Distributed entanglement generation from asynchronously excited qubits
Tian-Tian Huan, Rigui Zhou, Hou Ian
Distributed entanglement generation from asynchronously excited qubits
The generation of GHZ states calls for simultaneous excitation of multiple qubits. The peculiarity of such states is reflected in their nonzero distributed entanglement which is not contained in other entangled states. We study the optimal way to excite three superconducting qubits through a common cavity resonator in a circuit such that the generation of distributed entanglement among them could be obtained at the highest degree in a time-controllable way. A non-negative measure quantifying this entanglement is derived as a time function of the quadripartite system evolution. We find that this measure does not stay static but obtains the same maximum periodically. When the qubit-resonator couplings are allowed to vary, its peak value is enhanced monotonically by increasing the greatest coupling strength to one of the qubits. The period of its peak to peak revival maximizes when the couplings become inhomogeneous, thus qubit excitation becoming asynchronous, at a relative ratio of 0.35. The study demonstrates the role of asynchronous excitations for time-controlling multi-qubit systems, in particular in extending entanglement time.
dynamic entanglement / asynchronous excitation
[1] |
K. Chen and H. K. Lo , Multi-partite quantum cryptographic protocols with noisy GHZ states, Quantum Inf. Comput. 7 (8), 689 (2007)
|
[2] |
T. Gao , F. L. Yan , and Z. X. Wang , Deterministic secure direct communication using GHZ states and swapping quantum entanglement, J. Phys. Math. Gen. 38 (25), 5761 (2005)
|
[3] |
A. W. Chin , S. F. Huelga , and M. B. Plenio , Quantum metrology in non-Markovian environments, Phys. Rev. Lett. 109 (23), 233601 (2012)
|
[4] |
V. Coffman , J. Kundu , and W. K. Wootters , Distributed entanglement, Phys. Rev. A 61 (5), 052306 (2000)
|
[5] |
W. K. Wootters , Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett. 80 (10), 2245 (1998)
|
[6] |
R. Horodecki , P. Horodecki , M. Horodecki , and K. Horodecki , Quantum entanglement, Rev. Mod. Phys. 81 (2), 865 (2009)
|
[7] |
T. J. Osborne and F. Verstraete , General monogamy inequality for bipartite qubit entanglement, Phys. Rev. Lett. 96 (22), 220503 (2006)
|
[8] |
M. F. Cornelio , Multipartite monogamy of the concurrence, Phys. Rev. A 87 (3), 032330 (2013)
|
[9] |
C. Eltschka , T. Bastin , A. Osterloh , and J. Siewert , Multipartite-entanglement monotones and polynomial invariants, Phys. Rev. A 85 (2), 022301 (2012)
|
[10] |
A. Wong and N. Christensen , Potential multiparticle entanglement measure, Phys. Rev. A 63 (4), 044301 (2001)
|
[11] |
F. Mintert , M. Kuś , and A. Buchleitner , Concurrence of mixed multipartite quantum states, Phys. Rev. Lett. 95 (26), 260502 (2005)
|
[12] |
F. Mintert , A. R. R. Carvalho , M. Kuś , and A. Buchleitner , Measures and dynamics of entangled states, Phys. Rep. 415 (4), 207 (2005)
|
[13] |
W. Dür , G. Vidal , and J. I. Cirac , Three qubits can be entangled in two inequivalent ways, Phys. Rev. A 62 (6), 062314 (2000)
|
[14] |
B. Regula , A. Osterloh , and G. Adesso , Strong monogamy inequalities for four qubits, Phys. Rev. A 93 (5), 052338 (2016)
|
[15] |
S. Gartzke and A. Osterloh , Generalized W state of four qubits with exclusively the three-tangle, Phys. Rev. A 98 (5), 052307 (2018)
|
[16] |
T. R. de Oliveira , M. F. Cornelio , and F. F. Fanchini , Monogamy of entanglement of formation, Phys. Rev. A 89 (3), 034303 (2014)
|
[17] |
Y. K. Bai , Y. F. Xu , and Z. D. Wang , General monogamy relation for the entanglement of formation in multiqubit systems, Phys. Rev. Lett. 113 (10), 100503 (2014)
|
[18] |
Y. Liu , S. Kuang , and S. Cong , Lyapunov-based feedback preparation of GHZ entanglement of N-qubit systems, IEEE Trans. Cybern. 47 (11), 3827 (2017)
|
[19] |
T. Huan , R. Zhou , and H. Ian , Dynamic entanglement transfer in a double-cavity optomechanical system, Phys. Rev. A 92 (2), 022301 (2015)
|
[20] |
T. Huan , R. Zhou , and H. Ian , Synchronization of two cavity-coupled qubits measured by entanglement, Sci. Rep. 10 (1), 12975 (2020)
|
[21] |
A. Nourmandipour , M. K. Tavassoly , and M. Rafiee , Dynamics and protection of entanglement in n -qubit systems within Markovian and non-Markovian environments, Phys. Rev. A 93 (2), 022327 (2016)
|
[22] |
Y. J. Zhang , Z. X. Man , X. B. Zou , Y. J. Xia , and G. C. Guo , Dynamics of multipartite entanglement in the nonMarkovian environments, J. Phys.: At. Mol. Opt. Phys. 43 (4), 045502 (2010)
|
[23] |
A. Wallraff , D. I. Schuster , A. Blais , L. Frunzio , R. S. Huang , J. Majer , S. Kumar , S. M. Girvin , and R. J. Schoelkopf , Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics, Nature 431 (7005), 162 (2004)
|
[24] |
J. M. Fink , R. Bianchetti , M. Baur , M. Göppl , L. Steffen , S. Filipp , P. J. Leek , A. Blais , and A. Wallraff , Dressed collective qubit states and the Tavis–Cummings model in circuit QED, Phys. Rev. Lett. 103 (8), 083601 (2009)
|
[25] |
H. Ian , Y. Liu , and F. Nori , Excitation spectrum for an inhomogeneously dipole-field-coupled superconducting qubit chain, Phys. Rev. A 85 (5), 053833 (2012)
|
[26] |
H. Ian and Y. Liu , Cavity polariton in a quasilattice of qubits and its selective radiation, Phys. Rev. A 89 (4), 043804 (2014)
|
[27] |
H. Ian , Quasi-lattices of qubits for generating inequivalent multipartite entanglements, EPL 114 (5), 50005 (2016)
|
[28] |
Z. Ficek and R. Tanaś , Dark periods and revivals of entanglement in a two-qubit system, Phys. Rev. A 74 (2), 024304 (2006)
|
[29] |
M. Dukalski and Ya. M. Blanter , Periodic revival of entanglement of two strongly driven qubits in a dissipative cavity, Phys. Rev. A 82 (5), 052330 (2010)
|
[30] |
G. Wang , L. Huang , Y. C. Lai , and C. Grebogi , Nonlinear dynamics and quantum entanglement in optomechanical systems, Phys. Rev. Lett. 112 (11), 110406 (2014)
|
[31] |
M. Kjaergaard , M. E. Schwartz , J. Braumüller , P. Krantz , J. I. J. Wang , S. Gustavsson , and W. D. Oliver , Superconducting qubits: Current state of play, Annu. Rev.: Condens. Matter Phys. 11 (1), 369 (2020)
|
[32] |
K. Børkje , A. Nunnenkamp , J. D. Teufel , and S. M. Girvin , Signatures of nonlinear cavity optomechanics in the weak coupling regime, Phys. Rev. Lett. 111 (5), 053603 (2013)
|
/
〈 | 〉 |