Simulation of EOM-based frequency-chirped laser slowing of MgF radicals
Kang Yan, RuoXi Gu, Di Wu, Jin Wei, Yong Xia, Jianping Yin
Simulation of EOM-based frequency-chirped laser slowing of MgF radicals
Here we propose a scheme to slow MgF molecules by using EOM-based frequency-chirped radiation pressure slowing. The scheme well addresses the need for a rapid chirp rate while light molecules are being laser slowed, whose scattering rate and recoil velocity are large. Two EOMs are used to compensate the rapidly changing Doppler shifts arised from the movement of molecules, and to cover the hyperfine energy structure of MgF, respectively. Based the scattering rate maps calculated from an optical Bloch equation model, individual molecule trajectories are simulated by using a semi-classical three-dimensional Monte Carlo approach. We show how the modulation configuration of EOM and the magnetic field influence the slowing results. The study shows that a cryogenic buffer gas-cooled MgF beam source is possible to be slowed down with a number of ~ 1.4 × 106–107, and the final forward speed peaks at ~ 10 m/s near the capture velocity of a molecular MOT.
laser cooling of molecule / MgF molecule / laser slowing / dark state / type-II transition
[1] |
J. Doyle, B. Friedrich, R. V. Krems, and F. Masnou-Seeuws, Editorial: Quo vadis, cold molecules? Eur. Phys. J. D 31(2), 149 (2004)
CrossRef
ADS
Google scholar
|
[2] |
L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, Cold and ultracold molecules: Science, technology and applications, New J. Phys. 11(5), 055049 (2009)
CrossRef
ADS
Google scholar
|
[3] |
The ACME Collaboration, J. Baron, W. C. Campbell, D. DeMille, J. M. Doyle, G. Gabrielse, Y. V. Gurevich, P. W. Hess, N. R. Hutzler, E. Kirilov, I. Kozyryev, B. R. O’Leary, C. D. Panda, M. F. Parsons, E. S. Petrik, B. Spaun, A. C. Vutha, and A. D. West, Order of magnitude smaller limit on the electric dipole moment of the electron, Science 343(6168), 269 (2014)
CrossRef
ADS
Google scholar
|
[4] |
J. J. Hudson, D. M. Kara, I. J. Smallman, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds, Improved measurement of the shape of the electron, Nature 473(7348), 493 (2011)
CrossRef
ADS
Google scholar
|
[5] |
S. Ospelkaus, K. K. Ni, D. Wang, M. H. G. De Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, and J. Ye, Quantum-state controlled chemical reactions of ultracold potassium–rubidium molecules, Science 327(5967), 853 (2010)
CrossRef
ADS
Google scholar
|
[6] |
D. S. Jin and J. Ye, Introduction to ultracold molecules: New frontiers in quantum and chemical physics, Chem. Rev. 112(9), 4801 (2012)
CrossRef
ADS
Google scholar
|
[7] |
D. DeMille, Quantum computation with trapped polar molecules, Phys. Rev. Lett. 88(6), 067901 (2002)
CrossRef
ADS
Google scholar
|
[8] |
A. André, D. DeMille, J. M. Doyle, M. D. Lukin, S. E. Maxwell, P. Rabl, R. J. Schoelkopf, and P. Zoller, A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators, Nat. Phys. 2(9), 63. (2006)
CrossRef
ADS
Google scholar
|
[9] |
P. Rabl, D. DeMille, J. M. Doyle, M. D. Lukin, R. J. Schoelkopf, and P. Zoller, Hybrid quantum processors: Molecular ensembles as quantum memory for solid state circuits, Phys. Rev. Lett. 97(3), 033003 (2006)
