Sender-controlled measurement-device-independent multiparty quantum communication

Yuyan Wei, Siying Wang, Yajing Zhu, Tao Li

PDF(745 KB)
PDF(745 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (2) : 21503. DOI: 10.1007/s11467-021-1144-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Sender-controlled measurement-device-independent multiparty quantum communication

Author information +
History +

Abstract

Multiparty quantum communication is an important branch of quantum networks. It enables private information transmission with information-theoretic security among legitimate parties. We propose a sender-controlled measurement-device-independent multiparty quantum communication protocol. The sender Alice divides a private message into several parts and delivers them to different receivers for secret sharing with imperfect measurement devices and untrusted ancillary nodes. Furthermore, Alice acts as an active controller and checks the security of quantum channels and the reliability of each receiver before she encodes her private message for secret sharing, which makes the protocol convenient for multiparity quantum communication.

Graphical abstract

Keywords

measurement-device-independent / sender-controlled / deterministic multiparty quantum communication

Cite this article

Download citation ▾
Yuyan Wei, Siying Wang, Yajing Zhu, Tao Li. Sender-controlled measurement-device-independent multiparty quantum communication. Front. Phys., 2022, 17(2): 21503 https://doi.org/10.1007/s11467-021-1144-z

References

[1]
N. Gisin , G. Ribordy , W. Tittel , and H. Zbinden , Quantum cryptography, Rev. Mod. Phys. 74 (1), 145 (2002)
CrossRef ADS Google scholar
[2]
Z. X. Cui , W. Zhong , L. Zhou , and Y. B. Sheng , Measurement-device-independent quantum key distribution with hyper-encoding, Sci. China Phys. Mech. Astron. 62 (11), 110311 (2019)
CrossRef ADS Google scholar
[3]
T. Shang , Y. Tang , R. Chen , and J. Liu , Full quantum oneway function for quantum cryptography, Quantum Eng. 2 (1), e32 (2020)
CrossRef ADS Google scholar
[4]
Y. F. Yan , L. Zhou , W. Zhong , and Y. B. Sheng , Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon, Front. Phys. 16 (1), 11501 (2021)
CrossRef ADS Google scholar
[5]
Y. Zhang and Q. Ni , Design and analysis of random multiple access quantum key distribution, Quantum Eng. 2 (1), e31 (2020)
CrossRef ADS Google scholar
[6]
G. L. Long and X. S. Liu , Theoretically efficient high-capacity quantum-key-distribution scheme, Phys. Rev. A 65 (3), 032302 (2002)
CrossRef ADS Google scholar
[7]
F. G. Deng , G. L. Long , and X. S. Liu , Two-step quantum direct communication protocol using the Einstein-Podolsky–Rosen pair block, Phys. Rev. A 68 (4), 042317 (2003)
CrossRef ADS Google scholar
[8]
C. Wang , F. G. Deng , Y. S. Li , X. S. Liu , and G. L. Long , Quantum secure direct communication with high-dimension quantum superdense coding, Phys. Rev. A 71 (4), 044305 (2005)
CrossRef ADS Google scholar
[9]
J. Y. Hu , B. Yu , M. Y. Jing , L. T. Xiao , S. T. Jia , G. Q. Qin , and G. L. Long , Experimental quantum secure direct communication with single photons, Light Sci. Appl. 5 (9), e16144 (2016)
CrossRef ADS Google scholar
[10]
W. Zhang , D. S. Ding , Y. B. Sheng , L. Zhou , B. S. Shi , and G. C. Guo , Quantum secure direct communication with quantum memory, Phys. Rev. Lett. 118 (22), 220501 (2017)
CrossRef ADS Google scholar
[11]
S. S. Chen , L. Zhou , W. Zhong , and Y. B. Sheng , Threestep three-party quantum secure direct communication, Sci. China Phys. Mech. Astron. 61 (9), 90312 (2018)
CrossRef ADS Google scholar
[12]
L. Y. Li , T. J. Wang , and C. Wang , The analysis of high-capacity quantum secure direct communication using polarization and orbital angular momentum of photons, Mod. Phys. Lett. B 34 (02), 2050017 (2020)
CrossRef ADS Google scholar
[13]
T. Li and G. L. Long , Quantum secure direct communication based on single-photon Bell-state measurement, New J. Phys. 22 (6), 063017 (2020)
