Broadband cross-circular polarization carpet cloaking based on a phase change material metasurface in the mid-infrared region

Bo Fang, Dantian Feng, Peng Chen, Lijiang Shi, Jinhui Cai, Jianmin Li, Chenxia Li, Zhi Hong, Xufeng Jing

PDF(1391 KB)
PDF(1391 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (5) : 53502. DOI: 10.1007/s11467-021-1148-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Broadband cross-circular polarization carpet cloaking based on a phase change material metasurface in the mid-infrared region

Author information +
History +

Abstract

In view of the fact that most invisibility devices focus on linear polarization cloaking and that the characteristics of mid-infrared cloaking are rarely studied, we propose a cross-circularly polarized invisibility carpet cloaking device in the mid-infrared band. Based on the Pancharatnam–Berry phase principle, the unit cells with the cross-circular polarization gradient phase were carefully designed and constructed into a metasurface. In order to achieve tunable cross-circular polarization carpet cloaks, a phase change material is introduced into the design of the unit structure. When the phase change material is in amorphous and crystalline states, the proposed metasurface unit cells can achieve high-efficiency cross-polarization conversion, and reflection intensity can be tuned. According to the phase compensation principle of carpet cloaking, we construct a metasurface cloaking device with a phase gradient using the designed unit structure. From the near- and far-field distributions, the cross-circular polarization cloaking property is confirmed in the broadband wavelength range of 9.3–11.4 µm. The proposed cloaking device can effectively resist detection of cross-circular polarization.

Graphical abstract

Keywords

metamaterial / metasurface / cloaking

Cite this article

Download citation ▾
Bo Fang, Dantian Feng, Peng Chen, Lijiang Shi, Jinhui Cai, Jianmin Li, Chenxia Li, Zhi Hong, Xufeng Jing. Broadband cross-circular polarization carpet cloaking based on a phase change material metasurface in the mid-infrared region. Front. Phys., 2022, 17(5): 53502 https://doi.org/10.1007/s11467-021-1148-8