CrossRef
ADS
Google scholar
|
[10] |
A. Micheli, G. K. Brennen, and P. Zoller, A toolbox for lattice-spin models with polar molecules, Nat. Phys. 2(5), 34. (2006)
CrossRef
ADS
Google scholar
|
[11] |
D. Wang, M. D. Lukin, and E. Demler, Quantum fluids of self-assembled chains of polar molecules, Phys. Rev. Lett. 97(18), 180413 (2006)
CrossRef
ADS
Google scholar
|
[12] |
B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. A. Hazzard, A. M. Rey, D. S. Jin, and J. Ye, Observation of dipolar spin-exchange interactions with lattice-confined polar molecules, Nature 501(7468), 521 (2013)
CrossRef
ADS
Google scholar
|
[13] |
Y. Liu and L. Luo, Molecular collisions: From near-cold to ultra-cold, Front. Phys. 16(4), 42300 (2021)
CrossRef
ADS
Google scholar
|
[14] |
E. S. Shuman, J. F. Barry, and D. DeMille, Laser cooling of a diatomic molecule, Nature 467(7317), 820 (2010)
CrossRef
ADS
Google scholar
|
[15] |
E. B. Norrgard, D. J. McCarron, M. H. Steinecker, M. R. Tarbutt, and D. DeMille, Submillikelvin dipolar molecules in a radio-frequency magneto-optical trap, Phys. Rev. Lett. 116(6), 063004 (2016)
CrossRef
ADS
Google scholar
|
[16] |
M. T. Hummon, M. Yeo, B. K. Stuhl, A. L. Collopy, Y. Xia, and J. Ye, 2D magneto-optical trapping of diatomic molecules, Phys. Rev. Lett. 110(14), 143001 (2013)
CrossRef
ADS
Google scholar
|
[17] |
A. L. Collopy, S. Ding, Y. Wu, I. A. Finneran, L. Anderegg, B. L. Augenbraun, J. M. Doyle, and J. Ye, 3D magnetooptical trap of yttrium monoxide, Phys. Rev. Lett. 121(21), 21320. (2018)
CrossRef
ADS
Google scholar
|
[18] |
L. Anderegg, B. L. Augenbraun, E. Chae, B. Hemmerling, N. R. Hutzler, A. Ravi, A. Collopy, J. Ye, W. Ketterle, and J. M. Doyle, Radio frequency magneto-optical trapping of CaF with high density, Phys. Rev. Lett. 119(10), 103201 (2017)
CrossRef
ADS
Google scholar
|
[19] |
I. Kozyryev, L. Baum, K. Matsuda, B. L. Augenbraun, L. Anderegg, A. P. Sedlack, and J. M. Doyle, Sisyphus laser cooling of a polyatomic molecule, Phys. Rev. Lett. 118(17), 17320. (2017)
CrossRef
ADS
Google scholar
|
[20] |
H. J. Williams, L. Caldwell, N. J. Fitch, S. Truppe, J. Rodewald, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, Magnetic trapping and coherent control of laser-cooled molecules, Phys. Rev. Lett. 120(16), 163201 (2018)
CrossRef
ADS
Google scholar
|
[21] |
L. Anderegg, B. L. Augenbraun, Y. Bao, S. Burchesky, L. W. Cheuk, W. Ketterle, and J. M. Doyle, Laser cooling of optically trapped molecules, Nat. Phys. 14(9), 890 (2018)
CrossRef
ADS
Google scholar
|
[22] |
S. Truppe, H. J. Williams, M. Hambach, L. Caldwell, N. J. Fitch, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, Molecules cooled below the Doppler limit, Nat. Phys. 13(12), 1173 (2017)
CrossRef
ADS
Google scholar
|
[23] |
L. W. Cheuk, L. Anderegg, B. L. Augenbraun, Y. Bao, S. Burchesky, W. Ketterle, and J. M. Doyle, Λ-enhanced imaging of molecules in an optical trap, Phys. Rev. Lett. 121(8), 083201 (2018)
CrossRef
ADS
Google scholar
|
[24] |
L. Caldwell, J. A. Devlin, H. J. Williams, N. J. Fitch, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, Deep laser cooling and efficient magnetic compression of molecules, Phys. Rev. Lett. 123(3), 033202 (2019)
