|
[59] |
R. W. Boyd , Nonlinear Optics, Academic Press, New York, 2003
|
[60] |
Y. X. Zeng , B. Xiong , and C. Li , Suppressing laser phase noise in an optomechanical system, Front. Phys. 17 (1), 12503 (2022)
CrossRef
ADS
Google scholar
|
[61] |
W. Qin , A. Miranowicz , P. B. Li , X. Y. Lü , J. Q. You , and F. Nori , Exponentially enhanced light-matter interaction, cooperativities, and steady-state entanglement using parametric amplification, Phys. Rev. Lett. 120 (9), 093601 (2018)
CrossRef
ADS
Google scholar
|
[62] |
C. Leroux , L. C. G. Govia , and A. A. Clerk , Enhancing cavity quantum electrodynamics via antisqueezing: Synthetic ultrastrong coupling, Phys. Rev. Lett. 120 (9), 093602 (2018)
CrossRef
ADS
Google scholar
|
[63] |
Y. H. Chen , W. Qin , X. Wang , A. Miranowicz , and F. Nori , Shortcuts to adiabaticity for the quantum rabi model: Efficient generation of giant entangled cat states via parametric amplification, Phys. Rev. Lett. 126 (2), 023602 (2021)
CrossRef
ADS
Google scholar
|
[64] |
S. Burd , R. Srinivas , H. Knaack , W. Ge , A. Wilson , D. Wineland , D. Leibfried , J. Bollinger , D. Allcock , and D. Slichter , Quantum amplification of boson-mediated interactions, Nat. Phys. 17 (8), 898 (2021)
CrossRef
ADS
Google scholar
|
[65] |
Y. H. Chen , W. Qin , and F. Nori , Fast and high-fidelity generation of steady-state entanglement using pulse modulation and parametric amplification, Phys. Rev. A 100 (1), 012339 (2019)
CrossRef
ADS
Google scholar
|
[66] |
X. Y. Lü , Y. Wu , J. R. Johansson , H. Jing , J. Zhang , and F. Nori , Squeezed optomechanics with phase-matched amplification and dissipation, Phys. Rev. Lett. 114 (9), 093602 (2015)
CrossRef
ADS
Google scholar
|
[67] |
M. A. Lemonde , N. Didier , and A. A. Clerk , Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification, Nat. Commun. 7 (1), 11338 (2016)
CrossRef
ADS
Google scholar
|
[68] |
W. Qin , V. Macrì , A. Miranowicz , S. Savasta , and F. Nori , Emission of photon pairs by mechanical stimulation of the squeezed vacuum, Phys. Rev. A 100 (6), 062501 (2019)
CrossRef
ADS
Google scholar
|
[69] |
L. W. Wang and J. Shi , Quantum fluctuation and interference effect in a single atom–cavity QED system driven by a broadband squeezed vacuum, Chin. Opt. Lett. 18 (12), 122701 (2020)
CrossRef
ADS
Google scholar
|
[70] |
P. D. Drummond and Z. Ficek , Quantum squeezing, Vol. 27, Springer Science & Business Media, Berlin, 2013
|
[71] |
G. S. Agarwal and S. Dutta Gupta , Steady states in cavity QED due to incoherent pumping, Phys. Rev. A 42 (3), 1737 (1990)
CrossRef
ADS
Google scholar
|
[72] |
R. Poldy , B. C. Buchler , and J. D. Close , Single-atom detection with optical cavities, Phys. Rev. A 78 (1), 013640 (2008)
CrossRef
ADS
Google scholar
|
[73] |
E. Wigner , On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40 (5), 749 (1932)
CrossRef
ADS
Google scholar
|
[74] |
C. Gerry , P. Knight , and P. L. Knight , Introductory Quantum Optics, Cambridge University Press, Cambridge, 2005
|
[75] |
S. Ast , M. Mehmet , and R. Schnabel , High-bandwidth squeezed light at 1550 nm from a compact monolithic PP KTP cavity, Opt. Express 21 (11), 13572 (2013)
CrossRef
ADS
Google scholar
|
[76] |
T. Serikawa , J. Yoshikawa , K. Makino , and A. Frusawa , Creation and measurement of broadband squeezed vacuum from a ring optical parametric oscillator, Opt. Express 24 (25), 28383 (2016)
CrossRef
ADS
Google scholar
|
[77] |
H. Vahlbruch , M. Mehmet , K. Danzmann , and R. Schnabel , Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency, Phys. Rev. Lett. 117 (11), 110801 (2016)
CrossRef
ADS
Google scholar
|
[78] |
R. Schnabel , Squeezed states of light and their applications in laser interferometers, Phys. Rep. 684, 1 (2017)
CrossRef
ADS
Google scholar
|
[79] |
S. C. Burd , R. Srinivas , J. J. Bollinger , A. C. Wilson , D. J. Wineland , D. Leibfried , D. H. Slichter , and D. T. C. Allcock , Quantum amplification of mechanical oscillator motion, Science 364 (6446), 1163 (2019)
CrossRef
ADS
Google scholar
|
[80] |
J. B. Clark , F. Lecocq , R. W. Simmonds , J. Aumentado , and J. D. Teufel , Sideband cooling beyond the quantum backaction limit with squeezed light, Nature 541 (7636), 191 (2017)
CrossRef
ADS
Google scholar
|
[81] |
H. Vahlbruch , D. Wilken , M. Mehmet , and B. Willke , Laser power stabilization beyond the shot noise limit using squeezed light, Phys. Rev. Lett. 121 (17), 173601 (2018)
CrossRef
ADS
Google scholar
|
[82] |
K. W. Murch , S. J. Weber , K. M. Beck , E. Ginossar , and I. Siddiqi , Reduction of the radiative decay of atomic coherence in squeezed vacuum, Nature 499 (7456), 62 (2013)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |