Detecting a single atom in a cavity using the χ(2) nonlinear medium

Dong-Liang Chen, Ye-Hong Chen, Yang Liu, Zhi-Cheng Shi, Jie Song, Yan Xia

PDF(654 KB)
PDF(654 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 52501. DOI: 10.1007/s11467-021-1151-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Detecting a single atom in a cavity using the χ(2) nonlinear medium

Author information +
History +

Abstract

We propose a protocol for detecting a single atom in a cavity with the help of the χ(2) nonlinear medium. When the χ(2) nonlinear medium is driven by an external laser field, the cavity mode will be squeezed, and thus one can obtain an exponentially enhanced light-matter coupling. Such a strong coupling between the atom and the cavity field can significantly change the output photon flux, the quantum fluctuations, the quantum statistical property, and the photon number distributions of the cavity field. This provides practical strategies to determine the presence or absence of an atom in a cavity. The proposed protocol exhibits some advantages, such as controllable squeezing strength and exponential increase of atom-cavity coupling strength, which make the experimental phenomenon more obvious. We hope that this protocol can supplement the existing intracavity single-atom detection protocols and provide a promise for quantum sensing in different quantum systems.

Graphical abstract

Keywords

single atom / nonlinear medium / cavity QED

Cite this article

Download citation ▾
Dong-Liang Chen, Ye-Hong Chen, Yang Liu, Zhi-Cheng Shi, Jie Song, Yan Xia. Detecting a single atom in a cavity using the χ(2) nonlinear medium. Front. Phys., 2022, 17(5): 52501 https://doi.org/10.1007/s11467-021-1151-0

References

[1]
S. M. Dutra , Cavity Quantum Electrodynamics: The Strange Theory of Light in a Box, John Wiley & Sons, New York, 2005
[2]
S. Haroche and J. M. Raimond , Exploring the Quantum: Atoms, Cavities, and Photons, Oxford University Press, Oxford, 2006
[3]
J. Weiner and P. T. Ho , Light-Matter Interaction: Fundamentals and Applications, Vol. 1, John Wiley & Sons, New York, 2008
[4]
M. O. Scully and M. S. Zubairy , Quantum Optics, Cambridge University Press, Cambridge, 1997
[5]
E. T. Jaynes and F. W. Cummings , Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proc. IEEE 51 (1), 89 (1963)
CrossRef ADS Google scholar
[6]
B. W. Shore and P. L. Knight , The Jaynes–Cummings model, J. Mod. Opt. 40 (7), 1195 (1993)
CrossRef ADS Google scholar
[7]
M. Tavis and F. W. Cummings , Exact solution for an N-molecule — Radiation-field Hamiltonian, Phys. Rev. 170 (2), 379 (1968)
CrossRef ADS Google scholar
[8]
M. Brune , J. M. Raimond , and S. Haroche , Theory of the Rydberg-atom two-photon micromaser, Phys. Rev. A 35 (1), 154 (1987)
CrossRef ADS Google scholar
[9]
S. C. Gou , Dynamics of the two-mode Jaynes–Cummings model modified by Stark shifts, Phys. Lett. A 147 (4), 218 (1990)
CrossRef ADS Google scholar
[10]
N. Bogolubov , M. Rasulova , and I. Tishabaev , in: 2011 2nd International Conference on Photonics, 2011
[11]
A. S. Obada and A. Abdel-Hafez , Time evolution for a three-level atom in interaction with two modes, J. Mod. Opt. 34 (5), 665 (1987)
CrossRef ADS Google scholar
[12]
Y. Wang , J. L. Wu , J. Song , Z. J. Zhang , Y. Y. Jiang , and Y. Xia , Enhancing atom-field interaction in the reduced multiphoton Tavis–Cummings model, Phys. Rev. A 101 (5), 053826 (2020)
CrossRef ADS Google scholar
[13]
D. Hagenmüller , S. Schütz , G. Pupillo , and J. Schachenmayer , Adiabatic elimination for ensembles of emitters in cavities with dissipative couplings, Phys. Rev. A 102 (1), 013714 (2020)
CrossRef ADS Google scholar
[14]
T. Yoshie , A. Scherer , J. Hendrickson , G. Khitrova , H. Gibbs , G. Rupper , C. Ell , O. Shchekin , and D. Deppe , Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity, Nature 432 (7014), 200 (2004)
CrossRef ADS Google scholar
[15]
R. Loudon and P. Knight , Squeezed light, J. Mod. Opt. 34 (6-7), 709 (1987)
CrossRef ADS Google scholar
[16]
J. R. Kukliński and J. L. Madajczyk , Strong squeezing in the Jaynes-Cummings model, Phys. Rev. A 37, 3175(R) (1988)
CrossRef ADS Google scholar
[17]
S. B. Zheng , Z. B. Yang , and Y. Xia , Generation of twomode squeezed states for two separated atomic ensembles via coupled cavities, Phys. Rev. A 81 (1), 015804 (2010)
CrossRef ADS Google scholar
[18]
K. M. Birnbaum , A. Boca , R. Miller , A. D. Boozer , T. E. Northup , and H. J. Kimble , Photon blockade in an optical cavity with one trapped atom, Nature 436 (7047), 87 (2005)
CrossRef ADS Google scholar
[19]
K. M. Gheri and H. Ritsch , Single-atom quantum gate for light, Phys. Rev. A 56 (4), 3187 (1997)
CrossRef ADS Google scholar
[20]
T. Sleator and H. Weinfurter , Realizable universal quantum logic gates, Phys. Rev. Lett. 74 (20), 4087 (1995)
CrossRef ADS Google scholar
[21]
S. B. Zheng and G. C. Guo , Efficient scheme for two-atom entanglement and quantum information processing in cavity QED, Phys. Rev. Lett. 85 (11), 2392 (2000)
CrossRef ADS Google scholar
[22]
C. C. Gerry , Preparation of multiatom entangled states through dispersive atom–cavity-field interactions, Phys. Rev. A 53 (4), 2857 (1996)
CrossRef ADS Google scholar
[23]
X. Q. Shao , Engineering steady entanglement for trapped ions at finite temperature by dissipation, Phys. Rev. A 98 (4), 042310 (2018)
CrossRef ADS Google scholar
[24]
Y. H. Chen , Y. Xia , Q. Q. Chen , and J. Song , Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states, Phys. Rev. A 91 (1), 012325 (2015)
CrossRef ADS Google scholar
[25]
D. Ran , Z. C. Shi , J. Song , and Y. Xia , Speeding up adiabatic passage by adding Lyapunov control, Phys. Rev. A 96 (3), 033803 (2017)
CrossRef ADS Google scholar
[26]
X. Q. Shao , J. H. Wu , and X. X. Yi , Dissipative stabilization of quantum-feedback-based multipartite entanglement with Rydberg atoms, Phys. Rev. A 95 (2), 022317 (2017)
CrossRef ADS Google scholar
[27]
X. Q. Shao , J. B. You , T. Y. Zheng , C. H. Oh , and S. Zhang , Stationary three-dimensional entanglement via dissipative Rydberg pumping, Phys. Rev. A 89 (5), 052313 (2014)
CrossRef ADS Google scholar
[28]
X. Q. Shao , Selective Rydberg pumping via strong dipole blockade, Phys. Rev. A 102 (5), 053118 (2020)
CrossRef ADS Google scholar
[29]
A. Rauschenbeutel , G. Nogues , S. Osnaghi , P. Bertet , M. Brune , J. M. Raimond , and S. Haroche , Coherent operation of a tunable quantum phase gate in cavity QED, Phys. Rev. Lett. 83 (24), 5166 (1999)
CrossRef ADS Google scholar
[30]
A. Imamoglu , D. D. Awschalom , G. Burkard , D. P. Di Vincenzo , D. Loss , M. Sherwin , and A. Small , Quantum information processing using quantum dot spins and cavity QED, Phys. Rev. Lett. 83 (20), 4204 (1999)
CrossRef ADS Google scholar
[31]
C. P. Yang , S. I. Chu , and S. Han , Possible realization of entanglement, logical gates, and quantuminformation transfer with superconducting-quantuminterference-device qubits in cavity QED, Phys. Rev. A 67 (4), 042311 (2003)
CrossRef ADS Google scholar
[32]
Z. C. Shi , D. Ran , L. T. Shen , Y. Xia , and X. X. Yi , Quantum state engineering by periodical two-step modulation in an atomic system, Opt. Express 26 (26), 34789 (2018)
CrossRef ADS Google scholar
[33]
Y. H. Kang , Z. C. Shi , J. Song , and Y. Xia , Heralded atomic nonadiabatic holonomic quantum computation with Rydberg blockade, Phys. Rev. A 102 (2), 022617 (2020)
CrossRef ADS Google scholar
[34]
Y. C. Zhang , G. Li , P. F. Zhang , J. M. Wang , and T. C. Zhang , Experimental progress in optical manipulation of single atoms for cavity QED, Front. Phys. 4 (2), 190 (2009)
CrossRef ADS Google scholar
[35]
S. Liu , J. H. Shen , R. H. Zheng , Y. H. Kang , Z. C. Shi , J. Song , and Y. Xia , Optimized nonadiabatic holonomic quantum computation based on Förster resonance in Rydberg atoms, Front. Phys. 17 (2), 21502 (2022)
CrossRef ADS Google scholar
[36]
X. X. Li , H. D. Yin , D. X. Li , and X. Q. Shao , Deterministic generation of maximally discordant mixed states by dissipation, Phys. Rev. A 101 (1), 012329 (2020)
CrossRef ADS Google scholar
[37]
S. Kuhr , W. Alt , D. Schrader , M. Müller , V. Gomer , and D. Meschede , Deterministic delivery of a single atom, Science 293 (5528), 278 (2001)
CrossRef ADS Google scholar
[38]
N. Schlosser , G. Reymond , I. Protsenko , and P. Grangier , Sub-poissonian loading of single atoms in a microscopic dipole trap, Nature 411 (6841), 1024 (2001)
CrossRef ADS Google scholar
[39]
B. Lev , K. Srinivasan , P. Barclay , O. Painter , and H. Mabuchi , Feasibility of detecting single atoms using photonic bandgap cavities, Nanotechnology 15 (10), S556 (2004)
CrossRef ADS Google scholar
[40]
D. Q. Bao , C. J. Zhu , Y. P. Yang , and G. S. Agarwal , Sensing single atoms in a cavity using a broadband squeezed light, Opt. Express 27 (11), 15540 (2019)
CrossRef ADS Google scholar
[41]
S. Barzanjeh , D. P. Di Vincenzo , and B. M. Terhal , Dispersive qubit measurement by interferometry with parametric amplifiers, Phys. Rev. B 90 (13), 134515 (2014)
CrossRef ADS Google scholar
[42]
J. Goldwin , M. Trupke , J. Kenner , A. Ratnapala , and E. Hinds , Fast cavity-enhanced atom detection with low noise and high fidelity, Nat. Commun. 2 (1), 418 (2011)
CrossRef ADS Google scholar
[43]
A. Haase , B. Hessmo , and J. Schmiedmayer , Detecting magnetically guided atoms with an optical cavity, Opt. Lett. 31 (2), 268 (2006)
CrossRef ADS Google scholar
[44]
H. Ott , Single atom detection in ultracold quantum gases: A review of current progress, Rep. Prog. Phys. 79 (5), 054401 (2016)
CrossRef ADS Google scholar
[45]
K. M. Fortier , S. Y. Kim , M. J. Gibbons , P. Ahmadi , and M. S. Chapman , Deterministic loading of individual atoms to a high-finesse optical cavity, Phys. Rev. Lett. 98 (23), 233601 (2007)
CrossRef ADS Google scholar
[46]
P. Horak , B. G. Klappauf , A. Haase , R. Folman , J. Schmiedmayer , P. Domokos , and E. A. Hinds , Possibility of single-atom detection on a chip, Phys. Rev. A 67 (4), 043806 (2003)
CrossRef ADS Google scholar
[47]
I. Teper , Y. J. Lin , and V. Vuletić , Resonator-aided singleatom detection on a microfabricated chip, Phys. Rev. Lett. 97 (2), 023002 (2006)
CrossRef ADS Google scholar
[48]
H. Mabuchi , Q. A. Turchette , M. S. Chapman , and H. J. Kimble , Real-time detection of individual atoms falling through a high-finesse optical cavity, Opt. Lett. 21 (17), 1393 (1996)
CrossRef ADS Google scholar
[49]
C. J. Hood , M. S. Chapman , T. W. Lynn , and H. J. Kimble , Real-time cavity QED with single atoms, Phys. Rev. Lett. 80 (19), 4157 (1998)
CrossRef ADS Google scholar
[50]
T. Puppe , I. Schuster , A. Grothe , A. Kubanek , K. Murr , P. W. H. Pinkse , and G. Rempe , Trapping and observing single atoms in a blue-detuned intracavity dipole trap, Phys. Rev. Lett. 99 (1), 013002 (2007)
CrossRef ADS Google scholar
[51]
N. Bloembergen and Y. R. Shen , Coupling between vibrations and light waves in Raman laser media, Phys. Rev. Lett. 12 (18), 504 (1964)
CrossRef ADS Google scholar
[52]
C. S. Wang , Theory of stimulated Raman scattering, Phys. Rev. 182 (2), 482 (1969)
CrossRef ADS Google scholar
[53]
J. A. Giordmaine and R. C. Miller , Tunable coherent parametric oscillation in LiNbO3 at optical frequencies, Phys. Rev. Lett. 14 (24), 973 (1965)
CrossRef ADS Google scholar
[54]
R. Baumgartner and R. Byer , Optical parametric amplification, IEEE J. Quantum Electron. 15 (6), 432 (1979)
CrossRef ADS Google scholar
[55]
S. Liu , D. Ran , Y. H. Kang , Z. C. Shi , J. Song , and Y. Xia , Accelerated and robust generation of W state by parametric amplification and inverse hamiltonian engineering, Ann. Phys. 532 (6), 2000002 (2020)
CrossRef ADS Google scholar
[56]
W. Qin , Y. H. Chen , X. Wang , A. Miranowicz , and F. Nori , Strong spin squeezing induced by weak squeezing of light inside a cavity, Nanophotonics 9 (16), 4853 (2020)
CrossRef ADS Google scholar
[57]
A. A. Nejad , H. R. Askari , and H. R. Baghshahi , Optical bistability in coupled optomechanical cavities in the presence of Kerr effect, Appl. Opt. 56 (10), 2816 (2017)
CrossRef ADS Google scholar
[58]
R. Y. Chiao , C. H. Townes , and B. P. Stoicheff , Stimulated Brillouin scattering and coherent generation of intense hypersonic waves, Phys. Rev. Lett. 12 (21), 592 (1964)
CrossRef ADS Google scholar
[59]
R. W. Boyd , Nonlinear Optics, Academic Press, New York, 2003
[60]
Y. X. Zeng , B. Xiong , and C. Li , Suppressing laser phase noise in an optomechanical system, Front. Phys. 17 (1), 12503 (2022)
CrossRef ADS Google scholar
[61]
W. Qin , A. Miranowicz , P. B. Li , X. Y. Lü , J. Q. You , and F. Nori , Exponentially enhanced light-matter interaction, cooperativities, and steady-state entanglement using parametric amplification, Phys. Rev. Lett. 120 (9), 093601 (2018)
CrossRef ADS Google scholar
[62]
C. Leroux , L. C. G. Govia , and A. A. Clerk , Enhancing cavity quantum electrodynamics via antisqueezing: Synthetic ultrastrong coupling, Phys. Rev. Lett. 120 (9), 093602 (2018)
CrossRef ADS Google scholar
[63]
Y. H. Chen , W. Qin , X. Wang , A. Miranowicz , and F. Nori , Shortcuts to adiabaticity for the quantum rabi model: Efficient generation of giant entangled cat states via parametric amplification, Phys. Rev. Lett. 126 (2), 023602 (2021)
CrossRef ADS Google scholar
[64]
S. Burd , R. Srinivas , H. Knaack , W. Ge , A. Wilson , D. Wineland , D. Leibfried , J. Bollinger , D. Allcock , and D. Slichter , Quantum amplification of boson-mediated interactions, Nat. Phys. 17 (8), 898 (2021)
CrossRef ADS Google scholar
[65]
Y. H. Chen , W. Qin , and F. Nori , Fast and high-fidelity generation of steady-state entanglement using pulse modulation and parametric amplification, Phys. Rev. A 100 (1), 012339 (2019)
CrossRef ADS Google scholar
[66]
X. Y. Lü , Y. Wu , J. R. Johansson , H. Jing , J. Zhang , and F. Nori , Squeezed optomechanics with phase-matched amplification and dissipation, Phys. Rev. Lett. 114 (9), 093602 (2015)
CrossRef ADS Google scholar
[67]
M. A. Lemonde , N. Didier , and A. A. Clerk , Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification, Nat. Commun. 7 (1), 11338 (2016)
CrossRef ADS Google scholar
[68]
W. Qin , V. Macrì , A. Miranowicz , S. Savasta , and F. Nori , Emission of photon pairs by mechanical stimulation of the squeezed vacuum, Phys. Rev. A 100 (6), 062501 (2019)
CrossRef ADS Google scholar
[69]
L. W. Wang and J. Shi , Quantum fluctuation and interference effect in a single atom–cavity QED system driven by a broadband squeezed vacuum, Chin. Opt. Lett. 18 (12), 122701 (2020)
CrossRef ADS Google scholar
[70]
P. D. Drummond and Z. Ficek , Quantum squeezing, Vol. 27, Springer Science & Business Media, Berlin, 2013
[71]
G. S. Agarwal and S. Dutta Gupta , Steady states in cavity QED due to incoherent pumping, Phys. Rev. A 42 (3), 1737 (1990)
CrossRef ADS Google scholar
[72]
R. Poldy , B. C. Buchler , and J. D. Close , Single-atom detection with optical cavities, Phys. Rev. A 78 (1), 013640 (2008)
CrossRef ADS Google scholar
[73]
E. Wigner , On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40 (5), 749 (1932)
CrossRef ADS Google scholar
[74]
C. Gerry , P. Knight , and P. L. Knight , Introductory Quantum Optics, Cambridge University Press, Cambridge, 2005
[75]
S. Ast , M. Mehmet , and R. Schnabel , High-bandwidth squeezed light at 1550 nm from a compact monolithic PP KTP cavity, Opt. Express 21 (11), 13572 (2013)
CrossRef ADS Google scholar
[76]
T. Serikawa , J. Yoshikawa , K. Makino , and A. Frusawa , Creation and measurement of broadband squeezed vacuum from a ring optical parametric oscillator, Opt. Express 24 (25), 28383 (2016)
CrossRef ADS Google scholar
[77]
H. Vahlbruch , M. Mehmet , K. Danzmann , and R. Schnabel , Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency, Phys. Rev. Lett. 117 (11), 110801 (2016)
CrossRef ADS Google scholar
[78]
R. Schnabel , Squeezed states of light and their applications in laser interferometers, Phys. Rep. 684, 1 (2017)
CrossRef ADS Google scholar
[79]
S. C. Burd , R. Srinivas , J. J. Bollinger , A. C. Wilson , D. J. Wineland , D. Leibfried , D. H. Slichter , and D. T. C. Allcock , Quantum amplification of mechanical oscillator motion, Science 364 (6446), 1163 (2019)
CrossRef ADS Google scholar
[80]
J. B. Clark , F. Lecocq , R. W. Simmonds , J. Aumentado , and J. D. Teufel , Sideband cooling beyond the quantum backaction limit with squeezed light, Nature 541 (7636), 191 (2017)
CrossRef ADS Google scholar
[81]
H. Vahlbruch , D. Wilken , M. Mehmet , and B. Willke , Laser power stabilization beyond the shot noise limit using squeezed light, Phys. Rev. Lett. 121 (17), 173601 (2018)
CrossRef ADS Google scholar
[82]
K. W. Murch , S. J. Weber , K. M. Beck , E. Ginossar , and I. Siddiqi , Reduction of the radiative decay of atomic coherence in squeezed vacuum, Nature 499 (7456), 62 (2013)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(654 KB)

Accesses

Citations

Detail

Sections
Recommended

/