Transport features of topological corner states in honeycomb lattice with multihollow structure
Kai-Tong Wang, Fuming Xu, Bin Wang, Yunjin Yu, Yadong Wei
Transport features of topological corner states in honeycomb lattice with multihollow structure
Higher-order topological phase in 2-dimensional (2D) systems is characterized by in-gap corner states, which are hard to detect and utilize. We numerically investigate transport properties of topological corner states in 2D honeycomb lattice, where the second-order topological phase is induced by an in-plane Zeeman field in the conventional Kane–Mele model. Through engineering multihollow structures with appropriate boundaries in honeycomb lattice, multiple corner states emerge, which greatly increases the probability to observe them. A typical two-probe setup is built to study the transport features of a diamond-shaped system with multihollow structures. Numerical results reveal the existence of global resonant states in bulk insulator, which corresponds to the resonant tunneling of multiple corner states and occupies the entire scattering region. Furthermore, based on the well separated energy levels of multiple corner states, a single-electron source is constructed.
second-order topological insulator / Kane–Mele model / global resonant state / single-electron source
[1] |
X. L.Qi and S. C.Zhang, Topological insulators and superconductors, Rev. Mod. Phys.83(4), 1057 (2011)
CrossRef
ADS
Google scholar
|
[2] |
Y.Ren, Z.Qiao, and Q.Niu, Topological phases in two-dimensional materials: A review, Rep. Prog. Phys.79(6), 066501 (2016)
CrossRef
ADS
Google scholar
|
[3] |
J.Qi, H.Liu, H.Jiang, and X. C.Xie, Dephasing effects in topological insulators, Front. Phys.14(4), 43403 (2019)
CrossRef
ADS
Google scholar
|
[4] |
Q.Niu, Advances on topological materials, Front. Phys.15(4), 43601 (2020)
CrossRef
ADS
Google scholar
|
[5] |
B.Xie, H. X.Wang, X.Zhang, P.Zhan, J. H.Jiang, M.Lu, and Y.Chen, Higher-order band topology, Nat. Rev. Phys.3(7), 520 (2021)
CrossRef
ADS
Google scholar
|
[6] |
W. A.Benalcazar, B. A.Bernevig, and T. L.Hughes, Quantized electric multipole insulators, Science357(6346), 61 (2017)
CrossRef
ADS
Google scholar
|
[7] |
J.Langbehn, Y.Peng, L.Trifunovic, F.von Oppen, and P. W.Brouwer, Reflection-symmetric second-order topological insulators and superconductors, Phys. Rev. Lett.119(24), 246401 (2017)
CrossRef
ADS
Google scholar
|
[8] |
F.Schindler, A. M.Cook, M. G.Vergniory, Z.Wang, S. S. P.Parkin, B. A.Bernevig, and T.Neupert, Higher-order topological insulators, Sci. Adv.4(6), eaat0346 (2018)
CrossRef
ADS
Google scholar
|
[9] |
R.-J.Slager, L.Rademaker, J.Zaanen, and L.Balents, Impurity-bound states and Green’s function zeros as local signatures of topology, Phys. Rev. B92, 085126 (2015)
CrossRef
ADS
Google scholar
|
[10] |
Y.Volpez, D.Loss, and J.Klinovaja, Second-order topological superconductivity in π-junction Rashba layers, Phys. Rev. Lett122, 126402 (2019)
CrossRef
ADS
Google scholar
|
[11] |
Y. L.Tao, N.Dai, Y. B.Yang, Q. B.Zeng, and Y.Xu, Hinge solitons in three-dimensional second-order topological insulators, New J. Phys.22(10), 103058 (2020)
CrossRef
ADS
Google scholar
|
[12] |
H.Li and K.Sun, Topological insulators and higher-order topological insulators from gauge-invariant one-dimensional lines, Phys. Rev. B102(8), 085108 (2020)
CrossRef
ADS
Google scholar
|
[13] |
Y.Yang, Z.Jia, Y.Wu, R. C.Xiao, Z. H.Hang, H.Jiang, and X. C.Xie, Gapped topological kink states and topological corner states in honeycomb lattice, Sci. Bull. (Beijing)65(7), 531 (2020)
