Theoretical study of broadband near-field optical spectrum of twisted bilayer graphene

Lu Wen, Yijun Liu, Guoyu Luo, Xinyu Lv, Kaiyuan Wang, Wang Zhu, Lei Wang, Zhiqiang Li

PDF(736 KB)
PDF(736 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (4) : 43503. DOI: 10.1007/s11467-021-1143-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Theoretical study of broadband near-field optical spectrum of twisted bilayer graphene

Author information +
History +

Abstract

We theoretically study the broadband near-field optical spectrum of twisted bilayer graphene (TBG) at various twist angles near the magic angle using two different models. The spectrum at low Fermi energy is characterized by a series of peaks that are almost at the same energies as the peaks in the far-field optical conductivity of TBG. When the Fermi energy is near a van Hove singularity, an additional strong peak appears at finite energy in the near-field spectrum, which has no counterpart in the optical conductivity. Based on a detailed calculation of the plasmon dispersion, we show that these spectroscopic features are associated with interband and intraband plasmons, which can provide critical information about the local band structure and plasmonic excitations in TBG. The near-field peaks evolve systematically with the twist angle, so they can serve as fingerprints for identifying the spatial dependent twist angle in TBG samples. Our findings pave the way for future experimental studies of the novel optical properties of TBG in the nanoscale.

Graphical abstract

Keywords

twisted bilayer graphene / SNOM / broadband near-field optical spectrum / optical conductivity / magic angle

Cite this article

Download citation ▾
Lu Wen, Yijun Liu, Guoyu Luo, Xinyu Lv, Kaiyuan Wang, Wang Zhu, Lei Wang, Zhiqiang Li. Theoretical study of broadband near-field optical spectrum of twisted bilayer graphene. Front. Phys., 2022, 17(4): 43503 https://doi.org/10.1007/s11467-021-1143-0

References

[1]
Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y. Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Correlated insulator behaviour at half-filling in magic-angle graphene superlattices, Nature 556(7699), 80 (2018)
CrossRef ADS Google scholar
[2]
Y. Jiang, X. Lai, K. Watanabe, T. Taniguchi, K. Haule, J. Mao, and E. Y. Andrei, Charge order and broken rotational symmetry in magic-angle twisted bilayer graphene, Nature 573(7772), 91 (2019)
CrossRef ADS Google scholar
[3]
A. Kerelsky, L. J. Mc Gilly, D. M. Kennes, L. Xian, M. Yankowitz, S. Chen, K. Watanabe, T. Taniguchi, J. Hone, C. Dean, A. Rubio, and A. N. Pasupathy, Maximized electron interactions at the magic angle in twisted bilayer graphene, Nature 572(7767), 95 (2019)
CrossRef ADS Google scholar
[4]
Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Unconventional super-conductivity in magic-angle graphene superlattices, Nature 556(7699), 43 (2018)
CrossRef ADS Google scholar
[5]
M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe, T. Taniguchi, D. Graf, A. F. Young, and C. R. Dean, Tuning superconductivity in twisted bilayer graphene, Science 363(6431), 1059 (2019)
CrossRef ADS Google scholar
[6]
X. Lu, P. Stepanov, W. Yang, M. Xie, M. A. Aamir, I. Das, C. Urgell, K. Watanabe, T. Taniguchi, G. Zhang, A. Bachtold, A. H. MacDonald, and D. K. Efetov, Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene, Nature 574(7780), 653 (2019)
CrossRef ADS Google scholar
[7]
Y. Xie, B. Lian, B. Jäck, X. Liu, C. L. Chiu, K. Watanabe, T. Taniguchi, B. A. Bernevig, and A. Yazdani, Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene, Nature 572(7767), 101 (2019)
CrossRef ADS Google scholar
[8]
M. Serlin, C. L. Tschirhart, H. Polshyn, Y. Zhang, J. Zhu, K. Watanabe, T. Taniguchi, L. Balents, and A. F. Young, Intrinsic quantized anomalous Hall effect in a moire heterostructure, Science 367(6480), 900 (2020)
CrossRef ADS Google scholar
[9]
A. L. Sharpe, E. J. Fox, A. W. Barnard, J. Finney, K. Watanabe, T. Taniguchi, M. A. Kastner, and D. Goldhaber-Gordon, Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene, Science 365(6453), 605 (2019)
CrossRef ADS Google scholar
[10]
R. Bistritzer and A. H. MacDonald, Moire bands in twisted double-layer graphene, Proc. Natl. Acad. Sci. USA 108(30), 12233 (2011)
CrossRef ADS Google scholar
[11]
E. Suárez Morell, J. D. Correa, P. Vargas, M. Pacheco, and Z. Barticevic, Flat bands in slightly twisted bilayer graphene: Tight-binding calculations, Phys. Rev. B 82(12), 121407 (2010)
CrossRef ADS Google scholar
[12]
H. Yoo, R. Engelke, S. Carr, S. Fang, K. Zhang, P. Cazeaux, S. H. Sung, R. Hovden, A. W. Tsen, T. Taniguchi, K. Watanabe, G. C. Yi, M. Kim, M. Luskin, E. B. Tadmor, E. Kaxiras, and P. Kim, Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene, Nat. Mater. 18(5), 448 (2019)
CrossRef ADS Google scholar
[13]
S. Y. Dai, Y. Xiang, and D. J. Srolovitz, Twisted bilayer graphene: Moire with a twist, Nano Lett. 16(9), 5923 (2016)
CrossRef ADS Google scholar
[14]
N. N. T. Nam and M. Koshino, Lattice relaxation and energy band modulation in twisted bilayer graphene, Phys. Rev. B 96(7), 075311 (2017)
CrossRef ADS Google scholar
[15]
N. Y. Kim, H. Y. Jeong, J. H. Kim, G. Kim, H. S. Shin, and Z. Lee, Evidence of local commensurate state with lattice match of graphene on hexagonal boron nitride, ACS Nano 11(7), 7084 (2017)
CrossRef ADS Google scholar
[16]
M. M. van Wijk, A. Schuring, M. I. Katsnelson, and A. Fasolino, Relaxation of moiré patterns for slightly misaligned identical lattices: Graphene on graphite, 2D Mater. 2, 034010 (2015)
CrossRef ADS Google scholar
[17]
F. Gargiulo and O. V. Yazyev, Structural and electronic transformation in low-angle twisted bilayer graphene, 2D Mater. 5, 015019 (2017)
CrossRef ADS Google scholar
[18]
X. Chen, D. Hu, R. Mescall, G. You, D. N. Basov, Q. Dai, and M. Liu, Modern scattering-type scanning near-field optical microscopy for advanced material research, Adv. Mater. 31(24), 1804774 (2019)
CrossRef ADS Google scholar
[19]
A. J. Huber, J. Wittborn, and R. Hillenbrand, Infrared spectroscopic near-field mapping of single nanotransistors, Nanotechnology 21(23), 235702 (2010)
CrossRef ADS Google scholar
[20]
G. Dominguez, A. S. Mcleod, Z. Gainsforth, P. Kelly, H. A. Bechtel, F. Keilmann, A. Westphal, M. Thiemens, and D. N. Basov, Nanoscale infrared spectroscopy as a non-destructive probe of extraterrestrial samples, Nat. Commun. 5(1), 5445 (2014)
CrossRef ADS Google scholar
[21]
Z. Fei, G. O. Andreev, W. Bao, L. M. Zhang, A. S. Mc Leod, C. Wang, M. K. Stewart, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, M. J. Tauber, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, Infrared nanoscopy of Dirac plasmons at the graphene–SiO2 interface, Nano Lett. 11(11), 4701 (2011)
CrossRef ADS Google scholar
[22]
S. Dai, Q. Ma, M. K. Liu, T. Andersen, Z. Fei, M. D. Goldflam, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, G. C. A. M. Janssen, S. E. Zhu, P. Jarillo-Herrero, M. M. Fogler, and D. N. Basov, Graphene on hexagonal boron nitride as a tunable hyperbolic meta-material, Nat. Nanotechnol. 10(8), 682 (2015)
CrossRef ADS Google scholar
[23]
J. M. Stiegler, Y. Abate, A. Cvitkovic, Y. E. Romanyuk, A. J. Huber, S. R. Leone, and R. Hillenbrand, Nanoscale infrared absorption spectroscopy of individual nanoparticles enabled by scattering-type near-field microscopy, ACS Nano 5(8), 6494 (2011)
CrossRef ADS Google scholar
[24]
Z. Nuño, B. Hessler, B. Heiberg, R. Damato, T. Dunlap, Y. S. Shon, and Y. Abate, Nanoscale near-field infrared spectroscopic imaging of silica-shell/gold-core and pure silica nanoparticles, J. Nanopart. Res. 14(3), 766 (2012)
CrossRef ADS Google scholar
[25]
I. Amenabar, S. Poly, M. Goikoetxea, W. Nuansing, P. Lasch, and R. Hillenbrand, Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy, Nat. Commun. 8(1), 14402 (2017)
CrossRef ADS Google scholar
[26]
M. Liu, A. J. Sternbach, M. Wagner, T. V. Slusar, T. Kong, S. L. Bud’ko, S. Kittiwatanakul, M. M. Qazilbash, A. Mc Leod, Z. Fei, E. Abreu, J. Zhang, M. Goldflam, S. Dai, G. X. Ni, J. Lu, H. A. Bechtel, M. C. Martin, M. B. Raschke, R. D. Averitt, S. A. Wolf, H. T. Kim, P. C. Canfield, and D. N. Basov, Phase transition in bulk single crystals and thin films of VO2 by nanoscale infrared spectroscopy and imaging, Phys. Rev. B 91(24), 245155 (2015)
CrossRef ADS Google scholar
[27]
Z. Shi, X. Hong, H. A. Bechtel, B. Zeng, M. C. Martin, K. Watanabe, T. Taniguchi, Y. R. Shen, and F. Wang, Observation of a Luttinger-liquid plasmon in metallic single-walled carbon nanotubes, Nat. Photon. 9(8), 515 (2015)
CrossRef ADS Google scholar
[28]
Z. Shi, H. A. Bechtel, S. Berweger, Y. Sun, B. Zeng, C. Jin, H. Chang, M. C. Martin, M. B. Raschke, and F. Wang, Amplitude-and phase-resolved nanospectral imaging of phonon polaritons in hexagonal boron nitride, ACS Photon. 2(7), 790 (2015)
CrossRef ADS Google scholar
[29]
H. A. Bechtel, E. A. Muller, R. L. Olmon, M. C. Martin, and M. B. Raschke, Ultrabroadband infrared nanospectroscopic imaging, Proc. Natl. Acad. Sci. USA 111(20), 7191 (2014)
CrossRef ADS Google scholar
[30]
D. N. Basov, M. M. Fogler, A. Lanzara, F. Wang, and Y. Zhang, Colloquium: Graphene spectroscopy, Rev. Mod. Phys. 86(3), 959 (2014)
CrossRef ADS Google scholar
[31]
A. Uri, S. Grover, Y. Cao, J. A. Crosse, K. Bagani, D. Rodan-Legrain, Y. Myasoedov, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, and E. Zeldov, Mapping the twist-angle disorder and Landau levels in magic-angle graphene, Nature 581(7806), 47 (2020)
CrossRef ADS Google scholar
[32]
N. P. Kazmierczak, M. Van Winkle, C. Ophus, K. C. Bustillo, S. Carr, H. G. Brown, J. Ciston, T. Taniguchi, K. Watanabe, and D. K. Bediako, Strain fields in twisted bilayer graphene, Nat. Mater. 20(7), 956 (2021)
CrossRef ADS Google scholar
[33]
L. Wen, Z. Li, and Y. He, Optical conductivity of twisted bilayer graphene near the magic angle, Chin. Phys. B 30(1), 017303 (2021)
CrossRef ADS Google scholar
[34]
Z. B. Dai, Y. He, and Z. Li, Effects of heterostrain and lattice relaxation on the optical conductivity of twisted bilayer graphene, Phys. Rev. B 104(4), 045403 (2021)
CrossRef ADS Google scholar
[35]
P. Moon and M. Koshino, Optical absorption in twisted bilayer graphene, Phys. Rev. B 87(20), 205404 (2013)
CrossRef ADS Google scholar
[36]
J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro Neto, Continuum model of the twisted graphene bilayer, Phys. Rev. B 86(15), 155449 (2012)
CrossRef ADS Google scholar
[37]
M. Koshino, N. F. Q. Yuan, T. Koretsune, M. Ochi, K. Kuroki, and L. Fu, Maximally localized wannier orbitals and the extended hubbard model for twisted bilayer graphene, Phys. Rev. X 8(3), 031087 (2018)
CrossRef ADS Google scholar
[38]
Z. Bi, N F Q. Yuan, and L. Fu, Designing flat bands by strain, Phys. Rev. B 100(3), 035448 (2019)
CrossRef ADS Google scholar
[39]
T. Stauber, P. San-Jose, and L. Brey, Optical conductivity, Drude weight and plasmons in twisted graphene bilayers, New J. Phys. 15(11), 113050 (2013)
CrossRef ADS Google scholar
[40]
R. Hillenbrand and F. Keilmann, Complex optical constants on a subwavelength scale, Phys. Rev. Lett. 85(14), 3029 (2000)
CrossRef ADS Google scholar
[41]
R. Hillenbrand, B. Knoll, and F. Keilmann, Pure optical contrast in scattering-type scanning near-field microscopy, J. Microsc. 202, 77 (2001)
CrossRef ADS Google scholar
[42]
A. Cvitkovic, N. Ocelic, and R. Hillenbrand, Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy, Opt. Express 15(14), 8550 (2007)
CrossRef ADS Google scholar
[43]
B. Hauer, A. Engelhardt, and T. Taubner, Quasianalytical model for scattering infrared near-field microscopy on layered systems, Opt. Express 20(12), 13173 (2012)
CrossRef ADS Google scholar
[44]
B. Y. Jiang, L. M. Zhang, A. H. Castro Neto, D. N. Basov, and M. M. Fogler, Generalized spectral method for near-field optical microscopy, J. Appl. Phys. 119(5), 054305 (2016)
CrossRef ADS Google scholar
[45]
S. T. Chui, X. Chen, M. Liu, Z. Lin, and J. Zi, Scattering of electromagnetic waves from a cone with conformal mapping: Application to scanning near-field optical microscope, Phys. Rev. B 97(8), 081406 (2018)
CrossRef ADS Google scholar
[46]
I. V. Lindell and K. I. Nikoskinen, Electrostatic image theory for the dielectric prolate spheroid, J. Electromagn. Waves Appl. 15(8), 1075 (2001)
CrossRef ADS Google scholar
[47]
S. Amarie and F. Keilmann, Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy, Phys. Rev. B 83(4), 045404 (2011)
CrossRef ADS Google scholar
[48]
V. P. Gusynin and S. G. Sharapov, Transport of Dirac quasiparticles in graphene: Hall and optical conductivities, Phys. Rev. B 73(24), 245411 (2006)
CrossRef ADS Google scholar
[49]
T. Stauber and H. Kohler, Quasi-flat plasmonic bands in twisted bilayer graphene, Nano Lett. 16(11), 6844 (2016)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(736 KB)

Accesses

Citations

Detail

Sections
Recommended

/