Simulation of EOM-based frequency-chirped laser slowing of MgF radicals

Kang Yan, RuoXi Gu, Di Wu, Jin Wei, Yong Xia, Jianping Yin

PDF(1347 KB)
PDF(1347 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (4) : 42502. DOI: 10.1007/s11467-021-1137-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Simulation of EOM-based frequency-chirped laser slowing of MgF radicals

Author information +
History +

Abstract

Here we propose a scheme to slow MgF molecules by using EOM-based frequency-chirped radiation pressure slowing. The scheme well addresses the need for a rapid chirp rate while light molecules are being laser slowed, whose scattering rate and recoil velocity are large. Two EOMs are used to compensate the rapidly changing Doppler shifts arised from the movement of molecules, and to cover the hyperfine energy structure of MgF, respectively. Based the scattering rate maps calculated from an optical Bloch equation model, individual molecule trajectories are simulated by using a semi-classical three-dimensional Monte Carlo approach. We show how the modulation configuration of EOM and the magnetic field influence the slowing results. The study shows that a cryogenic buffer gas-cooled MgF beam source is possible to be slowed down with a number of ~ 1.4 × 106–107, and the final forward speed peaks at ~ 10 m/s near the capture velocity of a molecular MOT.

Graphical abstract

Keywords

laser cooling of molecule / MgF molecule / laser slowing / dark state / type-II transition

Cite this article

Download citation ▾
Kang Yan, RuoXi Gu, Di Wu, Jin Wei, Yong Xia, Jianping Yin. Simulation of EOM-based frequency-chirped laser slowing of MgF radicals. Front. Phys., 2022, 17(4): 42502 https://doi.org/10.1007/s11467-021-1137-y

References

[1]
J. Doyle, B. Friedrich, R. V. Krems, and F. Masnou-Seeuws, Editorial: Quo vadis, cold molecules? Eur. Phys. J. D 31(2), 149 (2004)
CrossRef ADS Google scholar
[2]
L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, Cold and ultracold molecules: Science, technology and applications, New J. Phys. 11(5), 055049 (2009)
CrossRef ADS Google scholar
[3]
The ACME Collaboration, J. Baron, W. C. Campbell, D. DeMille, J. M. Doyle, G. Gabrielse, Y. V. Gurevich, P. W. Hess, N. R. Hutzler, E. Kirilov, I. Kozyryev, B. R. O’Leary, C. D. Panda, M. F. Parsons, E. S. Petrik, B. Spaun, A. C. Vutha, and A. D. West, Order of magnitude smaller limit on the electric dipole moment of the electron, Science 343(6168), 269 (2014)
CrossRef ADS Google scholar
[4]
J. J. Hudson, D. M. Kara, I. J. Smallman, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds, Improved measurement of the shape of the electron, Nature 473(7348), 493 (2011)
CrossRef ADS Google scholar
[5]
S. Ospelkaus, K. K. Ni, D. Wang, M. H. G. De Miranda, B. Neyenhuis, G. Quéméner, P. S. Julienne, J. L. Bohn, D. S. Jin, and J. Ye, Quantum-state controlled chemical reactions of ultracold potassium–rubidium molecules, Science 327(5967), 853 (2010)
CrossRef ADS Google scholar
[6]
D. S. Jin and J. Ye, Introduction to ultracold molecules: New frontiers in quantum and chemical physics, Chem. Rev. 112(9), 4801 (2012)
CrossRef ADS Google scholar
[7]
D. DeMille, Quantum computation with trapped polar molecules, Phys. Rev. Lett. 88(6), 067901 (2002)
CrossRef ADS Google scholar
[8]
A. André, D. DeMille, J. M. Doyle, M. D. Lukin, S. E. Maxwell, P. Rabl, R. J. Schoelkopf, and P. Zoller, A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators, Nat. Phys. 2(9), 63. (2006)
CrossRef ADS Google scholar
[9]
P. Rabl, D. DeMille, J. M. Doyle, M. D. Lukin, R. J. Schoelkopf, and P. Zoller, Hybrid quantum processors: Molecular ensembles as quantum memory for solid state circuits, Phys. Rev. Lett. 97(3), 033003 (2006)
CrossRef ADS Google scholar
[10]
A. Micheli, G. K. Brennen, and P. Zoller, A toolbox for lattice-spin models with polar molecules, Nat. Phys. 2(5), 34. (2006)
CrossRef ADS Google scholar
[11]
D. Wang, M. D. Lukin, and E. Demler, Quantum fluids of self-assembled chains of polar molecules, Phys. Rev. Lett. 97(18), 180413 (2006)
CrossRef ADS Google scholar
[12]
B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. A. Hazzard, A. M. Rey, D. S. Jin, and J. Ye, Observation of dipolar spin-exchange interactions with lattice-confined polar molecules, Nature 501(7468), 521 (2013)
CrossRef ADS Google scholar
[13]
Y. Liu and L. Luo, Molecular collisions: From near-cold to ultra-cold, Front. Phys. 16(4), 42300 (2021)
CrossRef ADS Google scholar
[14]
E. S. Shuman, J. F. Barry, and D. DeMille, Laser cooling of a diatomic molecule, Nature 467(7317), 820 (2010)
CrossRef ADS Google scholar
[15]
E. B. Norrgard, D. J. McCarron, M. H. Steinecker, M. R. Tarbutt, and D. DeMille, Submillikelvin dipolar molecules in a radio-frequency magneto-optical trap, Phys. Rev. Lett. 116(6), 063004 (2016)
CrossRef ADS Google scholar
[16]
M. T. Hummon, M. Yeo, B. K. Stuhl, A. L. Collopy, Y. Xia, and J. Ye, 2D magneto-optical trapping of diatomic molecules, Phys. Rev. Lett. 110(14), 143001 (2013)
CrossRef ADS Google scholar
[17]
A. L. Collopy, S. Ding, Y. Wu, I. A. Finneran, L. Anderegg, B. L. Augenbraun, J. M. Doyle, and J. Ye, 3D magnetooptical trap of yttrium monoxide, Phys. Rev. Lett. 121(21), 21320. (2018)
CrossRef ADS Google scholar
[18]
L. Anderegg, B. L. Augenbraun, E. Chae, B. Hemmerling, N. R. Hutzler, A. Ravi, A. Collopy, J. Ye, W. Ketterle, and J. M. Doyle, Radio frequency magneto-optical trapping of CaF with high density, Phys. Rev. Lett. 119(10), 103201 (2017)
CrossRef ADS Google scholar
[19]
I. Kozyryev, L. Baum, K. Matsuda, B. L. Augenbraun, L. Anderegg, A. P. Sedlack, and J. M. Doyle, Sisyphus laser cooling of a polyatomic molecule, Phys. Rev. Lett. 118(17), 17320. (2017)
CrossRef ADS Google scholar
[20]
H. J. Williams, L. Caldwell, N. J. Fitch, S. Truppe, J. Rodewald, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, Magnetic trapping and coherent control of laser-cooled molecules, Phys. Rev. Lett. 120(16), 163201 (2018)
CrossRef ADS Google scholar
[21]
L. Anderegg, B. L. Augenbraun, Y. Bao, S. Burchesky, L. W. Cheuk, W. Ketterle, and J. M. Doyle, Laser cooling of optically trapped molecules, Nat. Phys. 14(9), 890 (2018)
CrossRef ADS Google scholar
[22]
S. Truppe, H. J. Williams, M. Hambach, L. Caldwell, N. J. Fitch, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, Molecules cooled below the Doppler limit, Nat. Phys. 13(12), 1173 (2017)
CrossRef ADS Google scholar
[23]
L. W. Cheuk, L. Anderegg, B. L. Augenbraun, Y. Bao, S. Burchesky, W. Ketterle, and J. M. Doyle, Λ-enhanced imaging of molecules in an optical trap, Phys. Rev. Lett. 121(8), 083201 (2018)
CrossRef ADS Google scholar
[24]
L. Caldwell, J. A. Devlin, H. J. Williams, N. J. Fitch, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, Deep laser cooling and efficient magnetic compression of molecules, Phys. Rev. Lett. 123(3), 033202 (2019)
CrossRef ADS Google scholar
[25]
H. Son, J. J. Park, W. Ketterle, and A. O. Jamison, Collisional cooling of ultracold molecules, Nature 580(7802), 19. (2020)
CrossRef ADS Google scholar
[26]
S. A. Malinovskaya, Laser cooling using adiabatic rapid passage, Front. Phys. 16(5), 52601 (2021)
CrossRef ADS Google scholar
[27]
Q. Liang, T. Chen, W. Bu, Y. Zhang, and B. Yan, Laser cooling with adiabatic passage for type-ii transitions, Front. Phys. 16(3), 32501 (2021)
CrossRef ADS Google scholar
[28]
R. L. McNally, I. Kozyryev, S. Vazquez-Carson, K. Wenz, T. Wang, and T. Zelevinsky, Optical cycling, radiative deflection and laser cooling of barium monohydride (138Ba1H), New J. Phys. 22(8), 083047 (2020)
CrossRef ADS Google scholar
[29]
J. Lim, J. R. Almond, M. A. Trigatzis, J. A. Devlin, N. J. Fitch, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds, Laser cooled YbF molecules for measuring the electron’s electric dipole moment, Phys. Rev. Lett. 120(12), 123201 (2018)
CrossRef ADS Google scholar
[30]
T. Chen, W. Bu, and B. Yan, Radiative deflection of a BaF molecular beam via optical cycling, Phys. Rev. A 96(5), 05340. (2017)
CrossRef ADS Google scholar
[31]
P. Aggarwal, H. L. Bethlem, A. Borschevsky, M. Denis, K. Esajas, P. A. B. Haase, Y. Hao, S. Hoekstra, K. Jungmann, T. B. Meijknecht, M. C. Mooij, R. G. E. Timmermans, W. Ubachs, L. Willmann, and A. Zapara, Measuring the electric dipole moment of the electron in BaF, Eur. Phys. J. D 72(11), 197 (2018)
CrossRef ADS Google scholar
[32]
R. Albrecht, M. Scharwaechter, T. Sixt, L. Hofer, and T. Langen, Buffer-gas cooling, high-resolution spectroscopy, and optical cycling of barium monofluoride molecules, Phys. Rev. A 101(1), 013413 (2020)
CrossRef ADS Google scholar
[33]
S. Hofsäss, M. Doppelbauer, S. C. Wright, S. Kray, B. G. Sartakov, J. Pérez-Ríos, G. Meijer, and S. Truppe, Optical cycling of AlF molecules, New J. Phys. 23(7), 075001 (2021)
CrossRef ADS Google scholar
[34]
M. Xia, R. Gu, K. Yan, D. Wu, L. Xu, Y. Xia, and J. Yin, Destabilization of dark states in MgF molecules, Phys. Rev. A 103(1), 013321 (2021)
CrossRef ADS Google scholar
[35]
M. R. Tarbutt and T. C. Steimle, Modeling magnetooptical trapping of CaF molecules, Phys. Rev. A 92(5), 053401 (2015)
CrossRef ADS Google scholar
[36]
H. J. Williams, S. Truppe, M. Hambach, L. Caldwell, N. J. Fitch, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, Characteristics of a magneto-optical trap of molecules, New J. Phys. 19(11), 113035 (2017)
CrossRef ADS Google scholar
[37]
S. Truppe, H. J. Williams, N. J. Fitch, M. Hambach, T. E. Wall, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, An intense, cold, velocity-controlled molecular beam by frequency-chirped laser slowing, New J. Phys. 19(2), 02200. (2017)
CrossRef ADS Google scholar
[38]
J. F. Barry, E. S. Shuman, E. B. Norrgard, and D. De-Mille, Laser radiation pressure slowing of a molecular beam, Phys. Rev. Lett. 108(10), 103002 (2012)
CrossRef ADS Google scholar
[39]
B. Hemmerling, E. Chae, A. Ravi, L. Anderegg, G. K. Drayna, N. R. Hutzler, A. L. Collopy, J. Ye, W. Ketterle, and J. M. Doyle, Laser slowing of CaF molecules to near the capture velocity of a molecular mot, J. Phys. B 49(17), 17400. (2016)
CrossRef ADS Google scholar
[40]
V. Zhelyazkova, A. Cournol, T. E. Wall, A. Matsushima, J. J. Hudson, E. A. Hinds, M. R. Tarbutt, and B. E. Sauer, Laser cooling and slowing of CaF molecules, Phys. Rev. A 89(5), 053416 (2014)
CrossRef ADS Google scholar
[41]
M. Yeo, M. T. Hummon, A. L. Collopy, B. Yan, B. Hemmerling, E. Chae, J. M. Doyle, and J. Ye, Rotational state microwave mixing for laser cooling of complex diatomic molecules, Phys. Rev. Lett. 114(22), 223003 (2015)
CrossRef ADS Google scholar
[42]
M. Petzold, P. Kaebert, P. Gersema, M. Siercke, and S. Ospelkaus, A zeeman slower for diatomic molecules, New J. Phys. 20(4), 042001 (2018)
CrossRef ADS Google scholar
[43]
P. Kaebert, M. Stepanova, T. Poll, M. Petzold, S. Xu, M. Siercke, and S. Ospelkaus, Characterizing the zeeman slowing force for 40Ca19F molecules, New J. Phys. 23(9), 09301. (2021)
CrossRef ADS Google scholar
[44]
C. C. Bradley, J. G. Story, J. J. Tollett, J. Chen, N. W. M. Ritchie, and R. G. Hulet, Laser cooling of lithium using relay chirp cooling, Opt. Lett. 17(5), 349 (1992)
CrossRef ADS Google scholar
[45]
B. K. Stuhl, B. C. Sawyer, D. Wang, and J. Ye, Magnetooptical trap for polar molecules, Phys. Rev. Lett. 101(24), 243002 (2008)
CrossRef ADS Google scholar
[46]
L. Xu, Y. Yin, B. Wei, Y. Xia, and J. Yin, Calculation of vibrational branching ratios and hyperfine structure of 24Mg19F and its suitability for laser cooling and magnetooptical trapping, Phys. Rev. A 93(1), 013408 (2016)
CrossRef ADS Google scholar
[47]
K. Yan, B. Wei, Y. Yin, S. Xu, L. Xu, M. Xia, R. Gu, Y. Xia, and J. Yin, A new route for laser cooling and trapping of cold molecules: Intensity-gradient cooling of MgF molecules using localized hollow beams, New J. Phys. 22(3), 033003 (2020)
CrossRef ADS Google scholar
[48]
N. R. Hutzler, H. I. Lu, and J. M. Doyle, The buffer gas beam: An intense, cold, and slow source for atoms and molecules, Chem. Rev. 112(9), 4803 (2012)
CrossRef ADS Google scholar
[49]
J. F. Barry, E. S. Shuman, and D. DeMille, A bright, slow cryogenic molecular beam source for free radicals, Phys. Chem. Chem. Phys. 13(42), 18936 (2011)
CrossRef ADS Google scholar
[50]
N. E. Bulleid, S. M. Skoff, R. J. Hendricks, B. E. Sauer, E. A. Hinds, and M. R. Tarbutt, Characterization of a cryogenic beam source for atoms and molecules, Phys. Chem. Chem. Phys. 15(29), 12299 (2013)
CrossRef ADS Google scholar
[51]
D. J. Berkeland and M. G. Boshier, Destabilization of dark states and optical spectroscopy in Zeeman degenerate atomic systems, Phys. Rev. A 65(3), 033413 (2002)
CrossRef ADS Google scholar
[52]
E. S. Shuman, J. F. Barry, D. R. Glenn, and D. De-Mille, Radiative force from optical cycling on a diatomic molecule, Phys. Rev. Lett. 103(22), 223001 (2009)
CrossRef ADS Google scholar
[53]
N. J. Fitch and M. R. Tarbutt, Laser cooled molecules, arXiv: 2103.00968 (2021)
CrossRef ADS Google scholar
[54]
B. Klöter, C. Weber, D. Haubrich, D. Meschede, and H. Metcalf, Laser cooling of an indium atomic beam enabled by magnetic fields, Phys. Rev. A 77(3), 033402 (2008)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(1347 KB)

Accesses

Citations

Detail

Sections
Recommended

/