CrossRef
ADS
Google scholar
|
[14] |
Z. R.Liu, L. H.Hu, C. Z.Chen, B.Zhou, and D. H.Xu, Topological excitonic corner states and nodal phase in bilayer quantum spin Hall insulators, Phys. Rev. B103(20), L201115 (2021)
CrossRef
ADS
Google scholar
|
[15] |
X.Cheng, J.Chen, L.Zhang, L.Xiao, and S.Jia, Antichiral edge states and hinge states based on the Haldane model, Phys. Rev. B104(8), L081401 (2021)
CrossRef
ADS
Google scholar
|
[16] |
B.Liu, L.Xian, H.Mu, G.Zhao, Z.Liu, A.Rubio, and Z. F.Wang, Higher-order band topology in twisted Moiré superlattice, Phys. Rev. Lett.126(6), 066401 (2021)
CrossRef
ADS
Google scholar
|
[17] |
J. H.Wang, Y. B.Yang, N.Dai, and Y.Xu, Structural-disorder-induced second-order topological insulators in three dimensions, Phys. Rev. Lett.126(20), 206404 (2021)
CrossRef
ADS
Google scholar
|
[18] |
R.Chen, C. Z.Chen, J. H.Gao, B.Zhou, and D. H.Xu, Higher-order topological insulators in quasicrystals, Phys. Rev. Lett.124(3), 036803 (2020)
CrossRef
ADS
Google scholar
|
[19] |
C.-B.Hua, R.Chen, B.Zhou, and D.-H.Xu, Higher-order topological insulator in a dodecagonal quasicrystal, Phys. Rev. B102, 241102(R) (2020)
CrossRef
ADS
Google scholar
|
[20] |
J.Fan and H.Huang, Topological states in quasicrystals, Front. Phys.17(1), 13203 (2022)
CrossRef
ADS
Google scholar
|
[21] |
Y. B.Yang, K.Li, L. M.Duan, and Y.Xu, Higher-order topological Anderson insulators, Phys. Rev. B103(8), 085408 (2021)
CrossRef
ADS
Google scholar
|
[22] |
W.Zhang, D.Zou, Q.Pei, W.He, J.Bao, H.Sun, and X.Zhang, Experimental observation of higher-order topological Anderson insulators, Phys. Rev. Lett.126(14), 146802 (2021)
CrossRef
ADS
Google scholar
|
[23] |
Z.Qiao, W. K.Tse, H.Jiang, Y.Yao, and Q.Niu, Two-dimensional topological insulator state and topological phase transition in bilayer graphene, Phys. Rev. Lett.107(25), 256801 (2011)
CrossRef
ADS
Google scholar
|
[24] |
D.Xiao, G. B.Liu, W.Feng, X.Xu, and W.Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides, Phys. Rev. Lett.108(19), 196802 (2012)
CrossRef
ADS
Google scholar
|
[25] |
J. W.Jiang, Graphene versus MoS2: A short review, Front. Phys.10(3), 106801 (2015)
CrossRef
ADS
Google scholar
|
[26] |
F.Xu, Z.Yu, Y.Ren, B.Wang, Y.Wei, and Z.Qiao, Transmission spectra and valley processing of graphene and carbon nanotube superlattices with inter-valley coupling, New J. Phys.18(11), 113011 (2016)
CrossRef
ADS
Google scholar
|
[27] |
F.Xu, Z.Yu, Z.Gong, and H.Jin, First-principles study on the electronic and transport properties of periodically nitrogen-doped graphene and carbon nanotube superlattices, Front. Phys.12(4), 127306 (2017)
CrossRef
ADS
Google scholar
|
[28] |
Y.Ren, J.Zeng, K.Wang, F.Xu, and Z.Qiao, Tunable current partition at zero-line intersection of quantum anomalous Hall topologies, Phys. Rev. B96(15), 155445 (2017)
CrossRef
ADS
Google scholar
|
[29] |
C. L.Kane and E. J.Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett.95(22), 226801 (2005)
CrossRef
ADS
Google scholar
|
[30] |
Y.Yao, F.Ye, X.-L.Qi, S.-C.Zhang, and Z.Fang, Spin– orbit gap of graphene: First-principles calculations, Phys. Rev. B75, 041401(R) (2007)
CrossRef
ADS
Google scholar
|
[31] |
C. C.Liu, W.Feng, and Y.Yao, Quantum spin Hall effect in silicene and two-dimensional germanium, Phys. Rev. Lett.107(7), 076802 (2011)
CrossRef
ADS
Google scholar
|
[32] |
C. C.Liu, H.Jiang, and Y.Yao, Low-energy effective Hamiltonian involving spin–orbit coupling in silicene and two-dimensional germanium and tin, Phys. Rev. B84(19), 195430 (2011)
CrossRef
ADS
Google scholar
|
[33] |
M.Ezawa, Valley-polarized metals and quantum anomalous Hall effect in silicene, Phys. Rev. Lett.109(5), 055502 (2012)
CrossRef
ADS
Google scholar
|
[34] |
H.Pan, Z.Li, C. C.Liu, G.Zhu, Z.Qiao, and Y.Yao, Valley-polarized quantum anomalous Hall effect in silicene, Phys. Rev. Lett.112(10), 106802 (2014)
CrossRef
ADS
Google scholar
|
[35] |
Y.Xu, B.Yan, H. J.Zhang, J.Wang,, G.Xu, P.Tang, W.Duan, and S. C.Zhang, Large-gap quantum spin Hall insulators in tin films, Phys. Rev. Lett.111(13), 136804 (2013)
CrossRef
ADS
Google scholar
|
[36] |
Y.Xu, New physics in old material: Topological and superconducting properties of stanene, Front. Phys.15(5), 53202 (2020)
CrossRef
ADS
Google scholar
|
[37] |
C. X.Zhao and J. F.Jia, Stanene: A good platform for topological insulator and topological superconductor, Front. Phys.15(5), 53201 (2020)
CrossRef
ADS
Google scholar
|
[38] |
A.Marrazzo, M.Gibertini, D.Campi, N.Mounet, and N.Marzari, Prediction of a large-gap and switchable Kane–Mele quantum spin Hall insulator, Phys. Rev. Lett.120(11), 117701 (2018)
CrossRef
ADS
Google scholar
|
[39] |
A.Marrazzo, M.Gibertini, D.Campi, N.Mounet, and N.Marzari, Relative abundance of Z2 topological order in exfoliable two-dimensional insulators, Nano Lett.19(12), 8431 (2019)
CrossRef
ADS
Google scholar
|
[40] |
Z.Liu, Y.Han, Y.Ren, Q.Niu, and Z.Qiao, Van der Waals heterostructure Pt2HgSe3/CrI3 for topological valleytronics, Phys. Rev. B104(12), L121403 (2021)
CrossRef
ADS
Google scholar
|
[41] |
K.Kandrai, P.Vancsó, G.Kukucska, J.Koltai, G.Baranka, Á.Hoffmann, Á.Pekker, K.Kamara, Z. E.Horváth, A.Vymazalová, L.Tapaszto, and P.Nemes-Incze, Signature of large-gap quantum spin Hall state in the layered mineral jacutingaite, Nano Lett.20(7), 5207 (2020)
CrossRef
ADS
Google scholar
|
[42] |
Y.Ren, Z.Qiao, and Q.Niu, Engineering corner states from two-dimensional topological insulators, Phys. Rev. Lett.124(16), 166804 (2020)
CrossRef
ADS
Google scholar
|
[43] |
K. T.Wang, Y.Ren, F.Xu, Y.Wei, and J.Wang, Transport induced dimer state from topological corner states, Sci. China Phys. Mech. Astron.64(5), 257811 (2021)
CrossRef
ADS
Google scholar
|
[44] |
M. P. L.Sancho, J. M. L.Sancho, and J.Rubio, Quick iterative scheme for the calculation of transfer matrices: Application to Mo(100), J. Phys. F Met. Phys.14(5), 1205 (1984)
CrossRef
ADS
Google scholar
|
[45] |
M. P. L.Sancho, J. M. L.Sancho, and J.Rubio, Highly convergent schemes for the calculation of bulk and surface Green functions, J. Phys. F Met. Phys.15(4), 851 (1985)
CrossRef
ADS
Google scholar
|
[46] |
S.Datta, Electronic Transport in Mesoscopic Systems, Cambridge University Press, Cambridge, UK, 1995
CrossRef
ADS
Google scholar
|
[47] |
J.Wang and H.Guo, Relation between nonequilibrium Green’s function and Lippmann–Schwinger formalism in the firstprinciples quantum transport theory, Phys. Rev. B79(4), 045119 (2009)
CrossRef
ADS
Google scholar
|
[48] |
V.Gasparian, T.Christen, and M.Büttiker, Partial densities of states, scattering matrices, and Green’s functions, Phys. Rev. A54(5), 4022 (1996)
CrossRef
ADS
Google scholar
|
[49] |
T.Gramespacher and M.Büttiker, Nanoscopic tunneling contacts on mesoscopic multiprobe conductors, Phys. Rev. B56(20), 13026 (1997)
CrossRef
ADS
Google scholar
|
[50] |
O.Ly, R. A.Jalabert, S.Tomsovic, and D.Weinmann, Partial local density of states from scanning gate microscopy, Phys. Rev. B96(12), 125439 (2017)
CrossRef
ADS
Google scholar
|
[51] |
Ç. Ö.Girit, J. C.Meyer, R.Erni, M. D.Rossell, C.Kisielowski, L.Yang, C. H.Park, M. F.Crommie, M. L.Cohen, S. G.Louie, and A.Zettl, Graphene at the edge: Stability and dynamics, Science323(5922), 1705 (2009)
CrossRef
ADS
Google scholar
|
[52] |
O. V.Yazyev and S. G.Louie, Electronic transport in polycrystalline graphene, Nat. Mater.9(10), 806 (2010)
CrossRef
ADS
Google scholar
|
[53] |
M.Acik and Y. J.Chabal, Nature of graphene edges: A review, Jpn. J. Appl. Phys.50(7), 070101 (2011)
CrossRef
ADS
Google scholar
|
[54] |
Z.Shi, R.Yang, L.Zhang, Y.Wang, D.Liu, D.Shi, E.Wang, and G.Zhang, Patterning graphene with zigzag edges by self-aligned anisotropic etching, Adv. Mater.23(27), 3061 (2011)
CrossRef
ADS
Google scholar
|
[55] |
T.Zhang, S.Wu, R.Yang, and G.Zhang, Graphene: Nanostructure engineering and applications, Front. Phys.12(1), 127206 (2017)
CrossRef
ADS
Google scholar
|
[56] |
J. B.Pendry, Quasi-extended electron states in strongly disordered systems, J. Phys. Chem.20, 733 (1987)
CrossRef
ADS
Google scholar
|
[57] |
J.Bertolotti, S.Gottardo, D. S.Wiersma, M.Ghulinyan, and L.Pavesi, Optical necklace states in Anderson localized 1D systems, Phys. Rev. Lett.94(11), 113903 (2005)
CrossRef
ADS
Google scholar
|
[58] |
L.Chen and X.Jiang, Characterization of short necklace states in the logarithmic transmission spectra of localized systems, J. Phys.: Condens. Matter25(17), 175901 (2013)
CrossRef
ADS
Google scholar
|
[59] |
F.Sgrignuoli, G.Mazzamuto, N.Caselli, F.Intonti, F. S.Cataliotti, M.Gurioli, and C.Toninelli, Necklace state hallmark in disordered 2D photonic systems, ACS Photonics2(11), 1636 (2015)
CrossRef
ADS
Google scholar
|
[60] |
M.Balasubrahmaniyam, S.Mondal, and S.Mujumdar, Necklace-state-mediated anomalous enhancement of transport in Anderson-localized non-Hermitian hybrid systems, Phys. Rev. Lett.124(12), 123901 (2020)
CrossRef
ADS
Google scholar
|
[61] |
F.Xu and J.Wang, Statistics of Wigner delay time in Anderson disordered systems, Phys. Rev. B84(2), 024205 (2011)
CrossRef
ADS
Google scholar
|
[62] |
F.Xu and J.Wang, Statistical properties of electrochemical capacitance in disordered mesoscopic capacitors, Phys. Rev. B89(24), 245430 (2014)
CrossRef
ADS
Google scholar
|
[63] |
C.Bäuerle, D. C.Glattli, T.Meunier, F.Portier, P.Roche, P.Roulleau, S.Takada, and X.Waintal, Coherent control of single electrons: A review of current progress, Rep. Prog. Phys.81(5), 056503 (2018)
CrossRef
ADS
Google scholar
|
[64] |
Q.Niu, Towards a quantum pump of electric charges, Phys. Rev. Lett.64(15), 1812 (1990)
CrossRef
ADS
Google scholar
|
[65] |
M.Moskalets, G.Haack, and M.Büttiker, Single-electron source: Adiabatic versus nonadiabatic emission, Phys. Rev. B Condens. Matter Mater. Phys.87(12), 125429 (2013)
CrossRef
ADS
Google scholar
|
[66] |
W. Y.Deng, K. J.Zhong, R.Zhu, and W. J.Deng, Anharmonic effect of adiabatic quantum pumping, Front. Phys.9(2), 164 (2014)
CrossRef
ADS
Google scholar
|
[67] |
Z.Wang, L.Wang, J.Chen, C.Wang, and J.Ren, Geometric heat pump: Controlling thermal transport with time-dependent modulations, Front. Phys.17(1), 13201 (2022)
CrossRef
ADS
Google scholar
|
[68] |
F.Xu, Y.Xing, and J.Wang, Numerical study of parametric pumping current in mesoscopic systems in the presence of a magnetic field, Phys. Rev. B84(24), 245323 (2011)
CrossRef
ADS
Google scholar
|
[69] |
G.Yamahata, S.Ryu, N.Johnson, H. S.Sim, A.Fujiwara, and M.Kataoka, Picosecond coherent electron motion in a silicon single-electron source, Nat. Nanotechnol.14(11), 1019 (2019)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |