Strain induced topological transitions in twisted double bilayer graphene

Guoyu Luo, Xinyu Lv, Lu Wen, Zhiqiang Li, Zhenbing Dai

PDF(1542 KB)
PDF(1542 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (2) : 23502. DOI: 10.1007/s11467-021-1146-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Strain induced topological transitions in twisted double bilayer graphene

Author information +
History +

Abstract

We theoretically study the band structures and the valley Chern numbers of the AB–AB and AB–BA stacked twisted double bilayer graphene under heterostrain effect. In the absence of heterostrain, due to the constrains by the spatial symmetries, the central two flat bands of the AB–AB are topological trivial bands, while in the AB–BA they have a finite Chern number. The heterostrain breaks all the point group symmetries and the constrains are lifted, hence the topological properties of the two arrangements can be tuned by different strain magnitudes ϵ and directions ϕ. The heterostrain has dissimilar impacts on the Chern numbers of the AB–AB and AB–BA, owing to their different band gaps, and these gaps can be modified by a vertical electric field. Our results show that the topological transitions for both arrangements occur in the ϵ range of 0.1%–0.4%, which can be realized in the graphene-based sample.

Graphical abstract

Keywords

valley Chern number / twisted double bilayer graphene / flat bands / heterostrain

Cite this article

Download citation ▾
Guoyu Luo, Xinyu Lv, Lu Wen, Zhiqiang Li, Zhenbing Dai. Strain induced topological transitions in twisted double bilayer graphene. Front. Phys., 2022, 17(2): 23502 https://doi.org/10.1007/s11467-021-1146-x

References

[1]
Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices, Nature 556(7699), 43 (2018)
CrossRef ADS Google scholar
[2]
Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Correlated insulator behaviour at half-flling in magic-angle graphene superlattices, Nature 556(7699), 80 (2018)
CrossRef ADS Google scholar
[3]
X. M. Liu, Z. Hao, E. Khalaf, J. Y. Lee, Y. Ronen, H. Yoo, D. Haei Najafabadi, K. Watanabe, T. Taniguchi, A. Vishwanath, and P. Kim, Tunable spin-polarized correlated states in twisted double bilayer graphene, Nature 583(7815), 221 (2020)
CrossRef ADS Google scholar
[4]
C. Shen, Y. Chu, Q. Wu, N. Li, S. Wang, Y. Zhao, J. Tang, J. Liu, J. Tian, K. Watanabe, T. Taniguchi, R. Yang, Z. Y. Meng, D. Shi, O. V. Yazyev, and G. Zhang, Correlated states in twisted double bilayer graphene, Nat. Phys. 16(5), 520 (2020)
CrossRef ADS Google scholar
[5]
G. Chen, A. L. Sharpe, P. Gallagher, I. T. Rosen, E. J. Fox, L. Jiang, B. Lyu, H. Li, K. Watanabe, T. Taniguchi, J. Jung, Z. Shi, D. Goldhaber-Gordon, Y. Zhang, and F. Wang, Signatures of gate-tunable superconductivity in trilayer graphene moiré superlattice, Nature 572(7768), 215 (2019)
CrossRef ADS Google scholar
[6]
H. C. Po, L. J. Zou, A. Vishwanath, and T. Senthil, Origin of Mott insulating behavior and superconductivity in twisted bilayer graphene, Phys. Rev. X 8(3), 031089 (2018)
CrossRef ADS Google scholar
[7]
Y. H. Zhang, D. Mao, and T. Senthil, Twisted bilayer graphene aligned with hexagonal boron nitride: Anomalous Hall effect and a lattice model, Phys. Rev. Res. 1(3), 033126 (2019)
CrossRef ADS Google scholar
[8]
Y. H. Zhang, D. Mao, Y. Cao, P. Jarillo-Herrero, and T. Senthil, Nearly flat Chern bands in moiré superlattices, Phys. Rev. B 99(7), 075127 (2019)
CrossRef ADS Google scholar
[9]
X. Lu, P. Stepanov, W. Yang, M. Xie, M. A. Aamir, I. Das, C. Urgell, K. Watanabe, T. Taniguchi, G. Zhang, A. Bachtold, A. H. MacDonald, and D. K. Efetov, Superconductors, orbital magnets and correlated states in magicangle bilayer graphene, Nature 574(7780), 653 (2019)
CrossRef ADS Google scholar
[10]
C. L. Tschirhart, M. Serlin, H. Polshyn, A. Shragai, Z. Xia, J. Zhu, Y. Zhang, K. Watanabe, T. Taniguchi, M. E. Huber, and A. F. Young, Imaging orbital ferromagnetism in a moiré Chern insulator, Science 372(6548), 1323 (2021)
CrossRef ADS Google scholar
[11]
H. Polshyn, J. Zhu, M. A. Kumar, Y. Zhang, F. Yang, C. L. Tschirhart, M. Serlin, K. Watanabe, T. Taniguchi, A. H. MacDonald, and A. F. Young, Electrical switching of magnetic order in an orbital Chern insulator, Nature 588(7836), 66 (2020)
CrossRef ADS Google scholar
[12]
G. R. Chen, A. L. Sharpe, E. J. Fox, Y. H. Zhang, S. Wang, L. Jiang, B. Lyu, H. Li, K. Watanabe, T. Taniguchi, Z. Shi, T. Senthil, D. Goldhaber-Gordon, Y. Zhang, and F. Wang, Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice, Nature 579(7797), 56 (2020)
CrossRef ADS Google scholar
[13]
A. L. Sharpe, E. J. Fox, A. W. Barnard, J. Finney, K. Watanabe, T. Taniguchi, M. A. Kastner, and D. Goldhaber-Gordon, Emergent ferromagnetism near threequarters filling in twisted bilayer graphene, Science 365(6453), 605 (2019)
CrossRef ADS Google scholar
[14]
M. Serlin, C. L. Tschirhart, H. Polshyn, Y. Zhang, J. Zhu, K. Watanabe, T. Taniguchi, L. Balents, and A. F. Young, Intrinsic quantized anomalous Hall effect in a moiré heterostructure, Science 367(6480), 900 (2020)
CrossRef ADS Google scholar
[15]
F. R. Geisenhof, F. Winterer, A. M. Seiler, J. Lenz, T. Xu, F. Zhang, and R. T. Weitz, Quantum anomalous Hall octet driven by orbital magnetism in bilayer graphene, Nature 598(7879), 53 (2021)
CrossRef ADS Google scholar
[16]
E. Tang, J. W. Mei, and X. G. Wen, High-temperature fractional quantum Hall states, Phys. Rev. Lett. 106(23), 236802 (2011)
CrossRef ADS Google scholar
[17]
K. Sun, Z. Gu, H. Katsura, and S. Das Sarma, Nearly flatbands with nontrivial topology, Phys. Rev. Lett. 106(23), 236803 (2011)
CrossRef ADS Google scholar
[18]
T. Neupert, L. Santos, C. Chamon, and C. Mudry, Fractional quantum Hall states at zero magnetic field, Phys. Rev. Lett. 106(23), 236804 (2011)
CrossRef ADS Google scholar
[19]
Y. F. Wang, Z. C. Gu, C. D. Gong, and D. N. Sheng, Fractional quantum Hall effect of hard-core bosons in topological flat bands, Phys. Rev. Lett. 107(14), 146803 (2011)
CrossRef ADS Google scholar
[20]
N. R. Chebrolu, B. L. Chittari, and J. Jung, Flat bands in twisted double bilayer graphene, Phys. Rev. B 99(23), 235417 (2019)
CrossRef ADS Google scholar
[21]
G. W. Burg, J. Zhu, T. Taniguchi, K. Watanabe, A. H. MacDonald, and E. Tutuc, Correlated insulating states in twisted double bilayer graphene, Phys. Rev. Lett. 123(19), 197702 (2019)
CrossRef ADS Google scholar
[22]
M. H. He, Y. H. Li, J. Q. Cai, Y. Liu, K. Watanabe, T. Taniguchi, X. Xu, and M. Yankowitz, Symmetry breaking in twisted double bilayer graphene, Nat. Phys. 17(1), 26 (2021)
CrossRef ADS Google scholar
[23]
Y. W. Choi and H. J. Choi, Intrinsic band gap and electrically tunable flat bands in twisted double bilayer graphene, Phys. Rev. B 100, 201402(R) (2019)
CrossRef ADS Google scholar
[24]
X. M. Liu, C. L. Chiu, J. Y. Lee, G. Farahi, K. Watanabe, T. Taniguchi, A. Vishwanath, and A. Yazdani, Spectroscopy of a tunable moiré system with a correlated and topological flat band, Nat. Commun. 12(1), 2732 (2021)
CrossRef ADS Google scholar
[25]
M. Koshino, Band structure and topological properties of twisted double bilayer graphene, Phys. Rev. B 99(23), 235406 (2019)
CrossRef ADS Google scholar
[26]
G. Y. Luo, L. Wen, X. Y. Lv, and Z. Li, Tunable optical property and flat bands in twisted double bilayer graphene, Phys. Lett. A 416, 127670 (2021)
CrossRef ADS Google scholar
[27]
Z. Bi, N. Yuan, and L. Fu, Designing flat band by strain, Phys. Rev. B 100(3), 035448 (2019)
CrossRef ADS Google scholar
[28]
L. Huder, A. Artaud, T. Le Quang, G. T. de Laissardière, A. G. M. Jansen, G. Lapertot, C. Chapelier, and V. T. Renard, Electronic spectrum of twisted graphene layers under heterostrain, Phys. Rev. Lett. 120(15), 156405 (2018)
CrossRef ADS Google scholar
[29]
A. Kerelsky, L. McGilly, D. M. Kennes, L. Xian, M. Yankowitz, S. Chen, K. Watanabe, T. Taniguchi, J. Hone, C. Dean, A. Rubio, and A. N. Pasupathy, Magic angle spectroscopy, arXiv: 1812.08776 (2018)
[30]
M. Yankowitz, S. Chen, H. Polshyn, K. Watanabe, T. Taniguchi, D. Graf, A. F. Young, and C. R. Dean, Tuning superconductivity in twisted bilayer graphene, arXiv: 1808.07865 (2018)
[31]
E. McCann and M. Koshino, The electronic properties of bilayer graphene, Rep. Prog. Phys. 76(5), 056503 (2013)
CrossRef ADS Google scholar
[32]
P. Moon and M. Koshino, Optical absorption in twisted bilayer graphene, Phys. Rev. B 87(20), 205404 (2013)
CrossRef ADS Google scholar
[33]
Z. H. Ni, T. Yu, Y. H. Lu, Y. Y. Wang, Y. P. Feng and Z. X. Shen, Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening, ACS Nano 2(11), 2301 (2008)
CrossRef ADS Google scholar
[34]
S. B. Cronin, A. K. Swan, M. S. Unlu, B. B. Goldberg, M. S. Dresselhaus, and M. Tinkham, Measuring the uniaxial strain of individual single-wall carbon nanotubes: Resonance Raman spectra of atomic-force-microscope modified single-wall nanotubes, Phys. Rev. Lett. 93(16), 167401 (2004)
CrossRef ADS Google scholar
[35]
N. N. T. Nam and M. Koshino, Lattice relaxation and energy band modulation in twisted bilayer graphene, Phys. Rev. B 96(7), 075311 (2017)
CrossRef ADS Google scholar
[36]
Z. Ma, S. Li, Y. W. Zheng, M. M. Xiao, H. Jiang, J. H. Gao, and X. C. Xie, Topological flat bands in twisted trilayer graphene, Sci. Bull. (Beijing) 66(1), 18 (2021)
CrossRef ADS Google scholar
[37]
J. Liu, Z. Ma, J. Gao, and X. Dai, Quantum valley hall effect, orbital magnetism, and anomalous hall effect in twisted multilayer graphene systems, Phys. Rev. X 9(3), 031021 (2019)
CrossRef ADS Google scholar
[38]
Z. B. Dai, Y. He, and Z. Q. Li, Effects of heterostrain and lattice relaxation on the optical conductivity of twisted bilayer graphene, Phys. Rev. B 104(4), 045403 (2021)
CrossRef ADS Google scholar
[39]
L. Ju, Z. W. Shi, N. Nair, Y. Lv, C. Jin, J. Jr Velasco, C. Ojeda-Aristizabal, H. A. Bechtel, M. C. Martin, A. Zettl, J. Analytis, and F. Wang, Topological valley transport at bilayer graphene domain walls, Nature 520(7549), 650 (2015)
CrossRef ADS Google scholar
[40]
S. Cho, S. D. Kang, W. Kim, E. S. Lee, S. J. Woo, K. J. Kong, I. Kim, H. D. Kim, T. Zhang, J. A. Stroscio, Y. H. Kim, and H. K. Lyeo, Thermoelectric imaging of structural disorder in epitaxial graphene, Nat. Mater. 12(10), 913 (2013)
CrossRef ADS Google scholar
[41]
S. S. Sunku, G. X. Ni, B. Y. Jiang, H. Yoo, A. Sternbach, A. S. McLeod, T. Stauber, L. Xiong, T. Taniguchi, K. Watanabe, P. Kim, M. M. Fogler, and D. N. Basov, Photonic crystals for nano-light in moiré graphene superlattices, Science 362(6419), 1153 (2018)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(1542 KB)

Accesses

Citations

Detail

Sections
Recommended

/