References

[1]
X. Jing, C. Chu, C. Li, H. Gan, Y. He, X. Gui, and Z. Hong, Enhancement of bandwidth and angle response of metasurface cloaking through adding antireflective motheye-like microstructure, Opt. Express 27(15), 21766 (2019)
CrossRef ADS Google scholar
[2]
L. Jiang, C. Chu, B. Fang, M. Zhang, H. Gan, C. Li, X. Jing, and Z. Hong, Multi-wavelength carpet cloaking based on an ultrathin single layer metamaterial microstructure, Laser Phys. Lett. 17(6), 066202 (2020)
CrossRef ADS Google scholar
[3]
J. Yang, H. Huang, X. Wu, B. Sun, and X. Luo, Dualwavelength carpet cloak using ultrathin metasurface, Adv. Opt. Mater. 6(14), 1800073 (2018)
CrossRef ADS Google scholar
[4]
J. Yang, S. Qu, H. Ma, J. Wang, S. Sui, Q. Zheng, H. Chen, and Y. Pang, Ultra-broadband co-polarization anomalous reflection metasurface, Appl. Phys. A 123(8), 537 (2017)
CrossRef ADS Google scholar
[5]
J. Li, Y. Yuan, Q. Wu, S. N. Burokur, and K. Zhang, Dualband independent phase control based on high efficiency metasurface, Chin. Opt. Lett. 19, 100501 (2021)
CrossRef ADS Google scholar
[6]
S. Teng, Q. Zhang, H. Wang, L. Liu, and H. Lv, Conversion between polarization states based on metasurface, Photon. Res. 7(3), 246 (2019)
CrossRef ADS Google scholar
[7]
M. Akram, G. Ding, K. Chen, Y. Feng, and W. Zhu, Ultrathin single layer metasurfaces with ultra-wideband operation for both transmission and reflection, Adv. Mater. 32(12), 1907308 (2020)
CrossRef ADS Google scholar
[8]
J. Zhang, X. Wei, I. Rukhlenko, H. Chen, and W. Zhu, Electrically tunable metasurface with independent frequency and amplitude modulations, ACS Photonics 7(1), 265 (2020)
CrossRef ADS Google scholar
[9]
H. Wang, Z. Zhang, K. Zhao, W. Liu, P. Wang, and Y. Lu, Independent phase manipulation of co- and cross-polarizations with all-dielectric metasurface, Chin. Opt. Lett. 19, 053601 (2021)
CrossRef ADS Google scholar
[10]
B. Fang, Z. Cai, Y. Peng, C. Li, Z. Hong, and X. Jing, Realization of ultrahigh refractive index in terahertz region by multiple layers coupled metal ring metamaterials, J. Electromagn. Waves Appl. 33(11), 1375 (2019)
CrossRef ADS Google scholar
[11]
B. Fang, B. Li, Y. Peng, C. Li, Z. Hong, and X. Jing, Polarization-independent multiband metamaterials absorber by fundamental cavity mode of multilayer microstructure, Microw. Opt. Technol. Lett. 61(10), 2385 (2019)
CrossRef ADS Google scholar
[12]
W. Wang, X. Jing, J. Zhao, Y. Li, and Y. Tian, Improvement of accuracy of simple methods for design and analysis of a blazed phase grating microstructure, Opt. Appl. 47(2), 183 (2017)
[13]
L. Jiang, B. Fang, Z. Yan, C. Li, J. Fu, H. Gan, Z. Hong, and X. Jing, Improvement of unidirectional scattering characteristics based on multiple nanospheres array, Microw. Opt. Technol. Lett. 62(6), 2405 (2020)
CrossRef ADS Google scholar
[14]
Y. Zhao, Q. Huang, H. Cai, X. Lin, H. He, H. Cheng, T. Ma, and Y. Lu, Ultrafast control of slow light in THz electromagnetically induced transparency metasurfaces, Chin. Opt. Lett. 19(7), 073602 (2021)
CrossRef ADS Google scholar
[15]
X. Xie, Y. Deng, and S. L. Johnson, Compact and robust supercontinuum generation and post-compression using multiple thin plates, High Power Laser Sci. Eng. 9(4), 04000e66 (2021)
CrossRef ADS Google scholar
[16]
A. Du, Y. Ma, M. Liu, Z. Zhang, G. Cao, H. Li, L. Wang, P. Si, J. Shen, and B. Zhou, Morphology analysis of tracks in the aerogels impacted by hypervelocity irregular particles, High Power Laser Sci. Eng. 9(2), 02000e14 (2021)
CrossRef ADS Google scholar
[17]
T. Ebert, R. Heber, T. Abel, J. Bieker, G. Schaumann, and M. Roth, Targets with cone-shaped microstructures from various materials for enhanced high-intensity laser–matter interaction, High Power Laser Sci. Eng. 9(2), 02000e24 (2021)
CrossRef ADS Google scholar
[18]
H. S. Khaliq, I. Kim, A. Zahid, J. Kim, T. Lee, T. Badloe, Y. Kim, M. Zubair, K. Riaz, M. Q. Mehmood, and J. Rho, Giant chiro-optical responses in multipolar-resonances- based single-layer dielectric metasurfaces, Photon. Res. 9(9), 1667 (2021)
CrossRef ADS Google scholar
[19]
M. Parry, A. Mazzanti, A. Poddubny, G. D. Valle, D. N. Neshev, and A. A. Sukhorukov, Enhanced generation of nondegenerate photon pairs in nonlinear metasurfaces, Adv. Photonics 3(05), 055001 (2021)
CrossRef ADS Google scholar
[20]
J. Zhang, H. Zhang, W. Yang, K. Chen, X. Wei, Y. Feng, R. Jin, and W. Zhu, Dynamic scattering steering with graphene-based coding meta-mirror, Adv. Opt. Mater. 8(19), 2000683 (2020)
CrossRef ADS Google scholar
[21]
X. Bai, F. Kong, Y. Sun, F. Wang, J. Qian, X. Li, A. Cao, C. He, X. Liang, R. Jin, and W. Zhu, High-efficiency trans-missive programable metasurface for multi-mode OAM generations, Adv. Opt. Mater. 8(17), 2000570 (2020)
CrossRef ADS Google scholar
[22]
X. Jing, X. Gui, P. Zhou, and Z. Hong, Physical explanation of Fabry–Pérot cavity for broadband bilayer meta-materials polarization converter, J. Lightwave Technol. 36(12), 2322 (2018)
CrossRef ADS Google scholar
[23]
R. Xia, X. Jing, X. Gui, Y. Tian, and Z. Hong, Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials, Opt. Mater. Express 7(3), 977 (2017)
CrossRef ADS Google scholar
[24]
M. Akram, M. Mehmood, X. Bai, R. Jin, M. Premaratne, and W. Zhu, High efficiency ultra-thin transmissive metasurfaces, Adv. Opt. Mater. 7(11), 1801628 (2019)
CrossRef ADS Google scholar
[25]
M. Akram, X. Bai, R. Jin, G. Vandenbosch, M. Premaratne, and W. Zhu, Photon spin Hall effect based ultrathin transmissive metasurface for efficient generation of OAM waves, IEEE Trans. Antenn. Propag. 67(7), 4650 (2019)
CrossRef ADS Google scholar
[26]
J. Zhao, X. Jing, W. Wang, Y. Tian, D. Zhu, and G. Shi, Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz region, Opt. Laser Technol. 95, 56 (2017)
CrossRef ADS Google scholar
[27]
Y. Tian, X. Jing, H. Gan, X. Li, and Z. Hong, Free control of far-field scattering angle of transmission terahertz wave using multilayer split-ring resonators’ metasurfaces, Front. Phys. 15(6), 62502 (2020)
CrossRef ADS Google scholar
[28]
C. Zhou, Z. Mou, R. Bao, Z. Li, and S. Teng, Compound plasmonic vortex generation based on spiral nanoslits, Front. Phys. 16(3), 33503 (2021)
CrossRef ADS Google scholar
[29]
G. Dai, Designing nonlinear thermal devices and metamaterials under the Fourier law: A route to nonlinear thermotics, Front. Phys. 16(5), 53301 (2021)
CrossRef ADS Google scholar
[30]
J. Li, R. Jin, J. Geng, X. Liang, K. Wang, M. Premaratne, and W. Zhu, Design of a broadband metasurface Luneburg lens for full-angle operation, IEEE Trans. Antenn. Propag. 67(4), 2442 (2019)
CrossRef ADS Google scholar
[31]
X. Lu, X. Zeng, H. Lv, Y. Han, Z. Mou, C. Liu, S. Wang, and S. Teng, Polarization controllable plasmonic focusing based on nanometer holes, Nanotechnology 31(13), 135201 (2020)
CrossRef ADS Google scholar
[32]
H. Lv, X. Lu, Y. Han, Z. Mou, C. Zhou, S. Wang, and S. Teng, Metasurface cylindrical vector light generators based on nanometer holes, New J. Phys. 21(12), 123047 (2019)
CrossRef ADS Google scholar
[33]
H. Lv, X. Lu, Y. Han, Z. Mou, and S. Teng, Multifocal metalens with a controllable intensity ratio, Opt. Lett. 44(10), 2518 (2019)
CrossRef ADS Google scholar
[34]
H. Wang, L. Liu, C. Zhou, J. Xu, M. Zhang, S. Teng, and Y. Cai, Vortex beam generation with variable topological charge based on a spiral slit, Nanophotonics 8(2), 317 (2019)
CrossRef ADS Google scholar
[35]
X. Jing, S. Jin, Y. Tian, P. Liang, Q. Dong, and L. Wang, Analysis of the sinusoidal nanopatterning grating structure, Opt. Laser Technol. 48, 160 (2013)
CrossRef ADS Google scholar
[36]
X. Jing, Y. Xu, H. Gan, Y. He, and Z. Hong, High refractive index metamaterials by using higher order modes resonances of hollow cylindrical nanostructure in visible region, IEEE Access. 7, 144945 (2019)
CrossRef ADS Google scholar
[37]
L. Jiang, B. Fang, Z. Yan, J. Fan, C. Qi, J. Liu, Y. He, C. Li, X. Jing, H. Gan, and Z. Hong, Terahertz high and near-zero refractive index metamaterials by double layer metal ring microstructure, Opt. Laser Technol. 123, 105949 (2020)
CrossRef ADS Google scholar
[38]
X. He, Tunable terahertz graphene metamaterials, Carbon 82, 229 (2015)
CrossRef ADS Google scholar
[39]
X. He, X. Zhong, F. Lin, and W. Shi, Investigation of graphene assisted tunable terahertz metamaterials absorber, Opt. Mater. Express 6(2), 331 (2016)
CrossRef ADS Google scholar
[40]
J. Pendry, D. Schurig, and D. Smith, Controlling electromagnetic fields, Science 312(5781), 1780 (2006)
CrossRef ADS Google scholar
[41]
U. Leonhardt, Optical conformal mapping, Science 312(5781), 1777 (2006)
CrossRef ADS Google scholar
[42]
D. Deslandes and K. Wu, Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide, IEEE T. Microw. Theory 54(6), 2516 (2006)
CrossRef ADS Google scholar
[43]
A. Rajput and K. Srivastava, Dual-band cloak using microstrip patch with embedded U-shaped slot, IEEE Antennas Wirel. Propag. Lett. 16, 2848 (2017)
CrossRef ADS Google scholar
[44]
Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, A metasurface carpet cloak for electromagnetic acoustic and water waves, Sci. Rep. 6(1), 20219 (2016)
CrossRef ADS Google scholar
[45]
J. Zhang, Z. L. Mei, W. R. Zhang, F. Yang, and T. J. Cui, An ultrathin directional carpet cloak based on generalized Snell’s law, Appl. Phys. Lett. 103(15), 151115 (2013)
CrossRef ADS Google scholar
[46]
S. Islam, M. Faruque, and M. Islam, A near zero refractive index metamaterial for electromagnetic invisibility cloaking operation, Materials (Basel) 8(8), 4790 (2015)
CrossRef ADS Google scholar
[47]
S. Fan, S. Zhao, L. Cao, Y. Zhu, A. L. Chen, Y. F. Wang, K. Donda, Y. S. Wang, and B. Assouar, Reconfigurable curved metasurface for acoustic cloaking and illusion, Phys. Rev. B 101(2), 024104 (2020)
CrossRef ADS Google scholar
[48]
L. Lan, F. Sun, Y. Liu, C. K. Ong, and Y. Ma, Experimentally demonstrated a unidirectional electromagnetic cloak designed by topology optimization, Appl. Phys. Lett. 103(12), 121113 (2013)
CrossRef ADS Google scholar
[49]
M. Selvanayagam and G. Eleftheriades, Experimental demonstration of active electromagnetic cloaking, Phys. Rev. X 3(4), 041011 (2013)
CrossRef ADS Google scholar
[50]
C. Qian, B. Zheng, Y. Shen, L. Jing, E. Li, L. Shen, and H. Chen, Deep-learning-enabled self-adaptive microwave cloak without human intervention, Nat. Photonics 14(6), 383 (2020)
CrossRef ADS Google scholar
[51]
X. He, F. Liu, F. Lin, and W. Shi, Tunable 3D Diracsemimetals supported mid-IR hybrid plasmonic waveguides, Opt. Lett. 46(3), 472 (2021)
CrossRef ADS Google scholar
[52]
X. He, F. Liu, F. Lin, and W. Shi, Tunable terahertz Dirac semimetal metamaterials, J. Phys. D 54(23), 235103 (2021)
CrossRef ADS Google scholar
[53]
J. Peng, X. He, C. Shi, J. Leng, F. Lin, F. Liu, H. Zhang, and W. Shi, Investigation of graphene supported terahertz elliptical metamaterials, Physica E 124, 114309 (2020)
CrossRef ADS Google scholar
[54]
A. Karvounis, B. Gholipour, K. MacDonald, and N. Zheludev, All-dielectric phase-change reconfigurable metasurface, Appl. Phys. Lett. 109(5), 051103 (2016)
CrossRef ADS Google scholar
[55]
M. Dicken, K. Aydin, I. Pryce, L. Sweatlock, E. Boyd, S. Walavalkar, J. Ma, and H. Atwater, Frequency tunable near-infrared metamaterials based on VO2 phase transition, Opt. Express 17(20), 18330 (2009)
CrossRef ADS Google scholar
[56]
M. Islam, J. Sultana, M. Biabanifard, Z. Vafapour, M. Nine, A. Dinovitser, C. Cordeiro, B. Ng, and D. Abbott, Tunable localized surface Plasmon grapheme metasurface for multiband superabsorption and terahertz sensing, Carbon 158, 559 (2020)
CrossRef ADS Google scholar
[57]
E. Hasman, V. Kleiner, G. Biener, and A. Niv, Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics, Appl. Phys. Lett. 82(3), 328 (2003)
CrossRef ADS Google scholar
[58]
S. J. Li, B. L. Yun, L. Zhang, J. L. Zhang, W. H. Bo, Q. L. Rui, Y. C. Xiang, Q. Cheng, and J. C. Tie, Programmable controls to scattering properties of a radiation array, Laser Photonics Rev. 15(2), 2000449 (2021)
CrossRef ADS Google scholar
[59]
S. J. Li, B. L. Yun, H. Li, X. W. Zheng, C. Zhang, X. G. Ze, Q. L. Rui, Y. C. Xiang, Q. Cheng, and J. C. Tie, A thin self-feeding Janus metasurface for manipulating incident waves and emitting radiation waves simultaneously, Ann. Phys. (Berlin) 532(5), 2000020 (2020)
CrossRef ADS Google scholar
[60]
H. Chu, H. Zhang, Y. Zhang, R. Peng, M. Wang, Y. Hao, and Y. Lai, Invisible surfaces enabled by the coalescence of anti-reflection and wavefront controllability in ultrathin metasurfaces, Nat. Commun. 12(1), 4523 (2021)
CrossRef ADS Google scholar
[61]
S. W. Fan, S. D. Zhao, L. Cao, Y. Zhu, A. L. Chen, Y. F. Wang, K. Donda, Y. S. Wang, and B. Assouar, Reconfigurable curved metasurface for acoustic cloaking and illusion, Phys. Rev. B 101(2), 024104 (2020)
CrossRef ADS Google scholar
[62]
C. Qian, B. Zheng, Y. Shen, L. Jing, E. Li, L. Shen, and H. Chen, Deep-learning-enabled self-adaptive microwave cloak without human intervention, Nat. Photonics 14(6), 383 (2020)
CrossRef ADS Google scholar
[63]
L. Hsu, A. Ndao, and B. Kanté, Broadband and linear polarization metasurface carpet cloak in the visible, Opt. Lett. 44(12), 2978 (2019)
CrossRef ADS Google scholar
[64]
Y. Huang, M. Pu, F. Zhang, J. Luo, X. Li, X. Ma, and X. Luo, Broadband functional metasurfaces: Achieving nonlinear phase generation toward achromatic surface cloaking and lensing, Adv. Opt. Mater. 7(7), 1801480 (2019)
CrossRef ADS Google scholar
[65]
M. Zhang, M. Pu, F. Zhang, Y. Guo, Q. He, X. Ma, Y. Huang, X. Li, H. Yu, and X. Luo, Plasmonic metasurfaces or switchable photonic spin-orbit interactions based on phase change materials, Adv. Sci. 5(10), 1800835 (2018)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(1391 KB)

Accesses

Citations

Detail

Sections
Recommended

/