Sender-controlled measurement-device-independent multiparty quantum communication
Yuyan Wei, Siying Wang, Yajing Zhu, Tao Li
Sender-controlled measurement-device-independent multiparty quantum communication
Multiparty quantum communication is an important branch of quantum networks. It enables private information transmission with information-theoretic security among legitimate parties. We propose a sender-controlled measurement-device-independent multiparty quantum communication protocol. The sender Alice divides a private message into several parts and delivers them to different receivers for secret sharing with imperfect measurement devices and untrusted ancillary nodes. Furthermore, Alice acts as an active controller and checks the security of quantum channels and the reliability of each receiver before she encodes her private message for secret sharing, which makes the protocol convenient for multiparity quantum communication.
measurement-device-independent / sender-controlled / deterministic multiparty quantum communication
[1] |
N. Gisin , G. Ribordy , W. Tittel , and H. Zbinden , Quantum cryptography, Rev. Mod. Phys. 74 (1), 145 (2002)
CrossRef
ADS
Google scholar
|
[2] |
Z. X. Cui , W. Zhong , L. Zhou , and Y. B. Sheng , Measurement-device-independent quantum key distribution with hyper-encoding, Sci. China Phys. Mech. Astron. 62 (11), 110311 (2019)
CrossRef
ADS
Google scholar
|
[3] |
T. Shang , Y. Tang , R. Chen , and J. Liu , Full quantum oneway function for quantum cryptography, Quantum Eng. 2 (1), e32 (2020)
CrossRef
ADS
Google scholar
|
[4] |
Y. F. Yan , L. Zhou , W. Zhong , and Y. B. Sheng , Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon, Front. Phys. 16 (1), 11501 (2021)
CrossRef
ADS
Google scholar
|
[5] |
Y. Zhang and Q. Ni , Design and analysis of random multiple access quantum key distribution, Quantum Eng. 2 (1), e31 (2020)
CrossRef
ADS
Google scholar
|
[6] |
G. L. Long and X. S. Liu , Theoretically efficient high-capacity quantum-key-distribution scheme, Phys. Rev. A 65 (3), 032302 (2002)
CrossRef
ADS
Google scholar
|
[7] |
F. G. Deng , G. L. Long , and X. S. Liu , Two-step quantum direct communication protocol using the Einstein-Podolsky–Rosen pair block, Phys. Rev. A 68 (4), 042317 (2003)
CrossRef
ADS
Google scholar
|
[8] |
C. Wang , F. G. Deng , Y. S. Li , X. S. Liu , and G. L. Long , Quantum secure direct communication with high-dimension quantum superdense coding, Phys. Rev. A 71 (4), 044305 (2005)
CrossRef
ADS
Google scholar
|
[9] |
J. Y. Hu , B. Yu , M. Y. Jing , L. T. Xiao , S. T. Jia , G. Q. Qin , and G. L. Long , Experimental quantum secure direct communication with single photons, Light Sci. Appl. 5 (9), e16144 (2016)
CrossRef
ADS
Google scholar
|
[10] |
W. Zhang , D. S. Ding , Y. B. Sheng , L. Zhou , B. S. Shi , and G. C. Guo , Quantum secure direct communication with quantum memory, Phys. Rev. Lett. 118 (22), 220501 (2017)
CrossRef
ADS
Google scholar
|
[11] |
S. S. Chen , L. Zhou , W. Zhong , and Y. B. Sheng , Threestep three-party quantum secure direct communication, Sci. China Phys. Mech. Astron. 61 (9), 90312 (2018)
CrossRef
ADS
Google scholar
|
[12] |
L. Y. Li , T. J. Wang , and C. Wang , The analysis of high-capacity quantum secure direct communication using polarization and orbital angular momentum of photons, Mod. Phys. Lett. B 34 (02), 2050017 (2020)
CrossRef
ADS
Google scholar
|
[13] |
T. Li and G. L. Long , Quantum secure direct communication based on single-photon Bell-state measurement, New J. Phys. 22 (6), 063017 (2020)
CrossRef
ADS
Google scholar
|
[14] |
Z. D. Ye , D. Pan , Z. Sun , C. G. Du , L. G. Yin , and G. L. Long , Generic security analysis framework for quantum secure direct communication, Front. Phys. 16 (2), 21503 (2021)
CrossRef
ADS
Google scholar
|
[15] |
M. Hillery , V. Buzek , and A. Berthiaume , Quantum secret sharing, Phys. Rev. A 59 (3), 1829 (1999)
CrossRef
ADS
Google scholar
|
[16] |
R. Cleve , D. Gottesman , and H. K. Lo , How to share a quantum secret, Phys. Rev. Lett. 83 (3), 648 (1999)
CrossRef
ADS
Google scholar
|
[17] |
W. Tittel , H. Zbinden , and N. Gisin , Experimental demonstration of quantum secret sharing, Phys. Rev. A 63 (4), 042301 (2001)
CrossRef
ADS
Google scholar
|
[18] |
Y. A. Chen , A. N. Zhang , Z. Zhao , X. Q. Zhou , C. Y. Lu , C. Z. Peng , T. Yang , and J. W. Pan , Experimental quantum secret sharing and third-man quantum cryptography, Phys. Rev. Lett. 95 (20), 200502 (2005)
CrossRef
ADS
Google scholar
|
[19] |
T. Gao , F. L. Yan , and Z. X. Wang , Deterministic secure direct communication using GH Z states and swapping quantum entanglement, J. Phys. A 38 (25), 5761 (2005)
CrossRef
ADS
Google scholar
|
[20] |
C. H. Bennett and G. Brassard , in: Proceedings of the IE EE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984, pp 175- 179 (IEEE, New York, 1984)
|
[21] |
H. K. Lo , M. Curty , and K. Tamaki , Secure quantum key distribution, Nat. Photonics 8 (8), 595 (2014)
CrossRef
ADS
Google scholar
|
[22] |
F. Xu , X. Ma , Q. Zhang , H. K. Lo , and J. W. Pan , Secure quantum key distribution with realistic devices, Rev. Mod. Phys. 92 (2), 025002 (2020)
CrossRef
ADS
Google scholar
|
[23] |
T. Li , Z. Gao , and Z. Li , Measurement-device-independent quantum secure direct communication: Direct quantum communication with imperfect measurement device and untrusted operator, EPL 131 (6), 60001 (2020)
CrossRef
ADS
Google scholar
|
[24] |
A. Acín , N. Brunner , N. Gisin , S. Massar , S. Pironio , and V. Scarani , Device-independent security of quantum cryptography against collective attacks, Phys. Rev. Lett. 98 (23), 230501 (2007)
CrossRef
ADS
Google scholar
|
[25] |
C. C. W. Lim , C. Portmann , M. Tomamichel , R. Renner , and N. Gisin , Device-independent quantum key distribution with local Bell test, Phys. Rev. X 3 (3), 031006 (2013)
CrossRef
ADS
Google scholar
|
[26] |
L. Zhou , Y. B. Sheng , and G. L. Long , Device-independent quantum secure direct communication against collective attacks, Sci. Bull. (Beijing) 65 (1), 12 (2020)
CrossRef
ADS
Google scholar
|
[27] |
H. K. Lo , M. Curty , and B. Qi , Measurement-device-independent quantum key distribution, Phys. Rev. Lett. 108 (13), 130503 (2012)
CrossRef
ADS
Google scholar
|
[28] |
P. H. Niu , Z. R. Zhou , Z. S. Lin , Y. B. Sheng , L. G. Yin , and G. L. Long , Measurement-device-independent quantum communication without encryption, Sci. Bull. (Beijing) 63 (20), 1345 (2018)
CrossRef
ADS
Google scholar
|
[29] |
Z. R. Zhou , Y. B. Sheng , P. H. Niu , L. G. Yin , G. L. Long , and L. Hanzo , Measurement-device-independent quantum secure direct communication, Sci. China Phys. Mech. Astron. 63 (3), 230362 (2020)
CrossRef
ADS
Google scholar
|
[30] |
Z. Gao , T. Li , and Z. Li , Long-distance measurement-device-independent quantum secure direct communication, EPL 125 (4), 40004 (2019)
CrossRef
ADS
Google scholar
|
[31] |
Z. K. Zou , L. Zhou , W. Zhong , and Y. B. Sheng , Measurement-device-independent quantum secure direct communication of multiple degrees of freedom of a single photon, EPL 131 (4), 40005 (2020)
CrossRef
ADS
Google scholar
|
[32] |
S. Wehner , D. Elkouss , and R. Hanson , Quantum internet: A vision for the road ahead, Science 362, eaam928 (2018)
CrossRef
ADS
Google scholar
|
[33] |
W. Qin and F. Nori , Controllable single-photon transport between remote coupled-cavity arrays, Phys. Rev. A 93 (3), 032337 (2016)
CrossRef
ADS
Google scholar
|
[34] |
Z. Qi , Y. Li , Y. Huang , J. Feng , Y. Zheng , and X. Chen , A 15-user quantum secure direct communication network, Light Sci. Appl. 10 (1), 183 (2021)
CrossRef
ADS
Google scholar
|
[35] |
A. Karlsson , M. Koashi , and N. Imoto , Quantum entanglement for secret sharing and secret splitting, Phys. Rev. A 59 (1), 162 (1999)
CrossRef
ADS
Google scholar
|
[36] |
L. Xiao , G. L. Long , F. G. Deng , and J. W. Pan , Efficient multiparty quantum-secret-sharing schemes, Phys. Rev. A 69 (5), 052307 (2004)
CrossRef
ADS
Google scholar
|
[37] |
H. K. Lo , H. F. Chau , and M. Ardehali , Efficient quantum key distribution scheme and a proof of its unconditional security, J. Cryptol. 18 (2), 133 (2005)
CrossRef
ADS
Google scholar
|
[38] |
P. Xue , K. Wang , and X. Wang , Efficient multiuser quantum cryptography network based on entanglement, Sci. Rep. 7 (1), 45928 (2017)
CrossRef
ADS
Google scholar
|
[39] |
Y. Li , K. Zhang , and K. Peng , Multiparty secret sharing of quantum information based on entanglement swapping, Phys. Lett. A 324 (5–6), 420 (2004)
CrossRef
ADS
Google scholar
|
[40] |
Z. J. Zhang , Y. Li , and Z. X. Man , Multiparty quantum secret sharing, Phys. Rev. A 71 (4), 044301 (2005)
CrossRef
ADS
Google scholar
|
[41] |
Z. J. Zhang , Multiparty quantum secret sharing of secure direct communication, Phys. Lett. A 342 (1-2), 60 (2005)
CrossRef
ADS
Google scholar
|
[42] |
X. Yang , K. Wei , H. Ma , H. Liu , Z. Yin , Z. Cao , and L. Wu , Detector-device-independent quantum secret sharing with source flaws, Sci. Rep. 8 (1), 5728 (2018)
CrossRef
ADS
Google scholar
|
[43] |
C. Y. Huang , N. Lambert , C. M. Li , Y. T. Lu , and F. Nori , Securing quantum networking tasks with multipartite Einstein–Podolsky–Rosen steering, Phys. Rev. A 99 (1), 012302 (2019)
CrossRef
ADS
Google scholar
|
[44] |
Y. Xiang , I. Kogias , G. Adesso , and Q. He , Multi-partite Gaussian steering: Monogamy constraints and quantum cryptography applications, Phys. Rev. A 95 (1), 010101 (2017)
CrossRef
ADS
Google scholar
|
[45] |
I. Kogias , Y. Xiang , Q. He , and G. Adesso , Unconditional security of entanglement-based continuous-variable quantum secret sharing, Phys. Rev. A 95 (1), 012315 (2017)
CrossRef
ADS
Google scholar
|
[46] |
M. Habibidavijani , and B. C. Sanders , Continuous-variable ramp quantum secret sharing with Gaussian states and operations, New J. Phys. 21 (11), 113023 (2019)
CrossRef
ADS
Google scholar
|
[47] |
Y. Fu , H. L. Yin , T. Y. Chen , and Z. B. Chen , Long-distance measurement-device-independent multiparty quantum communication, Phys. Rev. Lett. 114 (9), 090501 (2015)
CrossRef
ADS
Google scholar
|
[48] |
Z. Gao , T. Li , and Z. Li , Deterministic measurementdevice-independent quantum secret sharing, Sci. China Phys. Mech. Astron. 63 (12), 120311 (2020)
CrossRef
ADS
Google scholar
|
[49] |
J. W. Pan and A. Zeilinger , Greenberger–Horne–Zeilingerstate analyzer, Phys. Rev. A 57 (3), 2208 (1998)
CrossRef
ADS
Google scholar
|
[50] |
C. Y. Lu , T. Yang , and J. W. Pan , Experimental multiparticle entanglement swapping for quantum networking, Phys. Rev. Lett. 103 (2), 020501 (2009)
CrossRef
ADS
Google scholar
|
[51] |
P. Kok , W. J. Munro , K. Nemoto , T. C. Ralph , J. P. Dowling , and G. J. Milburn , Linear optical quantum computing with photonic qubits, Rev. Mod. Phys. 79 (1), 135 (2007)
CrossRef
ADS
Google scholar
|
[52] |
F. G. Deng , X. H. Li , H. Y. Zhou , and Z. J. Zhang , Improving the security of multiparty quantum secret sharing against Trojan horse attack, Phys. Rev. A 72 (4), 044302 (2005)
CrossRef
ADS
Google scholar
|
[53] |
Y. G. Yang , Y. C. Wang , Y. L. Yang , X. B. Chen , D. Li , Y. H. Zhou , and W. M. Shi , Participant attack on the deterministic measurement-device-independent quantum secret sharing protocol, Sci. China Phys. Mech. Astron. 64 (6), 260321 (2021)
CrossRef
ADS
Google scholar
|
[54] |
Y. G. Yang , X. X. Liu , S. Gao , X. B. Chen , D. Li , Y. H. Zhou , and W. M. Shi , A stronger participant attack on the measurement-device-independent protocol for deterministic quantum secret sharing, Quantum Inform. Process. 20 (7), 223 (2021)
CrossRef
ADS
Google scholar
|
[55] |
T. Gao , F. L. Yan , and Z. X. Wang , Controlled quantum teleportation and secure direct communication, Chin. Phys. (Beijing) 14 (5), 893 (2005)
CrossRef
ADS
Google scholar
|
[56] |
H. S. Zhong , Y. Li , W. Li , L. C. Peng , Z. E. Su , Y. Hu , Y. M. He , X. Ding , W. Zhang , H. Li , L. Zhang , Z. Wang , L. You , X. L. Wang , X. Jiang , L. Li , Y. A. Chen , N. L. Liu , C. Y. Lu , and J. W. Pan , 12-photon entanglement and scalable scattershot boson sampling with optimal entangled-photon pairs from parametric down-conversion, Phys. Rev. Lett. 121 (25), 250505 (2018)
CrossRef
ADS
Google scholar
|
[57] |
T. Li , A. Miranowicz , K. Xia , and F. Nori , Resource-efficient analyzer of Bell and Greenberger–Horne–Zeilinger states of multiphoton systems, Phys. Rev. A 100 (5), 052302 (2019)
CrossRef
ADS
Google scholar
|
[58] |
J. Qian , X. L. Feng , and S. Q. Gong , Universal Greenberger–Horne–Zeilinger-state analyzer based on twophoton polarization parity detection, Phys. Rev. A 72 (5), 052308 (2005)
CrossRef
ADS
Google scholar
|
[59] |
Y. Xia , Y. H. Kang , and P. M. Lu , Complete polarized photons Bell-states and Greenberger–Horne–Zeilingerstates analysis assisted by atoms, J. Opt. Soc. Am. B 31 (9), 2077 (2014)
CrossRef
ADS
Google scholar
|
[60] |
D. E. Chang , V. Vuletić , and M. D. Lukin , Quantum nonlinear optics — photon by photon, Nat. Photonics 8 (9), 685 (2014)
CrossRef
ADS
Google scholar
|
[61] |
T. Li , A. Miranowicz , X. Hu , K. Xia , and F. Nori , Quantum memory and gates using a Λ-type quantum emitter coupled to a chiral waveguide, Phys. Rev. A 97 (6), 062318 (2018)
CrossRef
ADS
Google scholar
|
[62] |
G. Z. Song , E. Munro , W. Nie , L. C. Kwek , F. G. Deng , and G. L. Long , Photon transport mediated by an atomic chain trapped along a photonic crystal waveguide, Phys. Rev. A 98 (2), 023814 (2018)
CrossRef
ADS
Google scholar
|
[63] |
W. Qin , A. Miranowicz , P. B. Li , X. Y. Lü , J. Q. You , and F. Nori , Exponentially enhanced light–matter interaction, cooperativities, and steady-state entanglement using parametric amplification, Phys. Rev. Lett. 120 (9), 093601 (2018)
CrossRef
ADS
Google scholar
|
[64] |
P. L. Guo , C. Y. Gao , T. Li , X. H. Li , and F. G. Deng , Quantum error rejection for faithful quantum communication over noise channels, Sci. China Phys. Mech. Astron. 62 (11), 110301 (2019)
CrossRef
ADS
Google scholar
|
[65] |
L. Aolita and S. P. Walborn , Quantum communication without alignment using multiple-qubit single-photon states, Phys. Rev. Lett. 98 (10), 100501 (2007)
CrossRef
ADS
Google scholar
|
[66] |
W. Qin , C. Wang , and X. Zhang , Protected quantum-state transfer in decoherence-free subspaces, Phys. Rev. A 91 (4), 042303 (2015)
CrossRef
ADS
Google scholar
|
[67] |
N. Shammah , S. Ahmed , N. Lambert , S. De Liberato , and F. Nori , Open quantum systems with local and collective incoherent processes: Efficient numerical simulations using permutational invariance, Phys. Rev. A 98 (6), 063815 (2018)
CrossRef
ADS
Google scholar
|
[68] |
R. Qi , Z. Sun , Z. Lin , P. Niu , W. Hao , L. Song , Q. Huang , J. Gao , L. Yin , and G. L. Long , Implementation and security analysis of practical quantum secure direct communication, Light Sci. Appl. 8 (1), 22 (2019)
CrossRef
ADS
Google scholar
|
[69] |
F. Massa , A. Moqanaki , Ä. Baumeler , F. Del Santo , J. A. Kettlewell , B. Dakić , and P. Walther , Experimental two-way communication with one photon, Adv. Quantum Technol. 2 (11), 1900050 (2019)
CrossRef
ADS
Google scholar
|
[70] |
Z. Gao , M. Ma , T. Liu , J. Long , T. Li , and Z. Li , Free-space quantum secure direct communication based on decoherence-free space, J. Opt. Soc. Am. B 37 (10), 3028 (2020)
CrossRef
ADS
Google scholar
|
[71] |
F. G. Deng and G. L. Long , Secure direct communication with a quantum one-time pad, Phys. Rev. A 69 (5), 052319 (2004)
CrossRef
ADS
Google scholar
|
[72] |
J. Wu , Z. Lin , L. Yin , and G. L. Long , Security of quantum secure direct communication based on Wyner’s wiretap channel theory, Quantum Eng. 1 (4), e26 (2019)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |