Phase-modulated Autler–Townes splitting in a giant-atom system within waveguide QED

Wei Zhao, Yan Zhang, Zhihai Wang

PDF(769 KB)
PDF(769 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (4) : 42506. DOI: 10.1007/s11467-021-1135-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Phase-modulated Autler–Townes splitting in a giant-atom system within waveguide QED

Author information +
History +

Abstract

The nonlocal emitter-waveguide coupling, which gives birth to the so called giant atom, represents a new paradigm in the field of quantum optics and waveguide QED. We investigate the single-photon scattering in a one-dimensional waveguide on a two-level or three-level giant atom. Thanks to the natural interference induced by the back and forth photon transmitted/reflected between the atom-waveguide coupling points, the photon transmission can be dynamically controlled by the periodic phase modulation via adjusting the size of the giant atom. For the two-level giant-atom setup, we demonstrate the energy shift which is dependent on the atomic size. For the driven three-level giant-atom setup, it is of great interest that, the Autler–Townes splitting is dramatically modulated by the giant atom, in which the width of the transmission valleys (reflection range) is tunable in terms of the atomic size. Our investigation will be beneficial to the photon or phonon control in quantum network based on mesoscopical or even macroscopical quantum nodes involving the giant atom.

Graphical abstract

Keywords

giant atom / single-photon scattering / quantum interference / Autler–Townes splitting

Cite this article

Download citation ▾
Wei Zhao, Yan Zhang, Zhihai Wang. Phase-modulated Autler–Townes splitting in a giant-atom system within waveguide QED. Front. Phys., 2022, 17(4): 42506 https://doi.org/10.1007/s11467-021-1135-0

References

[1]
X. Gu, A. F. Kockum, A. Miranowicz, Y. X. Liu, and F. Nori, Microwave photonics with superconducting quantum circuits, Phys. Rep. 718–719. 1 (2017)
CrossRef ADS Google scholar
[2]
C. J. Zhu, K. Hou, Y. P. Yang, and L. Deng, Hybrid level anharmonicity and interference-induced photon blockade in a two-qubit cavity QED system with dipole–dipole interaction, Photon. Res. 9(7). 1264 (2021)
CrossRef ADS Google scholar
[3]
D. Roy, C. M. Wilson, and O. Firstenberg, Strongly interacting photons in one-dimensional continuum, Rev. Mod. Phys. 89(2). 021001 (2017)
CrossRef ADS Google scholar
[4]
L. J. Yu, C. Z. Yuan, R. D. Qi, Y. D. Huang, and W. Zhang, Hybrid waveguide scheme for silicon-based quantum photonic circuits with quantum light sources, Photon. Res. 8(3). 235 (2020)
CrossRef ADS Google scholar
[5]
G. Z. Song, E. Munro, W. Nie, F. G. Deng, G. J. Yang, and L. C. Kwek, Photon scattering by an atomic ensemble coupled to a one-dimensional nanophotonic waveguide, Phys. Rev. A 96(4). 043872 (2017)
CrossRef ADS Google scholar
[6]
G. Z. Song, E. Munro, W. Nie, L. C. Kwek, F. G. Deng, and G. L. Long, Photon transport mediated by an atomic chain trapped along a photonic crystal waveguide, Phys. Rev. A 98(2). 023814 (2018)
CrossRef ADS Google scholar
[7]
G. Z. Song, L. C. Kwek, F. G. Deng, and G. L. Long, Microwave transmission through an artificial atomic chain coupled to a superconducting photonic crystal, Phys. Rev. A 99(4). 043830 (2019)
CrossRef ADS Google scholar
[8]
I. Iorsh, A. Poshakinskiy, and A. Poddubny, Waveguide quantum optomechanics: Parity–time phase transitions in ultrastrong coupling regime, Phys. Rev. Lett. 125(18). 183601 (2020)
CrossRef ADS Google scholar
[9]
H. Zheng, D. J. Gauthier, and H. U. Baranger, Waveguide QED. Mny-body bound-state effects in coherent and Fock-state scattering from a two-level system, Phys. Rev. A 82(6). 063816 (2010)
CrossRef ADS Google scholar
[10]
C. J. Yang, J. H. An, and H. Q. Lin, Signatures of quantized coupling between quantum emitters and localized surface plasmons, Phys. Rev. Researc. 1(2). 023027 (2019)
CrossRef ADS Google scholar
[11]
T. Shi, Y. H. Wu, A. González-Tudela, and J. I. Cirac, Bound states in Boson impurity models, Phys. Rev. X 6(2). 021027 (2016)
CrossRef ADS Google scholar
[12]
G. Calajó, F. Ciccarello, D. Chang, and P. Rabl, Atomfield dressed states in slow-light waveguide QED. Pys. Rev. A 93(3). 033833 (2016)
CrossRef ADS Google scholar
[13]
E. Sánchez-Burillo, D. Zueco, L. Martín-Moreno, and J. J. García-Ripoll, Dynamical signatures of bound states in waveguide QED. Pys. Rev. A 96(2). 023831 (2017)
CrossRef ADS Google scholar
[14]
P. T. Fong, and C. K. Law, Bound state in the continuum by spatially separated ensembles of atoms in a coupledcavity array, Phys. Rev. A 96(2). 023842 (2017)
CrossRef ADS Google scholar
[15]
G. Calajó, Y. L. L. Fang, H. U. Baranger, and F. Ciccarello, Exciting a bound state in the continuum through multiphoton scattering plus delayed quantum feedback, Phys. Rev. Lett. 122(7). 073601 (2019)
CrossRef ADS Google scholar
[16]
Q. J. Tong, J. H. An, H. G. Luo, and C. H. Oh, Quantum phase transition in the delocalized regime of the spin- Boson model, Phys. Rev. B 84(17). 174301 (2011)
CrossRef ADS Google scholar
[17]
M. Fitzpatrick, N. M. Sundaresan, A. C. Y. Li, J. Koch, and A. A. Houck, Observation of a dissipative phase transition in a one-dimensional circuit QED lattice, Phys. Rev. X 7(1). 011016 (2017)
CrossRef ADS Google scholar
[18]
L. Qiao, Y. J. Song, and C. P. Sun, Quantum phase transition and interference trapping of populations in a coupledresonator waveguide, Phys. Rev. A 100(1). 013825 (2019)
CrossRef ADS Google scholar
[19]
J. T. Shen, and S. Fan, Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits, Phys. Rev. Lett. 95(21). 213001 (2005)
CrossRef ADS Google scholar
[20]
D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, A single-photon transistor using nanoscale surface plasmons, Nat. Phys. 3(11). 807 (2007)
CrossRef ADS Google scholar
[21]
L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, Controllable scattering of a single photon inside a one-dimensional resonator waveguide, Phys. Rev. Lett. 101(10). 100501 (2008)
CrossRef ADS Google scholar
[22]
M. Ringel, M. Pletyukhov, and V. Gritsev, Topologically protected strongly correlated states of photons, New J. Pys. 16(11). 113030 (2014)
CrossRef ADS Google scholar
[23]
V. Yannopapas, Dirac points, topological edge modes and nonreciprocal transmission in one-dimensional metamaterial-based coupled-cavity arrays, Int. J. Md. Phys. B 28(02). 1441006 (2014)
CrossRef ADS Google scholar
[24]
C. Gonzalez-Ballestero, E. Moreno, F. J. Garcia-Vidal, and A. Gonzalez-Tudela, Nonreciprocal few-photon routing schemes based on chiral waveguide–emitter couplings, Phys. Rev. A 94(6). 063817 (2016)
CrossRef ADS Google scholar
[25]
I. M. Mirza, and J. C. Schotland, Multiqubit entanglement in bidirectional-chiral-waveguide QED. Pys. Rev. A 94(1). 012302 (2016)
CrossRef ADS Google scholar
[26]
S. Mahmoodian, G. Calajó, D. E. Chang, K. Hammerer, and A. S. Sørensen, Dynamics of many-body photon bound states in chiral waveguide QED. Pys. Rev. X 10(3). 031011 (2020)
CrossRef ADS Google scholar
[27]
M. Bello, G. Platero, J. I. Cirac, and A. González-Tudela, Unconventional quantum optics in topological waveguide QED. Si. Adv. 5(7), eaaw0279 (2019)
CrossRef ADS Google scholar
[28]
P. Goy, J. M. Raimond, M. Gross, and S. Haroche, Observation of cavity-enhanced single-atom spontaneous emission, Phys. Rev. Lett. 50(24). 1903 (1983)
CrossRef ADS Google scholar
[29]
D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Quantum dynamics of single trapped ions, Rev. Mod. Phys. 75(1). 281 (2003)
CrossRef ADS Google scholar
[30]
A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Strong coupling of a single photon to a super-conducting qubit using circuit quantum electrodynamics, Nature 431(7005). 162 (2004)
CrossRef ADS Google scholar
[31]
R. Miller, T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, and H. J. Kimble, Trapped atoms in cavity QED. Cupling quantized light and matter, J. Pys. At. Mol. Opt. Phys. 38(9), S551 (2005)
CrossRef ADS Google scholar
[32]
S. Haroche, Nobel lecture: Controlling photons in a box and exploring the quantum to classical boundary, Rev. Mod. Phys. 85(3). 1083 (2013)
CrossRef ADS Google scholar
[33]
D. Walls and G. J. Milburn, Quantum Optics, 2nd Ed., Springer. 2018
[34]
S. Datta, Surface Acoustic Wave Devices, Prentice-Hall, Englewood Cliffs, NJ, 1986
[35]
D. Morgan, Surface Acoustic Wave Filters, 2nd Ed., Academic, Amsterdam, 2007
[36]
R. Manenti, A. F. Kockum, A. Patterson, T. Behrle, J. Rahamim, G. Tancredi, F. Nori, and P. J. Leek, Circuit quantum acoustodynamics with surface acoustic waves, Nat. Commun. 8(1). 975 (2017)
CrossRef ADS Google scholar
[37]
M. V. Gustafsson, T. Aref, A. F. Kockum, M. K. Ekström, G. Johansson, and P. Delsing, Propagating phonons coupled to an artificial atom, Scienc. 346(6206). 207 (2014)
CrossRef ADS Google scholar
[38]
B. Kannan, M. J. Ruckriegel, D. L. Campbell, A. Frisk Kockum, J. Braumüller, D. K. Kim, M. Kjaergaard, P. Kantz, A. Melville, B. M. Niedzielski, A. Vepsäläinen, R. Winik, J. L. Yoder, F. Nori, T. P. Orlando, S. Gustavsson, and W. D. Oliver, Waveguide quantum electrodynamics with superconducting artificial giant atoms, Nature 583(7818). 775 (2020)
CrossRef ADS Google scholar
[39]
A. M. Vadiraj, A. Ask, T. G. McConkey, I. Nsanzineza, C. W. S. Chang, A. F. Kockum, and C. M. Wilson, Engineering the level structure of a giant artificial atom in waveguide quantum electrodynamics, Phys. Rev. A 103(2). 023710 (2021)
CrossRef ADS Google scholar
[40]
A. González-Tudela, C. S. Muñoz, and J. I. Cirac, Engineering and harnessing giant atoms in high-dimensional baths: A proposal for implementation with cold atoms, Phys. Rev. Lett. 122. 203603 (2019)
CrossRef ADS Google scholar
[41]
A. Frisk Kockum, P. Delsing, and G. Johansson, Designing frequency-dependent relaxation rates and Lamb shifts for a giant artificial atom, Phys. Rev. A 90(1). 013837 (2014)
CrossRef ADS Google scholar
[42]
L. Guo, A. Grimsmo, A. F. Kockum, M. Pletyukhov, and G. Johansson, Giant acoustic atom: A single quantum system with a deterministic time delay, Phys. Rev. A 95(5). 053821 (2017)
CrossRef ADS Google scholar
[43]
G. Andersson, B. Suri, L. Guo, T. Aref, and P. Delsing, Non-exponential decay of a giant artificial atom, Nat. Phys. 15(11). 1123 (2019)
CrossRef ADS Google scholar
[44]
S. Guo, Y. Wang, T. Purdy, and J. Taylor, Beyond spontaneous emission: Giant atom bounded in the continuum, Phys. Rev. A 102(3). 033706 (2020)
CrossRef ADS Google scholar
[45]
L. Guo, A. F. Kockum, F. Marquardt, and G. Johansson, Oscillating bound states for a giant atom, Phys. Rev. Researc 2(4). 043014 (2020)
CrossRef ADS Google scholar
[46]
X. Wang, T. Liu, A. F. Kockum, H. R. Li, and F. Nori, Tunable chiral bound states with giant atoms, Phys. Rev. Lett. 126(4). 043602 (2021)
CrossRef ADS Google scholar
[47]
A. F. Kockum, G. Johansson, and F. Nori, Decoherencefree interaction between giant atoms in waveguide quantum electrodynamics, Phys. Rev. Lett. 120(14). 140404 (2018)
CrossRef ADS Google scholar
[48]
A. Carollo, D. Cilluffo, and F. Ciccarello, Mechanism of decoherence-free coupling between giant atoms, Phys. Rev. Researc. 2(4). 043184 (2020)
CrossRef ADS Google scholar
[49]
A. F. Kockum, in: International Symposium on Mathematics, Quantum Theory, and Cryptography, Springer Singapore, Singapore, 2021, p.125 [also see arXiv. 1912.13012 (2019)]
[50]
H. J. Kimble, The quantum internet, Nature 453(7198). 1023 (2008)
CrossRef ADS Google scholar
[51]
S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, An elementary quantum network of single atoms in optical cavities, Nature 484(7393). 195 (2012)
CrossRef ADS Google scholar
[52]
P. Ldahl, Quantum-dot based photonic quantum networks, Quantum Sci. Technol. 3(1). 013001 (2018)
CrossRef ADS Google scholar
[53]
J. T. Shen and S. Fan, Theory of single-photon transport in a single-mode waveguide (I): Coupling to a cavity containing a two-level atom, Phys. Rev. A 79(2). 023837 (2009)
CrossRef ADS Google scholar
[54]
P. Longo, P. Schmitteckert, and K. Busch, Few-photon transport in low-dimensional systems: Interaction-induced radiation trapping, Phys. Rev. Lett. 104(2). 023602 (2010)
CrossRef ADS Google scholar
[55]
W. B. Yan, J. F. Huang, and H. Fan, Tunable singlephoton frequency conversion in a Sagnac interferometer, Sci. Rep. 3(1). 3555 (2013)
CrossRef ADS Google scholar
[56]
Z. H. Wang, L. Zhou, Y. Li, and C. P. Sun, Controllable single-photon frequency converter via a one-dimensional waveguide, Phys. Rev. A 89(5). 053813 (2014)
CrossRef ADS Google scholar
[57]
W. Z. Jia, Y. W. Wang, and Y. X. Liu, Efficient singlephoton frequency conversion in the microwave domain using superconducting quantum circuits, Phys. Rev. A 96(5). 053832 (2017)
CrossRef ADS Google scholar
[58]
A. A. Abdumalikov, Jr., O. Astafiev, A. M. Zagoskin, Y. A. Pashkin, Y. Nkamura, and J. S. Tsai, Electromagnetically induced transparency on a single artificial atom, Phys. Rev. Lett. 104(19). 193601 (2010)
CrossRef ADS Google scholar
[59]
P. M. Anisimov, J. P. Dowling, and B. C. Sanders, Objectively discerning Autler–Townes splitting from electromagnetically induced transparency, Phys. Rev. Lett. 107(16). 163604 (2011)
CrossRef ADS Google scholar
[60]
X. Gu, S. N. Huai, F. Nori, and Y. X. Liu, Polariton states in circuit QED for electromagnetically induced transparency, Phys. Rev. A 93(6). 063827 (2016)
CrossRef ADS Google scholar
[61]
X. Wang, H. R. Li, D. X. Chen, W. X. Liu, and F. L. Li, Tunable electromagnetically induced transparency in a composite superconducting system, Opt. Commun. 366. 321 (2016)
CrossRef ADS Google scholar
[62]
J. Long, H. S. Ku, X. Wu, X. Gu, R. E. Lake, M. Bal, Y. X. Liu, and D. P. Pappas, Electromagnetically induced transparency in circuit quantum electrodynamics with nested polariton states, Phys. Rev. Lett. 120(8). 083602 (2018)
CrossRef ADS Google scholar
[63]
I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, All-optical routing of single photons by a one-atom switch controlled by a single photon, Scienc. 345(6199). 903 (2014)
CrossRef ADS Google scholar
[64]
K. Inomata, Z. Lin, K. Koshino, W. D. Oliver, J. S. Tsai, T. Yamamoto, and Y. Nakamura, Single microwavephoton detector using an artificial Λ-type three-level system, Nat. Commun. 7(1). 12303 (2016)
CrossRef ADS Google scholar
[65]
F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi, S. Saito, and K. Semba, Superconducting qubit–oscillator circuit beyond the ultrastrong-coupling regime, Nat. Phys. 13(1). 44 (2017)
CrossRef ADS Google scholar
[66]
A. J. Keller, P. B. Dieterle, M. Fang, B. Berger, J. M. Fink, and O. Painter, Al transmon qubits on silicon-on-insulator for quantum device integration, Appl. Phys. Lett. 111(4). 042603 (2017)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(769 KB)

Accesses

Citations

Detail

Sections
Recommended

/