CrossRef ADS Google scholar
[14]
Z. D. Ye , D. Pan , Z. Sun , C. G. Du , L. G. Yin , and G. L. Long , Generic security analysis framework for quantum secure direct communication, Front. Phys. 16 (2), 21503 (2021)
CrossRef ADS Google scholar
[15]
M. Hillery , V. Buzek , and A. Berthiaume , Quantum secret sharing, Phys. Rev. A 59 (3), 1829 (1999)
CrossRef ADS Google scholar
[16]
R. Cleve , D. Gottesman , and H. K. Lo , How to share a quantum secret, Phys. Rev. Lett. 83 (3), 648 (1999)
CrossRef ADS Google scholar
[17]
W. Tittel , H. Zbinden , and N. Gisin , Experimental demonstration of quantum secret sharing, Phys. Rev. A 63 (4), 042301 (2001)
CrossRef ADS Google scholar
[18]
Y. A. Chen , A. N. Zhang , Z. Zhao , X. Q. Zhou , C. Y. Lu , C. Z. Peng , T. Yang , and J. W. Pan , Experimental quantum secret sharing and third-man quantum cryptography, Phys. Rev. Lett. 95 (20), 200502 (2005)
CrossRef ADS Google scholar
[19]
T. Gao , F. L. Yan , and Z. X. Wang , Deterministic secure direct communication using GH Z states and swapping quantum entanglement, J. Phys. A 38 (25), 5761 (2005)
CrossRef ADS Google scholar
[20]
C. H. Bennett and G. Brassard , in: Proceedings of the IE EE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984, pp 175- 179 (IEEE, New York, 1984)
[21]
H. K. Lo , M. Curty , and K. Tamaki , Secure quantum key distribution, Nat. Photonics 8 (8), 595 (2014)
CrossRef ADS Google scholar
[22]
F. Xu , X. Ma , Q. Zhang , H. K. Lo , and J. W. Pan , Secure quantum key distribution with realistic devices, Rev. Mod. Phys. 92 (2), 025002 (2020)
CrossRef ADS Google scholar
[23]
T. Li , Z. Gao , and Z. Li , Measurement-device-independent quantum secure direct communication: Direct quantum communication with imperfect measurement device and untrusted operator, EPL 131 (6), 60001 (2020)
CrossRef ADS Google scholar
[24]
A. Acín , N. Brunner , N. Gisin , S. Massar , S. Pironio , and V. Scarani , Device-independent security of quantum cryptography against collective attacks, Phys. Rev. Lett. 98 (23), 230501 (2007)
CrossRef ADS Google scholar
[25]
C. C. W. Lim , C. Portmann , M. Tomamichel , R. Renner , and N. Gisin , Device-independent quantum key distribution with local Bell test, Phys. Rev. X 3 (3), 031006 (2013)
CrossRef ADS Google scholar
[26]
L. Zhou , Y. B. Sheng , and G. L. Long , Device-independent quantum secure direct communication against collective attacks, Sci. Bull. (Beijing) 65 (1), 12 (2020)
CrossRef ADS Google scholar
[27]
H. K. Lo , M. Curty , and B. Qi , Measurement-device-independent quantum key distribution, Phys. Rev. Lett. 108 (13), 130503 (2012)
CrossRef ADS Google scholar
[28]
P. H. Niu , Z. R. Zhou , Z. S. Lin , Y. B. Sheng , L. G. Yin , and G. L. Long , Measurement-device-independent quantum communication without encryption, Sci. Bull. (Beijing) 63 (20), 1345 (2018)
CrossRef ADS Google scholar
[29]
Z. R. Zhou , Y. B. Sheng , P. H. Niu , L. G. Yin , G. L. Long , and L. Hanzo , Measurement-device-independent quantum secure direct communication, Sci. China Phys. Mech. Astron. 63 (3), 230362 (2020)
CrossRef ADS Google scholar
[30]
Z. Gao , T. Li , and Z. Li , Long-distance measurement-device-independent quantum secure direct communication, EPL 125 (4), 40004 (2019)
CrossRef ADS Google scholar
[31]
Z. K. Zou , L. Zhou , W. Zhong , and Y. B. Sheng , Measurement-device-independent quantum secure direct communication of multiple degrees of freedom of a single photon, EPL 131 (4), 40005 (2020)
CrossRef ADS Google scholar
[32]
S. Wehner , D. Elkouss , and R. Hanson , Quantum internet: A vision for the road ahead, Science 362, eaam928 (2018)
CrossRef ADS Google scholar
[33]
W. Qin and F. Nori , Controllable single-photon transport between remote coupled-cavity arrays, Phys. Rev. A 93 (3), 032337 (2016)
CrossRef ADS Google scholar
[34]
Z. Qi , Y. Li , Y. Huang , J. Feng , Y. Zheng , and X. Chen , A 15-user quantum secure direct communication network, Light Sci. Appl. 10 (1), 183 (2021)
CrossRef ADS Google scholar
[35]
A. Karlsson , M. Koashi , and N. Imoto , Quantum entanglement for secret sharing and secret splitting, Phys. Rev. A 59 (1), 162 (1999)
CrossRef ADS Google scholar
[36]
L. Xiao , G. L. Long , F. G. Deng , and J. W. Pan , Efficient multiparty quantum-secret-sharing schemes, Phys. Rev. A 69 (5), 052307 (2004)
CrossRef ADS Google scholar
[37]
H. K. Lo , H. F. Chau , and M. Ardehali , Efficient quantum key distribution scheme and a proof of its unconditional security, J. Cryptol. 18 (2), 133 (2005)
CrossRef ADS Google scholar
[38]
P. Xue , K. Wang , and X. Wang , Efficient multiuser quantum cryptography network based on entanglement, Sci. Rep. 7 (1), 45928 (2017)
CrossRef ADS Google scholar
[39]
Y. Li , K. Zhang , and K. Peng , Multiparty secret sharing of quantum information based on entanglement swapping, Phys. Lett. A 324 (5–6), 420 (2004)
CrossRef ADS Google scholar
[40]
Z. J. Zhang , Y. Li , and Z. X. Man , Multiparty quantum secret sharing, Phys. Rev. A 71 (4), 044301 (2005)
CrossRef ADS Google scholar
[41]
Z. J. Zhang , Multiparty quantum secret sharing of secure direct communication, Phys. Lett. A 342 (1-2), 60 (2005)
CrossRef ADS Google scholar
[42]
X. Yang , K. Wei , H. Ma , H. Liu , Z. Yin , Z. Cao , and L. Wu , Detector-device-independent quantum secret sharing with source flaws, Sci. Rep. 8 (1), 5728 (2018)
CrossRef ADS Google scholar
[43]
C. Y. Huang , N. Lambert , C. M. Li , Y. T. Lu , and F. Nori , Securing quantum networking tasks with multipartite Einstein–Podolsky–Rosen steering, Phys. Rev. A 99 (1), 012302 (2019)
CrossRef ADS Google scholar
[44]
Y. Xiang , I. Kogias , G. Adesso , and Q. He , Multi-partite Gaussian steering: Monogamy constraints and quantum cryptography applications, Phys. Rev. A 95 (1), 010101 (2017)
CrossRef ADS Google scholar
[45]
I. Kogias , Y. Xiang , Q. He , and G. Adesso , Unconditional security of entanglement-based continuous-variable quantum secret sharing, Phys. Rev. A 95 (1), 012315 (2017)
CrossRef ADS Google scholar
[46]
M. Habibidavijani , and B. C. Sanders , Continuous-variable ramp quantum secret sharing with Gaussian states and operations, New J. Phys. 21 (11), 113023 (2019)
CrossRef ADS Google scholar
[47]
Y. Fu , H. L. Yin , T. Y. Chen , and Z. B. Chen , Long-distance measurement-device-independent multiparty quantum communication, Phys. Rev. Lett. 114 (9), 090501 (2015)
CrossRef ADS Google scholar
[48]
Z. Gao , T. Li , and Z. Li , Deterministic measurementdevice-independent quantum secret sharing, Sci. China Phys. Mech. Astron. 63 (12), 120311 (2020)
CrossRef ADS Google scholar
[49]
J. W. Pan and A. Zeilinger , Greenberger–Horne–Zeilingerstate analyzer, Phys. Rev. A 57 (3), 2208 (1998)
CrossRef ADS Google scholar
[50]
C. Y. Lu , T. Yang , and J. W. Pan , Experimental multiparticle entanglement swapping for quantum networking, Phys. Rev. Lett. 103 (2), 020501 (2009)
CrossRef ADS Google scholar
[51]
P. Kok , W. J. Munro , K. Nemoto , T. C. Ralph , J. P. Dowling , and G. J. Milburn , Linear optical quantum computing with photonic qubits, Rev. Mod. Phys. 79 (1), 135 (2007)
CrossRef ADS Google scholar
[52]
F. G. Deng , X. H. Li , H. Y. Zhou , and Z. J. Zhang , Improving the security of multiparty quantum secret sharing against Trojan horse attack, Phys. Rev. A 72 (4), 044302 (2005)
CrossRef ADS Google scholar
[53]
Y. G. Yang , Y. C. Wang , Y. L. Yang , X. B. Chen , D. Li , Y. H. Zhou , and W. M. Shi , Participant attack on the deterministic measurement-device-independent quantum secret sharing protocol, Sci. China Phys. Mech. Astron. 64 (6), 260321 (2021)
CrossRef ADS Google scholar
[54]
Y. G. Yang , X. X. Liu , S. Gao , X. B. Chen , D. Li , Y. H. Zhou , and W. M. Shi , A stronger participant attack on the measurement-device-independent protocol for deterministic quantum secret sharing, Quantum Inform. Process. 20 (7), 223 (2021)
CrossRef ADS Google scholar
[55]
T. Gao , F. L. Yan , and Z. X. Wang , Controlled quantum teleportation and secure direct communication, Chin. Phys. (Beijing) 14 (5), 893 (2005)
CrossRef ADS Google scholar
[56]
H. S. Zhong , Y. Li , W. Li , L. C. Peng , Z. E. Su , Y. Hu , Y. M. He , X. Ding , W. Zhang , H. Li , L. Zhang , Z. Wang , L. You , X. L. Wang , X. Jiang , L. Li , Y. A. Chen , N. L. Liu , C. Y. Lu , and J. W. Pan , 12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion, Phys. Rev. Lett. 121 (25), 250505 (2018)
CrossRef ADS Google scholar
[57]
T. Li , A. Miranowicz , K. Xia , and F. Nori , Resource-efficient analyzer of Bell and Greenberger–Horne–Zeilinger states of multiphoton systems, Phys. Rev. A 100 (5), 052302 (2019)
CrossRef ADS Google scholar
[58]
J. Qian , X. L. Feng , and S. Q. Gong , Universal Greenberger–Horne–Zeilinger-state analyzer based on twophoton polarization parity detection, Phys. Rev. A 72 (5), 052308 (2005)
CrossRef ADS Google scholar
[59]
Y. Xia , Y. H. Kang , and P. M. Lu , Complete polarized photons Bell-states and Greenberger–Horne–Zeilingerstates analysis assisted by atoms, J. Opt. Soc. Am. B 31 (9), 2077 (2014)
CrossRef ADS Google scholar
[60]
D. E. Chang , V. Vuletić , and M. D. Lukin , Quantum nonlinear optics — photon by photon, Nat. Photonics 8 (9), 685 (2014)
CrossRef ADS Google scholar
[61]
T. Li , A. Miranowicz , X. Hu , K. Xia , and F. Nori , Quantum memory and gates using a Λ-type quantum emitter coupled to a chiral waveguide, Phys. Rev. A 97 (6), 062318 (2018)
CrossRef ADS Google scholar
[62]
G. Z. Song , E. Munro , W. Nie , L. C. Kwek , F. G. Deng , and G. L. Long , Photon transport mediated by an atomic chain trapped along a photonic crystal waveguide, Phys. Rev. A 98 (2), 023814 (2018)
CrossRef ADS Google scholar
[63]
W. Qin , A. Miranowicz , P. B. Li , X. Y. Lü , J. Q. You , and F. Nori , Exponentially enhanced light–matter interaction, cooperativities, and steady-state entanglement using parametric amplification, Phys. Rev. Lett. 120 (9), 093601 (2018)
CrossRef ADS Google scholar
[64]
P. L. Guo , C. Y. Gao , T. Li , X. H. Li , and F. G. Deng , Quantum error rejection for faithful quantum communication over noise channels, Sci. China Phys. Mech. Astron. 62 (11), 110301 (2019)
CrossRef ADS Google scholar
[65]
L. Aolita and S. P. Walborn , Quantum communication without alignment using multiple-qubit single-photon states, Phys. Rev. Lett. 98 (10), 100501 (2007)
CrossRef ADS Google scholar
[66]
W. Qin , C. Wang , and X. Zhang , Protected quantum-state transfer in decoherence-free subspaces, Phys. Rev. A 91 (4), 042303 (2015)
CrossRef ADS Google scholar
[67]
N. Shammah , S. Ahmed , N. Lambert , S. De Liberato , and F. Nori , Open quantum systems with local and collective incoherent processes: Efficient numerical simulations using permutational invariance, Phys. Rev. A 98 (6), 063815 (2018)
CrossRef ADS Google scholar
[68]
R. Qi , Z. Sun , Z. Lin , P. Niu , W. Hao , L. Song , Q. Huang , J. Gao , L. Yin , and G. L. Long , Implementation and security analysis of practical quantum secure direct communication, Light Sci. Appl. 8 (1), 22 (2019)
CrossRef ADS Google scholar
[69]
F. Massa , A. Moqanaki , Ä. Baumeler , F. Del Santo , J. A. Kettlewell , B. Dakić , and P. Walther , Experimental two-way communication with one photon, Adv. Quantum Technol. 2 (11), 1900050 (2019)
CrossRef ADS Google scholar
[70]
Z. Gao , M. Ma , T. Liu , J. Long , T. Li , and Z. Li , Free-space quantum secure direct communication based on decoherence-free space, J. Opt. Soc. Am. B 37 (10), 3028 (2020)
CrossRef ADS Google scholar
[71]
F. G. Deng and G. L. Long , Secure direct communication with a quantum one-time pad, Phys. Rev. A 69 (5), 052319 (2004)
CrossRef ADS Google scholar
[72]
J. Wu , Z. Lin , L. Yin , and G. L. Long , Security of quantum secure direct communication based on Wyner’s wiretap channel theory, Quantum Eng. 1 (4), e26 (2019)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(745 KB)

Accesses

Citations

Detail

Sections
Recommended

/