Broadband cross-circular polarization carpet cloaking based on a phase change material metasurface in the mid-infrared region
Bo Fang, Dantian Feng, Peng Chen, Lijiang Shi, Jinhui Cai, Jianmin Li, Chenxia Li, Zhi Hong, Xufeng Jing
Broadband cross-circular polarization carpet cloaking based on a phase change material metasurface in the mid-infrared region
In view of the fact that most invisibility devices focus on linear polarization cloaking and that the characteristics of mid-infrared cloaking are rarely studied, we propose a cross-circularly polarized invisibility carpet cloaking device in the mid-infrared band. Based on the Pancharatnam–Berry phase principle, the unit cells with the cross-circular polarization gradient phase were carefully designed and constructed into a metasurface. In order to achieve tunable cross-circular polarization carpet cloaks, a phase change material is introduced into the design of the unit structure. When the phase change material is in amorphous and crystalline states, the proposed metasurface unit cells can achieve high-efficiency cross-polarization conversion, and reflection intensity can be tuned. According to the phase compensation principle of carpet cloaking, we construct a metasurface cloaking device with a phase gradient using the designed unit structure. From the near- and far-field distributions, the cross-circular polarization cloaking property is confirmed in the broadband wavelength range of 9.3–11.4 µm. The proposed cloaking device can effectively resist detection of cross-circular polarization.
metamaterial / metasurface / cloaking
[1] |
X. Jing, C. Chu, C. Li, H. Gan, Y. He, X. Gui, and Z. Hong, Enhancement of bandwidth and angle response of metasurface cloaking through adding antireflective motheye-like microstructure, Opt. Express 27(15), 21766 (2019)
CrossRef
ADS
Google scholar
|
[2] |
L. Jiang, C. Chu, B. Fang, M. Zhang, H. Gan, C. Li, X. Jing, and Z. Hong, Multi-wavelength carpet cloaking based on an ultrathin single layer metamaterial microstructure, Laser Phys. Lett. 17(6), 066202 (2020)
CrossRef
ADS
Google scholar
|
[3] |
J. Yang, H. Huang, X. Wu, B. Sun, and X. Luo, Dualwavelength carpet cloak using ultrathin metasurface, Adv. Opt. Mater. 6(14), 1800073 (2018)
CrossRef
ADS
Google scholar
|
[4] |
J. Yang, S. Qu, H. Ma, J. Wang, S. Sui, Q. Zheng, H. Chen, and Y. Pang, Ultra-broadband co-polarization anomalous reflection metasurface, Appl. Phys. A 123(8), 537 (2017)
CrossRef
ADS
Google scholar
|
[5] |
J. Li, Y. Yuan, Q. Wu, S. N. Burokur, and K. Zhang, Dualband independent phase control based on high efficiency metasurface, Chin. Opt. Lett. 19, 100501 (2021)
CrossRef
ADS
Google scholar
|
[6] |
S. Teng, Q. Zhang, H. Wang, L. Liu, and H. Lv, Conversion between polarization states based on metasurface, Photon. Res. 7(3), 246 (2019)
CrossRef
ADS
Google scholar
|
[7] |
M. Akram, G. Ding, K. Chen, Y. Feng, and W. Zhu, Ultrathin single layer metasurfaces with ultra-wideband operation for both transmission and reflection, Adv. Mater. 32(12), 1907308 (2020)
CrossRef
ADS
Google scholar
|
[8] |
J. Zhang, X. Wei, I. Rukhlenko, H. Chen, and W. Zhu, Electrically tunable metasurface with independent frequency and amplitude modulations, ACS Photonics 7(1), 265 (2020)
CrossRef
ADS
Google scholar
|
[9] |
H. Wang, Z. Zhang, K. Zhao, W. Liu, P. Wang, and Y. Lu, Independent phase manipulation of co- and cross-polarizations with all-dielectric metasurface, Chin. Opt. Lett. 19, 053601 (2021)
CrossRef
ADS
Google scholar
|
[10] |
B. Fang, Z. Cai, Y. Peng, C. Li, Z. Hong, and X. Jing, Realization of ultrahigh refractive index in terahertz region by multiple layers coupled metal ring metamaterials, J. Electromagn. Waves Appl. 33(11), 1375 (2019)
CrossRef
ADS
Google scholar
|
[11] |
B. Fang, B. Li, Y. Peng, C. Li, Z. Hong, and X. Jing, Polarization-independent multiband metamaterials absorber by fundamental cavity mode of multilayer microstructure, Microw. Opt. Technol. Lett. 61(10), 2385 (2019)
CrossRef
ADS
Google scholar
|
[12] |
W. Wang, X. Jing, J. Zhao, Y. Li, and Y. Tian, Improvement of accuracy of simple methods for design and analysis of a blazed phase grating microstructure, Opt. Appl. 47(2), 183 (2017)
|
[13] |
L. Jiang, B. Fang, Z. Yan, C. Li, J. Fu, H. Gan, Z. Hong, and X. Jing, Improvement of unidirectional scattering characteristics based on multiple nanospheres array, Microw. Opt. Technol. Lett. 62(6), 2405 (2020)
CrossRef
ADS
Google scholar
|
[14] |
Y. Zhao, Q. Huang, H. Cai, X. Lin, H. He, H. Cheng, T. Ma, and Y. Lu, Ultrafast control of slow light in THz electromagnetically induced transparency metasurfaces, Chin. Opt. Lett. 19(7), 073602 (2021)
CrossRef
ADS
Google scholar
|
[15] |
X. Xie, Y. Deng, and S. L. Johnson, Compact and robust supercontinuum generation and post-compression using multiple thin plates, High Power Laser Sci. Eng. 9(4), 04000e66 (2021)
CrossRef
ADS
Google scholar
|
[16] |
A. Du, Y. Ma, M. Liu, Z. Zhang, G. Cao, H. Li, L. Wang, P. Si, J. Shen, and B. Zhou, Morphology analysis of tracks in the aerogels impacted by hypervelocity irregular particles, High Power Laser Sci. Eng. 9(2), 02000e14 (2021)
CrossRef
ADS
Google scholar
|
[17] |
T. Ebert, R. Heber, T. Abel, J. Bieker, G. Schaumann, and M. Roth, Targets with cone-shaped microstructures from various materials for enhanced high-intensity laser–matter interaction, High Power Laser Sci. Eng. 9(2), 02000e24 (2021)
CrossRef
ADS
Google scholar
|
[18] |
H. S. Khaliq, I. Kim, A. Zahid, J. Kim, T. Lee, T. Badloe, Y. Kim, M. Zubair, K. Riaz, M. Q. Mehmood, and J. Rho, Giant chiro-optical responses in multipolar-resonances- based single-layer dielectric metasurfaces, Photon. Res. 9(9), 1667 (2021)
CrossRef
ADS
Google scholar
|
[19] |
M. Parry, A. Mazzanti, A. Poddubny, G. D. Valle, D. N. Neshev, and A. A. Sukhorukov, Enhanced generation of nondegenerate photon pairs in nonlinear metasurfaces, Adv. Photonics 3(05), 055001 (2021)
CrossRef
ADS
Google scholar
|
[20] |
J. Zhang, H. Zhang, W. Yang, K. Chen, X. Wei, Y. Feng, R. Jin, and W. Zhu, Dynamic scattering steering with graphene-based coding meta-mirror, Adv. Opt. Mater. 8(19), 2000683 (2020)
CrossRef
ADS
Google scholar
|
[21] |
X. Bai, F. Kong, Y. Sun, F. Wang, J. Qian, X. Li, A. Cao, C. He, X. Liang, R. Jin, and W. Zhu, High-efficiency trans-missive programable metasurface for multi-mode OAM generations, Adv. Opt. Mater. 8(17), 2000570 (2020)
CrossRef
ADS
Google scholar
|
[22] |
X. Jing, X. Gui, P. Zhou, and Z. Hong, Physical explanation of Fabry–Pérot cavity for broadband bilayer meta-materials polarization converter, J. Lightwave Technol. 36(12), 2322 (2018)
CrossRef
ADS
Google scholar
|
[23] |
R. Xia, X. Jing, X. Gui, Y. Tian, and Z. Hong, Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials, Opt. Mater. Express 7(3), 977 (2017)
CrossRef
ADS
Google scholar
|
[24] |
M. Akram, M. Mehmood, X. Bai, R. Jin, M. Premaratne, and W. Zhu, High efficiency ultra-thin transmissive metasurfaces, Adv. Opt. Mater. 7(11), 1801628 (2019)
CrossRef
ADS
Google scholar
|
[25] |
M. Akram, X. Bai, R. Jin, G. Vandenbosch, M. Premaratne, and W. Zhu, Photon spin Hall effect based ultrathin transmissive metasurface for efficient generation of OAM waves, IEEE Trans. Antenn. Propag. 67(7), 4650 (2019)
CrossRef
ADS
Google scholar
|
[26] |
J. Zhao, X. Jing, W. Wang, Y. Tian, D. Zhu, and G. Shi, Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz region, Opt. Laser Technol. 95, 56 (2017)
CrossRef
ADS
Google scholar
|
[27] |
Y. Tian, X. Jing, H. Gan, X. Li, and Z. Hong, Free control of far-field scattering angle of transmission terahertz wave using multilayer split-ring resonators’ metasurfaces, Front. Phys. 15(6), 62502 (2020)
CrossRef
ADS
Google scholar
|
[28] |
C. Zhou, Z. Mou, R. Bao, Z. Li, and S. Teng, Compound plasmonic vortex generation based on spiral nanoslits, Front. Phys. 16(3), 33503 (2021)
CrossRef
ADS
Google scholar
|
[29] |
G. Dai, Designing nonlinear thermal devices and metamaterials under the Fourier law: A route to nonlinear thermotics, Front. Phys. 16(5), 53301 (2021)
CrossRef
ADS
Google scholar
|
[30] |
J. Li, R. Jin, J. Geng, X. Liang, K. Wang, M. Premaratne, and W. Zhu, Design of a broadband metasurface Luneburg lens for full-angle operation, IEEE Trans. Antenn. Propag. 67(4), 2442 (2019)
CrossRef
ADS
Google scholar
|
[31] |
X. Lu, X. Zeng, H. Lv, Y. Han, Z. Mou, C. Liu, S. Wang, and S. Teng, Polarization controllable plasmonic focusing based on nanometer holes, Nanotechnology 31(13), 135201 (2020)
CrossRef
ADS
Google scholar
|
[32] |
H. Lv, X. Lu, Y. Han, Z. Mou, C. Zhou, S. Wang, and S. Teng, Metasurface cylindrical vector light generators based on nanometer holes, New J. Phys. 21(12), 123047 (2019)
CrossRef
ADS
Google scholar
|
[33] |
H. Lv, X. Lu, Y. Han, Z. Mou, and S. Teng, Multifocal metalens with a controllable intensity ratio, Opt. Lett. 44(10), 2518 (2019)
CrossRef
ADS
Google scholar
|
[34] |
H. Wang, L. Liu, C. Zhou, J. Xu, M. Zhang, S. Teng, and Y. Cai, Vortex beam generation with variable topological charge based on a spiral slit, Nanophotonics 8(2), 317 (2019)
CrossRef
ADS
Google scholar
|
[35] |
X. Jing, S. Jin, Y. Tian, P. Liang, Q. Dong, and L. Wang, Analysis of the sinusoidal nanopatterning grating structure, Opt. Laser Technol. 48, 160 (2013)
CrossRef
ADS
Google scholar
|
[36] |
X. Jing, Y. Xu, H. Gan, Y. He, and Z. Hong, High refractive index metamaterials by using higher order modes resonances of hollow cylindrical nanostructure in visible region, IEEE Access. 7, 144945 (2019)
CrossRef
ADS
Google scholar
|
[37] |
L. Jiang, B. Fang, Z. Yan, J. Fan, C. Qi, J. Liu, Y. He, C. Li, X. Jing, H. Gan, and Z. Hong, Terahertz high and near-zero refractive index metamaterials by double layer metal ring microstructure, Opt. Laser Technol. 123, 105949 (2020)
CrossRef
ADS
Google scholar
|
[38] |
X. He, Tunable terahertz graphene metamaterials, Carbon 82, 229 (2015)
CrossRef
ADS
Google scholar
|
[39] |
X. He, X. Zhong, F. Lin, and W. Shi, Investigation of graphene assisted tunable terahertz metamaterials absorber, Opt. Mater. Express 6(2), 331 (2016)
CrossRef
ADS
Google scholar
|
[40] |
J. Pendry, D. Schurig, and D. Smith, Controlling electromagnetic fields, Science 312(5781), 1780 (2006)
CrossRef
ADS
Google scholar
|
[41] |
U. Leonhardt, Optical conformal mapping, Science 312(5781), 1777 (2006)
CrossRef
ADS
Google scholar
|
[42] |
D. Deslandes and K. Wu, Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide, IEEE T. Microw. Theory 54(6), 2516 (2006)
CrossRef
ADS
Google scholar
|
[43] |
A. Rajput and K. Srivastava, Dual-band cloak using microstrip patch with embedded U-shaped slot, IEEE Antennas Wirel. Propag. Lett. 16, 2848 (2017)
CrossRef
ADS
Google scholar
|
[44] |
Y. Yang, H. Wang, F. Yu, Z. Xu, and H. Chen, A metasurface carpet cloak for electromagnetic acoustic and water waves, Sci. Rep. 6(1), 20219 (2016)
CrossRef
ADS
Google scholar
|
[45] |
J. Zhang, Z. L. Mei, W. R. Zhang, F. Yang, and T. J. Cui, An ultrathin directional carpet cloak based on generalized Snell’s law, Appl. Phys. Lett. 103(15), 151115 (2013)
CrossRef
ADS
Google scholar
|
[46] |
S. Islam, M. Faruque, and M. Islam, A near zero refractive index metamaterial for electromagnetic invisibility cloaking operation, Materials (Basel) 8(8), 4790 (2015)
CrossRef
ADS
Google scholar
|
[47] |
S. Fan, S. Zhao, L. Cao, Y. Zhu, A. L. Chen, Y. F. Wang, K. Donda, Y. S. Wang, and B. Assouar, Reconfigurable curved metasurface for acoustic cloaking and illusion, Phys. Rev. B 101(2), 024104 (2020)
CrossRef
ADS
Google scholar
|
[48] |
L. Lan, F. Sun, Y. Liu, C. K. Ong, and Y. Ma, Experimentally demonstrated a unidirectional electromagnetic cloak designed by topology optimization, Appl. Phys. Lett. 103(12), 121113 (2013)
CrossRef
ADS
Google scholar
|
[49] |
M. Selvanayagam and G. Eleftheriades, Experimental demonstration of active electromagnetic cloaking, Phys. Rev. X 3(4), 041011 (2013)
CrossRef
ADS
Google scholar
|
[50] |
C. Qian, B. Zheng, Y. Shen, L. Jing, E. Li, L. Shen, and H. Chen, Deep-learning-enabled self-adaptive microwave cloak without human intervention, Nat. Photonics 14(6), 383 (2020)
CrossRef
ADS
Google scholar
|
[51] |
X. He, F. Liu, F. Lin, and W. Shi, Tunable 3D Diracsemimetals supported mid-IR hybrid plasmonic waveguides, Opt. Lett. 46(3), 472 (2021)
CrossRef
ADS
Google scholar
|
[52] |
X. He, F. Liu, F. Lin, and W. Shi, Tunable terahertz Dirac semimetal metamaterials, J. Phys. D 54(23), 235103 (2021)
CrossRef
ADS
Google scholar
|
[53] |
J. Peng, X. He, C. Shi, J. Leng, F. Lin, F. Liu, H. Zhang, and W. Shi, Investigation of graphene supported terahertz elliptical metamaterials, Physica E 124, 114309 (2020)
CrossRef
ADS
Google scholar
|
[54] |
A. Karvounis, B. Gholipour, K. MacDonald, and N. Zheludev, All-dielectric phase-change reconfigurable metasurface, Appl. Phys. Lett. 109(5), 051103 (2016)
CrossRef
ADS
Google scholar
|
[55] |
M. Dicken, K. Aydin, I. Pryce, L. Sweatlock, E. Boyd, S. Walavalkar, J. Ma, and H. Atwater, Frequency tunable near-infrared metamaterials based on VO2 phase transition, Opt. Express 17(20), 18330 (2009)
CrossRef
ADS
Google scholar
|
[56] |
M. Islam, J. Sultana, M. Biabanifard, Z. Vafapour, M. Nine, A. Dinovitser, C. Cordeiro, B. Ng, and D. Abbott, Tunable localized surface Plasmon grapheme metasurface for multiband superabsorption and terahertz sensing, Carbon 158, 559 (2020)
CrossRef
ADS
Google scholar
|
[57] |
E. Hasman, V. Kleiner, G. Biener, and A. Niv, Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics, Appl. Phys. Lett. 82(3), 328 (2003)
CrossRef
ADS
Google scholar
|
[58] |
S. J. Li, B. L. Yun, L. Zhang, J. L. Zhang, W. H. Bo, Q. L. Rui, Y. C. Xiang, Q. Cheng, and J. C. Tie, Programmable controls to scattering properties of a radiation array, Laser Photonics Rev. 15(2), 2000449 (2021)
CrossRef
ADS
Google scholar
|
[59] |
S. J. Li, B. L. Yun, H. Li, X. W. Zheng, C. Zhang, X. G. Ze, Q. L. Rui, Y. C. Xiang, Q. Cheng, and J. C. Tie, A thin self-feeding Janus metasurface for manipulating incident waves and emitting radiation waves simultaneously, Ann. Phys. (Berlin) 532(5), 2000020 (2020)
CrossRef
ADS
Google scholar
|
[60] |
H. Chu, H. Zhang, Y. Zhang, R. Peng, M. Wang, Y. Hao, and Y. Lai, Invisible surfaces enabled by the coalescence of anti-reflection and wavefront controllability in ultrathin metasurfaces, Nat. Commun. 12(1), 4523 (2021)
CrossRef
ADS
Google scholar
|
[61] |
S. W. Fan, S. D. Zhao, L. Cao, Y. Zhu, A. L. Chen, Y. F. Wang, K. Donda, Y. S. Wang, and B. Assouar, Reconfigurable curved metasurface for acoustic cloaking and illusion, Phys. Rev. B 101(2), 024104 (2020)
CrossRef
ADS
Google scholar
|
[62] |
C. Qian, B. Zheng, Y. Shen, L. Jing, E. Li, L. Shen, and H. Chen, Deep-learning-enabled self-adaptive microwave cloak without human intervention, Nat. Photonics 14(6), 383 (2020)
CrossRef
ADS
Google scholar
|
[63] |
L. Hsu, A. Ndao, and B. Kanté, Broadband and linear polarization metasurface carpet cloak in the visible, Opt. Lett. 44(12), 2978 (2019)
CrossRef
ADS
Google scholar
|
[64] |
Y. Huang, M. Pu, F. Zhang, J. Luo, X. Li, X. Ma, and X. Luo, Broadband functional metasurfaces: Achieving nonlinear phase generation toward achromatic surface cloaking and lensing, Adv. Opt. Mater. 7(7), 1801480 (2019)
CrossRef
ADS
Google scholar
|
[65] |
M. Zhang, M. Pu, F. Zhang, Y. Guo, Q. He, X. Ma, Y. Huang, X. Li, H. Yu, and X. Luo, Plasmonic metasurfaces or switchable photonic spin-orbit interactions based on phase change materials, Adv. Sci. 5(10), 1800835 (2018)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |