Fast quantum state transfer and entanglement for cavity-coupled many qubits via dark pathways

Yi-Xuan Wu, Zi-Yan Guan, Sai Li, Zheng-Yuan Xue

PDF(1135 KB)
PDF(1135 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (4) : 42507. DOI: 10.1007/s11467-021-1147-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Fast quantum state transfer and entanglement for cavity-coupled many qubits via dark pathways

Author information +
History +

Abstract

Quantum state transfer (QST) and entangled state generation (ESG) are important building blocks for modern quantum information processing. To achieve these tasks, convention wisdom is to consult the quantum adiabatic evolution, which is time-consuming, and thus is of low fidelity. Here, using the shortcut to adiabaticity technique, we propose a general method to realize high-fidelity fast QST and ESG in a cavity-coupled many qubits system via its dark pathways, which can be further designed for high-fidelity quantum tasks with different optimization purpose. Specifically, with a proper dark pathway, QST and ESG between any two qubits can be achieved without decoupling the others, which simplifies experimental demonstrations. Meanwhile, ESG among all qubits can also be realized in a single step. In addition, our scheme can be implemented in many quantum systems, and we illustrate its implementation on superconducting quantum circuits. Therefore, we propose a powerful strategy for selective quantum manipulation, which is promising in cavity coupled quantum systems and could find many convenient applications in quantum information processing.

Graphical abstract

Keywords

entanglement generation / quantum information processing / cavity QED

Cite this article

Download citation ▾
Yi-Xuan Wu, Zi-Yan Guan, Sai Li, Zheng-Yuan Xue. Fast quantum state transfer and entanglement for cavity-coupled many qubits via dark pathways. Front. Phys., 2022, 17(4): 42507 https://doi.org/10.1007/s11467-021-1147-9

References

[1]
P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Rev. 41(2), 303 (1999)
CrossRef ADS Google scholar
[2]
L. K. Grover, Quantum computers can search rapidly by using almost any transformation, Phys. Rev. Lett. 80(19), 4329 (1998)
CrossRef ADS Google scholar
[3]
P. Král, I. Thanopulos, and M. Shapiro, Coherently controlled adiabatic passage, Rev. Mod. Phys. 79(1), 53 (2007)
CrossRef ADS Google scholar
[4]
H. J. Kimble, The quantum internet, Nature 453(7198), 1023 (2008)
CrossRef ADS Google scholar
[5]
M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000
[6]
C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels, Phys. Rev. Lett. 70(13), 1895 (1993)
CrossRef ADS Google scholar
[7]
R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81(2), 865 (2009)
CrossRef ADS Google scholar
[8]
A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67(6), 661 (1991)
CrossRef ADS Google scholar
[9]
X. T. Mo and Z. Y. Xue, Single-step multipartite entangled states generation from coupled circuit cavities, Front. Phys. 14(3), 31602 (2019)
CrossRef ADS Google scholar
[10]
J. Xu, S. Li, T. Chen, and Z. Y. Xue, Nonadiabatic geometric quantum computation with optimal control on superconducting circuits, Front. Phys. 15(4), 41503 (2020)
CrossRef ADS Google scholar
[11]
S. Li, P. Shen, T. Chen, and Z. Y. Xue, Noncyclic nonadiabatic holonomic quantum gates via shortcuts to adiabaticity, Front. Phys. 16(5), 51502 (2021)
CrossRef ADS Google scholar
[12]
J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, Quantum state transfer and entanglement distribution among distant nodes in a quantum network, Phys. Rev. Lett. 78(16), 3221 (1997)
CrossRef ADS Google scholar
[13]
A. Olaya-Castro, N. F. Johnson, and L. Quiroga, Scheme for on-resonance generation of entanglement in timedependent asymmetric two-qubit-cavity systems, Phys. Rev. A 70(2), 020301 (2004)
CrossRef ADS Google scholar
[14]
N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, Laser-induced population transfer by adiabatic passage techniques, Annu. Rev. Phys. Chem. 52(1), 763 (2001)
CrossRef ADS Google scholar
[15]
K. Bergmann, H. Theuer, and B. Shore, Coherent population transfer among quantum states of atoms and molecules, Rev. Mod. Phys. 70(3), 1003 (1998)
CrossRef ADS Google scholar
[16]
Z. R. Zhong, L. Chen, J. Q. Sheng, L. T. Shen, and S. B. Zheng, Multiphonon-resonance quantum Rabi model and adiabatic passage in a cavity-optomechanical system, Front. Phys. 17(1), 12501 (2022)
CrossRef ADS Google scholar
[17]
M. G. Bason, M. Viteau, N. Malossi, P. Huillery, E. Arimondo, D. Ciampini, R. Fazio, V. Giovannetti, R. Mannella, and O. Morsch, High-fidelity quantum driving, Nat. Phys. 8(2), 147 (2012)
CrossRef ADS Google scholar
[18]
E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guéry-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga, Shortcuts to adiabaticity, Adv. At. Mol. Opt. Phys. 62, 117 (2013)
CrossRef ADS Google scholar
[19]
Y. Yan, Y. C. Li, A. Kinos, A. Walther, C. Y. Shi, L. Rippe, J. Moser, S. Kröll, and X. Chen, Inverse engineering of shortcut pulses for high fidelity initialization on qubits closely spaced in frequency, Opt. Express 27(6), 8267 (2019)
CrossRef ADS Google scholar
[20]
S. Martínez-Garaot, A. Ruschhaupt, J. Gillet, T. Busch, and J. G. Muga, Fast quasiadiabatic dynamics, Phys. Rev. A 92(4), 043406 (2015)
CrossRef ADS Google scholar
[21]
Y. H. Kang, Y. H. Chen, Z. C. Shi, B. H. Huang, J. Song, and Y. Xia, Pulse design for multilevel systems by utilizing Lie transforms, Phys. Rev. A 97(3), 033407 (2018)
CrossRef ADS Google scholar
[22]
X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga, Shortcut to adiabatic passage in two- and three-level atoms, Phys. Rev. Lett. 105(12), 123003 (2010)
CrossRef ADS Google scholar
[23]
A. Baksic, H. Ribeiro, and A. A. Clerk, Speeding up adiabatic quantum state transfer by using dressed states, Phys. Rev. Lett. 116(23), 230503 (2016)
CrossRef ADS Google scholar
[24]
B. B. Zhou, A. Baksic, H. Ribeiro, C. G. Yale, F. J. Heremans, P. C. Jerger, A. Auer, G. Burkard, A. A. Clerk, and D. D. Awschalom, Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system, Nat. Phys. 13(4), 330 (2017)
CrossRef ADS Google scholar
[25]
Y. C. Li, D. Martínez-Cercós, S. Martínez-Garaot, X. Chen, and J. G. Muga, Hamiltonian design to prepare arbitrary states of four-level systems, Phys. Rev. A 97(1), 013830 (2018)
CrossRef ADS Google scholar
[26]
P. W. Claeys, M. Pandey, D. Sels, and A. Polkovnikov, Floquet-engineering counterdiabatic protocols in quantum many-body systems, Phys. Rev. Lett. 123(9), 090602 (2019)
CrossRef ADS Google scholar
[27]
R. Blatt and D. Wineland, Entangled states of trapped atomic ions, Nature 453(7198), 1008 (2008)
CrossRef ADS Google scholar
[28]
C. Monroe and J. Kim, Scaling the ion trap quantum processor, Science 339(6124), 1164 (2013)
CrossRef ADS Google scholar
[29]
C. J. Hood, T. W. Lynn, A. C. Doherty, A. S. Parkins, and H. J. Kimble, The atom-cavity microscope: Single atoms bound in orbit by single photons, Science 287(5457), 1447 (2000)
CrossRef ADS Google scholar
[30]
R. J. Schoelkopf and S. M. Girvin, Wiring up quantum systems, Nature 451(7179), 664 (2008)
CrossRef ADS Google scholar
[31]
M. Tavis and F. W. Cummings, Exact solution for an N-molecule — radiation-field Hamiltonian, Phys. Rev. 170(2), 379 (1968)
CrossRef ADS Google scholar
[32]
P. Kurpiers, P. Magnard, T. Walter, B. Royer, M. Pechal, J. Heinsoo, Y. Salathé, A. Akin, S. Storz, J. C. Besse, S. Gasparinetti, A. Blais, and A. Wallraff, Deterministic quantum state transfer and remote entanglement using microwave photons, Nature 558(7709), 264 (2018)
CrossRef ADS Google scholar
[33]
C. J. Axline, L. D. Burkhart, W. Pfaff, M. Z. Zhang, K. Chou, P. Campagne-Ibarcq, P. Reinhold, L. Frunzio, S. M. Girvin, L. Jiang, M. H. Devoret, and R. J. Schoelkopf, Ondemand quantum state transfer and entanglement between remote microwave cavity memories, Nat. Phys. 14(7), 705 (2018)
CrossRef ADS Google scholar
[34]
M. Mariantoni, H. Wang, T. Yamamoto, M. Neeley, R. C. Bialczak, Y. Chen, M. Lenander, E. Lucero, A. D. O’ Connell, D. Sank, M. Weides, J. Wenner, Y. Yin, J. Zhao, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, Implementing the quantum von neumann architecture with superconducting circuits, Science 334(6052), 61 (2011)
CrossRef ADS Google scholar
[35]
M. L. Peng, and H. Fan, Achieving the Heisenberg limit under general Markovian noise using quantum error correction without ancilla, Quantum Inform. Process. 19(8), 266 (2020)
CrossRef ADS Google scholar
[36]
B. J. Liu and M. H. Yung, Coherent control with userdefined passage, Quantum Sci. Technol. 6(2), 025002 (2021)
CrossRef ADS Google scholar
[37]
N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, and S. J. Glaser, Optimal control of coupled spin dynamics: Design of NMR pulse sequences by gradient ascent algorithms, J. Magn. Reson. 172(2), 296 (2005)
CrossRef ADS Google scholar
[38]
J. Zhou, S. Li, T. Chen, and Z. Y. Xue, Fast hybrid quantum state transfer and entanglement generation via no transition passage, Ann. Phys. (Berlin) 531(4), 1800402 (2019)
CrossRef ADS Google scholar
[39]
M. Yun, F. Q. Guo, M. Li, L. L. Yan, M. Feng, Y. X. Li, and S. L. Su, Distributed geometric quantum computation based on the optimized-control-technique in a cavity-atom system via exchanging virtual photons, Opt. Express 29(6), 8737 (2021)
CrossRef ADS Google scholar
[40]
M. H. Devoret and R. J. Schoelkopf, Superconducting circuits for quantum information: An outlook, Science 339(6124), 1169 (2013)
CrossRef ADS Google scholar
[41]
J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474(7353), 589 (2011)
CrossRef ADS Google scholar
[42]
X. Gu, A. F. Kockum, A. Miranowicz, Y. X. Liu, and F. Nori, Microwave photonics with superconducting quantum circuits, Phys. Rep. 718–719, 1 (2017)
CrossRef ADS Google scholar
[43]
G. Wendin, Quantum information processing with superconducting circuits: A review, Rep. Prog. Phys. 80(10), 106001 (2017)
CrossRef ADS Google scholar
[44]
X. Li, Y. Ma, J. Han, T. Chen, Y. Xu, W. Cai, H. Wang, Y. P. Song, Z. Y. Xue, Z. Yin, and L. Sun, Perfect quantum state transfer in a superconducting qubit chain with parametrically tunable couplings, Phys. Rev. Appl. 10(5), 054009 (2018)
CrossRef ADS Google scholar
[45]
J. Chu, D. Y. Li, X. P. Yang, S. Q. Song, Z. K. Han, Z. Yang, Y. Q. Dong, W. Zheng, Z. M. Wang, X. M. Yu, D. Lan, X. S. Tan, and Y. Yu, Realization of superadiabatic two-qubit gates using parametric modulation in superconducting circuits, Phys. Rev. Appl. 13(6), 064012 (2020)
CrossRef ADS Google scholar
[46]
Z. Y. Xue, J. Zhou, and Z. D. Wang, Universal holonomic quantum gates in decoherence-free subspace on superconducting circuits, Phys. Rev. A 92(2), 022320 (2015)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(1135 KB)

Accesses

Citations

Detail

Sections
Recommended

/