CrossRef
ADS
Google scholar
|
[25] |
H. Son, J. J. Park, W. Ketterle, and A. O. Jamison, Collisional cooling of ultracold molecules, Nature 580(7802), 19. (2020)
CrossRef
ADS
Google scholar
|
[26] |
S. A. Malinovskaya, Laser cooling using adiabatic rapid passage, Front. Phys. 16(5), 52601 (2021)
CrossRef
ADS
Google scholar
|
[27] |
Q. Liang, T. Chen, W. Bu, Y. Zhang, and B. Yan, Laser cooling with adiabatic passage for type-ii transitions, Front. Phys. 16(3), 32501 (2021)
CrossRef
ADS
Google scholar
|
[28] |
R. L. McNally, I. Kozyryev, S. Vazquez-Carson, K. Wenz, T. Wang, and T. Zelevinsky, Optical cycling, radiative deflection and laser cooling of barium monohydride (138Ba1H), New J. Phys. 22(8), 083047 (2020)
CrossRef
ADS
Google scholar
|
[29] |
J. Lim, J. R. Almond, M. A. Trigatzis, J. A. Devlin, N. J. Fitch, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds, Laser cooled YbF molecules for measuring the electron’s electric dipole moment, Phys. Rev. Lett. 120(12), 123201 (2018)
CrossRef
ADS
Google scholar
|
[30] |
T. Chen, W. Bu, and B. Yan, Radiative deflection of a BaF molecular beam via optical cycling, Phys. Rev. A 96(5), 05340. (2017)
CrossRef
ADS
Google scholar
|
[31] |
P. Aggarwal, H. L. Bethlem, A. Borschevsky, M. Denis, K. Esajas, P. A. B. Haase, Y. Hao, S. Hoekstra, K. Jungmann, T. B. Meijknecht, M. C. Mooij, R. G. E. Timmermans, W. Ubachs, L. Willmann, and A. Zapara, Measuring the electric dipole moment of the electron in BaF, Eur. Phys. J. D 72(11), 197 (2018)
CrossRef
ADS
Google scholar
|
[32] |
R. Albrecht, M. Scharwaechter, T. Sixt, L. Hofer, and T. Langen, Buffer-gas cooling, high-resolution spectroscopy, and optical cycling of barium monofluoride molecules, Phys. Rev. A 101(1), 013413 (2020)
CrossRef
ADS
Google scholar
|
[33] |
S. Hofsäss, M. Doppelbauer, S. C. Wright, S. Kray, B. G. Sartakov, J. Pérez-Ríos, G. Meijer, and S. Truppe, Optical cycling of AlF molecules, New J. Phys. 23(7), 075001 (2021)
CrossRef
ADS
Google scholar
|
[34] |
M. Xia, R. Gu, K. Yan, D. Wu, L. Xu, Y. Xia, and J. Yin, Destabilization of dark states in MgF molecules, Phys. Rev. A 103(1), 013321 (2021)
CrossRef
ADS
Google scholar
|
[35] |
M. R. Tarbutt and T. C. Steimle, Modeling magnetooptical trapping of CaF molecules, Phys. Rev. A 92(5), 053401 (2015)
CrossRef
ADS
Google scholar
|
[36] |
H. J. Williams, S. Truppe, M. Hambach, L. Caldwell, N. J. Fitch, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, Characteristics of a magneto-optical trap of molecules, New J. Phys. 19(11), 113035 (2017)
CrossRef
ADS
Google scholar
|
[37] |
S. Truppe, H. J. Williams, N. J. Fitch, M. Hambach, T. E. Wall, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, An intense, cold, velocity-controlled molecular beam by frequency-chirped laser slowing, New J. Phys. 19(2), 02200. (2017)
CrossRef
ADS
Google scholar
|
[38] |
J. F. Barry, E. S. Shuman, E. B. Norrgard, and D. De-Mille, Laser radiation pressure slowing of a molecular beam, Phys. Rev. Lett. 108(10), 103002 (2012)
CrossRef
ADS
Google scholar
|
[39] |
B. Hemmerling, E. Chae, A. Ravi, L. Anderegg, G. K. Drayna, N. R. Hutzler, A. L. Collopy, J. Ye, W. Ketterle, and J. M. Doyle, Laser slowing of CaF molecules to near the capture velocity of a molecular mot, J. Phys. B 49(17), 17400. (2016)
CrossRef
ADS
Google scholar
|
[40] |
V. Zhelyazkova, A. Cournol, T. E. Wall, A. Matsushima, J. J. Hudson, E. A. Hinds, M. R. Tarbutt, and B. E. Sauer, Laser cooling and slowing of CaF molecules, Phys. Rev. A 89(5), 053416 (2014)
CrossRef
ADS
Google scholar
|
[41] |
M. Yeo, M. T. Hummon, A. L. Collopy, B. Yan, B. Hemmerling, E. Chae, J. M. Doyle, and J. Ye, Rotational state microwave mixing for laser cooling of complex diatomic molecules, Phys. Rev. Lett. 114(22), 223003 (2015)
CrossRef
ADS
Google scholar
|
[42] |
M. Petzold, P. Kaebert, P. Gersema, M. Siercke, and S. Ospelkaus, A zeeman slower for diatomic molecules, New J. Phys. 20(4), 042001 (2018)
CrossRef
ADS
Google scholar
|
[43] |
P. Kaebert, M. Stepanova, T. Poll, M. Petzold, S. Xu, M. Siercke, and S. Ospelkaus, Characterizing the zeeman slowing force for 40Ca19F molecules, New J. Phys. 23(9), 09301. (2021)
CrossRef
ADS
Google scholar
|
[44] |
C. C. Bradley, J. G. Story, J. J. Tollett, J. Chen, N. W. M. Ritchie, and R. G. Hulet, Laser cooling of lithium using relay chirp cooling, Opt. Lett. 17(5), 349 (1992)
CrossRef
ADS
Google scholar
|
[45] |
B. K. Stuhl, B. C. Sawyer, D. Wang, and J. Ye, Magnetooptical trap for polar molecules, Phys. Rev. Lett. 101(24), 243002 (2008)
CrossRef
ADS
Google scholar
|
[46] |
L. Xu, Y. Yin, B. Wei, Y. Xia, and J. Yin, Calculation of vibrational branching ratios and hyperfine structure of 24Mg19F and its suitability for laser cooling and magnetooptical trapping, Phys. Rev. A 93(1), 013408 (2016)
CrossRef
ADS
Google scholar
|
[47] |
K. Yan, B. Wei, Y. Yin, S. Xu, L. Xu, M. Xia, R. Gu, Y. Xia, and J. Yin, A new route for laser cooling and trapping of cold molecules: Intensity-gradient cooling of MgF molecules using localized hollow beams, New J. Phys. 22(3), 033003 (2020)
CrossRef
ADS
Google scholar
|
[48] |
N. R. Hutzler, H. I. Lu, and J. M. Doyle, The buffer gas beam: An intense, cold, and slow source for atoms and molecules, Chem. Rev. 112(9), 4803 (2012)
CrossRef
ADS
Google scholar
|
[49] |
J. F. Barry, E. S. Shuman, and D. DeMille, A bright, slow cryogenic molecular beam source for free radicals, Phys. Chem. Chem. Phys. 13(42), 18936 (2011)
CrossRef
ADS
Google scholar
|
[50] |
N. E. Bulleid, S. M. Skoff, R. J. Hendricks, B. E. Sauer, E. A. Hinds, and M. R. Tarbutt, Characterization of a cryogenic beam source for atoms and molecules, Phys. Chem. Chem. Phys. 15(29), 12299 (2013)
CrossRef
ADS
Google scholar
|
[51] |
D. J. Berkeland and M. G. Boshier, Destabilization of dark states and optical spectroscopy in Zeeman degenerate atomic systems, Phys. Rev. A 65(3), 033413 (2002)
CrossRef
ADS
Google scholar
|
[52] |
E. S. Shuman, J. F. Barry, D. R. Glenn, and D. De-Mille, Radiative force from optical cycling on a diatomic molecule, Phys. Rev. Lett. 103(22), 223001 (2009)
CrossRef
ADS
Google scholar
|
[53] |
N. J. Fitch and M. R. Tarbutt, Laser cooled molecules, arXiv: 2103.00968 (2021)
CrossRef
ADS
Google scholar
|
[54] |
B. Klöter, C. Weber, D. Haubrich, D. Meschede, and H. Metcalf, Laser cooling of an indium atomic beam enabled by magnetic fields, Phys. Rev. A 77(3), 033402 (2008)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |