Phase-modulated Autler–Townes splitting in a giant-atom system within waveguide QED
Wei Zhao, Yan Zhang, Zhihai Wang
Phase-modulated Autler–Townes splitting in a giant-atom system within waveguide QED
The nonlocal emitter-waveguide coupling, which gives birth to the so called giant atom, represents a new paradigm in the field of quantum optics and waveguide QED. We investigate the single-photon scattering in a one-dimensional waveguide on a two-level or three-level giant atom. Thanks to the natural interference induced by the back and forth photon transmitted/reflected between the atom-waveguide coupling points, the photon transmission can be dynamically controlled by the periodic phase modulation via adjusting the size of the giant atom. For the two-level giant-atom setup, we demonstrate the energy shift which is dependent on the atomic size. For the driven three-level giant-atom setup, it is of great interest that, the Autler–Townes splitting is dramatically modulated by the giant atom, in which the width of the transmission valleys (reflection range) is tunable in terms of the atomic size. Our investigation will be beneficial to the photon or phonon control in quantum network based on mesoscopical or even macroscopical quantum nodes involving the giant atom.
giant atom / single-photon scattering / quantum interference / Autler–Townes splitting
[1] |
X. Gu, A. F. Kockum, A. Miranowicz, Y. X. Liu, and F. Nori, Microwave photonics with superconducting quantum circuits, Phys. Rep. 718–719. 1 (2017)
CrossRef
ADS
Google scholar
|
[2] |
C. J. Zhu, K. Hou, Y. P. Yang, and L. Deng, Hybrid level anharmonicity and interference-induced photon blockade in a two-qubit cavity QED system with dipole–dipole interaction, Photon. Res. 9(7). 1264 (2021)
CrossRef
ADS
Google scholar
|
[3] |
D. Roy, C. M. Wilson, and O. Firstenberg, Strongly interacting photons in one-dimensional continuum, Rev. Mod. Phys. 89(2). 021001 (2017)
CrossRef
ADS
Google scholar
|
[4] |
L. J. Yu, C. Z. Yuan, R. D. Qi, Y. D. Huang, and W. Zhang, Hybrid waveguide scheme for silicon-based quantum photonic circuits with quantum light sources, Photon. Res. 8(3). 235 (2020)
CrossRef
ADS
Google scholar
|
[5] |
G. Z. Song, E. Munro, W. Nie, F. G. Deng, G. J. Yang, and L. C. Kwek, Photon scattering by an atomic ensemble coupled to a one-dimensional nanophotonic waveguide, Phys. Rev. A 96(4). 043872 (2017)
CrossRef
ADS
Google scholar
|
[6] |
G. Z. Song, E. Munro, W. Nie, L. C. Kwek, F. G. Deng, and G. L. Long, Photon transport mediated by an atomic chain trapped along a photonic crystal waveguide, Phys. Rev. A 98(2). 023814 (2018)
CrossRef
ADS
Google scholar
|
[7] |
G. Z. Song, L. C. Kwek, F. G. Deng, and G. L. Long, Microwave transmission through an artificial atomic chain coupled to a superconducting photonic crystal, Phys. Rev. A 99(4). 043830 (2019)
CrossRef
ADS
Google scholar
|
[8] |
I. Iorsh, A. Poshakinskiy, and A. Poddubny, Waveguide quantum optomechanics: Parity–time phase transitions in ultrastrong coupling regime, Phys. Rev. Lett. 125(18). 183601 (2020)
CrossRef
ADS
Google scholar
|
[9] |
H. Zheng, D. J. Gauthier, and H. U. Baranger, Waveguide QED. Mny-body bound-state effects in coherent and Fock-state scattering from a two-level system, Phys. Rev. A 82(6). 063816 (2010)
CrossRef
ADS
Google scholar
|
[10] |
C. J. Yang, J. H. An, and H. Q. Lin, Signatures of quantized coupling between quantum emitters and localized surface plasmons, Phys. Rev. Researc. 1(2). 023027 (2019)
CrossRef
ADS
Google scholar
|
[11] |
T. Shi, Y. H. Wu, A. González-Tudela, and J. I. Cirac, Bound states in Boson impurity models, Phys. Rev. X 6(2). 021027 (2016)
CrossRef
ADS
Google scholar
|
[12] |
G. Calajó, F. Ciccarello, D. Chang, and P. Rabl, Atomfield dressed states in slow-light waveguide QED. Pys. Rev. A 93(3). 033833 (2016)
CrossRef
ADS
Google scholar
|
[13] |
E. Sánchez-Burillo, D. Zueco, L. Martín-Moreno, and J. J. García-Ripoll, Dynamical signatures of bound states in waveguide QED. Pys. Rev. A 96(2). 023831 (2017)
CrossRef
ADS
Google scholar
|
[14] |
P. T. Fong, and C. K. Law, Bound state in the continuum by spatially separated ensembles of atoms in a coupledcavity array, Phys. Rev. A 96(2). 023842 (2017)
CrossRef
ADS
Google scholar
|
[15] |
G. Calajó, Y. L. L. Fang, H. U. Baranger, and F. Ciccarello, Exciting a bound state in the continuum through multiphoton scattering plus delayed quantum feedback, Phys. Rev. Lett. 122(7). 073601 (2019)
CrossRef
ADS
Google scholar
|
[16] |
Q. J. Tong, J. H. An, H. G. Luo, and C. H. Oh, Quantum phase transition in the delocalized regime of the spin- Boson model, Phys. Rev. B 84(17). 174301 (2011)
CrossRef
ADS
Google scholar
|
[17] |
M. Fitzpatrick, N. M. Sundaresan, A. C. Y. Li, J. Koch, and A. A. Houck, Observation of a dissipative phase transition in a one-dimensional circuit QED lattice, Phys. Rev. X 7(1). 011016 (2017)
CrossRef
ADS
Google scholar
|
[18] |
L. Qiao, Y. J. Song, and C. P. Sun, Quantum phase transition and interference trapping of populations in a coupledresonator waveguide, Phys. Rev. A 100(1). 013825 (2019)
CrossRef
ADS
Google scholar
|
[19] |
J. T. Shen, and S. Fan, Coherent single photon transport in a one-dimensional waveguide coupled with superconducting quantum bits, Phys. Rev. Lett. 95(21). 213001 (2005)
CrossRef
ADS
Google scholar
|
[20] |
D. E. Chang, A. S. Sørensen, E. A. Demler, and M. D. Lukin, A single-photon transistor using nanoscale surface plasmons, Nat. Phys. 3(11). 807 (2007)
CrossRef
ADS
Google scholar
|
[21] |
L. Zhou, Z. R. Gong, Y. X. Liu, C. P. Sun, and F. Nori, Controllable scattering of a single photon inside a one-dimensional resonator waveguide, Phys. Rev. Lett. 101(10). 100501 (2008)
CrossRef
ADS
Google scholar
|
[22] |
M. Ringel, M. Pletyukhov, and V. Gritsev, Topologically protected strongly correlated states of photons, New J. Pys. 16(11). 113030 (2014)
CrossRef
ADS
Google scholar
|
[23] |
V. Yannopapas, Dirac points, topological edge modes and nonreciprocal transmission in one-dimensional metamaterial-based coupled-cavity arrays, Int. J. Md. Phys. B 28(02). 1441006 (2014)
CrossRef
ADS
Google scholar
|
[24] |
C. Gonzalez-Ballestero, E. Moreno, F. J. Garcia-Vidal, and A. Gonzalez-Tudela, Nonreciprocal few-photon routing schemes based on chiral waveguide–emitter couplings, Phys. Rev. A 94(6). 063817 (2016)
CrossRef
ADS
Google scholar
|
[25] |
I. M. Mirza, and J. C. Schotland, Multiqubit entanglement in bidirectional-chiral-waveguide QED. Pys. Rev. A 94(1). 012302 (2016)
CrossRef
ADS
Google scholar
|
[26] |
S. Mahmoodian, G. Calajó, D. E. Chang, K. Hammerer, and A. S. Sørensen, Dynamics of many-body photon bound states in chiral waveguide QED. Pys. Rev. X 10(3). 031011 (2020)
CrossRef
ADS
Google scholar
|
[27] |
M. Bello, G. Platero, J. I. Cirac, and A. González-Tudela, Unconventional quantum optics in topological waveguide QED. Si. Adv. 5(7), eaaw0279 (2019)
CrossRef
ADS
Google scholar
|
[28] |
P. Goy, J. M. Raimond, M. Gross, and S. Haroche, Observation of cavity-enhanced single-atom spontaneous emission, Phys. Rev. Lett. 50(24). 1903 (1983)
CrossRef
ADS
Google scholar
|
[29] |
D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Quantum dynamics of single trapped ions, Rev. Mod. Phys. 75(1). 281 (2003)
CrossRef
ADS
Google scholar
|
[30] |
A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Strong coupling of a single photon to a super-conducting qubit using circuit quantum electrodynamics, Nature 431(7005). 162 (2004)
CrossRef
ADS
Google scholar
|
[31] |
R. Miller, T. E. Northup, K. M. Birnbaum, A. Boca, A. D. Boozer, and H. J. Kimble, Trapped atoms in cavity QED. Cupling quantized light and matter, J. Pys. At. Mol. Opt. Phys. 38(9), S551 (2005)
CrossRef
ADS
Google scholar
|
[32] |
S. Haroche, Nobel lecture: Controlling photons in a box and exploring the quantum to classical boundary, Rev. Mod. Phys. 85(3). 1083 (2013)
CrossRef
ADS
Google scholar
|
[33] |
D. Walls and G. J. Milburn, Quantum Optics, 2nd Ed., Springer. 2018
|
[34] |
S. Datta, Surface Acoustic Wave Devices, Prentice-Hall, Englewood Cliffs, NJ, 1986
|
[35] |
D. Morgan, Surface Acoustic Wave Filters, 2nd Ed., Academic, Amsterdam, 2007
|
[36] |
R. Manenti, A. F. Kockum, A. Patterson, T. Behrle, J. Rahamim, G. Tancredi, F. Nori, and P. J. Leek, Circuit quantum acoustodynamics with surface acoustic waves, Nat. Commun. 8(1). 975 (2017)
CrossRef
ADS
Google scholar
|
[37] |
M. V. Gustafsson, T. Aref, A. F. Kockum, M. K. Ekström, G. Johansson, and P. Delsing, Propagating phonons coupled to an artificial atom, Scienc. 346(6206). 207 (2014)
CrossRef
ADS
Google scholar
|
[38] |
B. Kannan, M. J. Ruckriegel, D. L. Campbell, A. Frisk Kockum, J. Braumüller, D. K. Kim, M. Kjaergaard, P. Kantz, A. Melville, B. M. Niedzielski, A. Vepsäläinen, R. Winik, J. L. Yoder, F. Nori, T. P. Orlando, S. Gustavsson, and W. D. Oliver, Waveguide quantum electrodynamics with superconducting artificial giant atoms, Nature 583(7818). 775 (2020)
CrossRef
ADS
Google scholar
|
[39] |
A. M. Vadiraj, A. Ask, T. G. McConkey, I. Nsanzineza, C. W. S. Chang, A. F. Kockum, and C. M. Wilson, Engineering the level structure of a giant artificial atom in waveguide quantum electrodynamics, Phys. Rev. A 103(2). 023710 (2021)
CrossRef
ADS
Google scholar
|
[40] |
A. González-Tudela, C. S. Muñoz, and J. I. Cirac, Engineering and harnessing giant atoms in high-dimensional baths: A proposal for implementation with cold atoms, Phys. Rev. Lett. 122. 203603 (2019)
CrossRef
ADS
Google scholar
|
[41] |
A. Frisk Kockum, P. Delsing, and G. Johansson, Designing frequency-dependent relaxation rates and Lamb shifts for a giant artificial atom, Phys. Rev. A 90(1). 013837 (2014)
CrossRef
ADS
Google scholar
|
[42] |
L. Guo, A. Grimsmo, A. F. Kockum, M. Pletyukhov, and G. Johansson, Giant acoustic atom: A single quantum system with a deterministic time delay, Phys. Rev. A 95(5). 053821 (2017)
CrossRef
ADS
Google scholar
|
[43] |
G. Andersson, B. Suri, L. Guo, T. Aref, and P. Delsing, Non-exponential decay of a giant artificial atom, Nat. Phys. 15(11). 1123 (2019)
CrossRef
ADS
Google scholar
|
[44] |
S. Guo, Y. Wang, T. Purdy, and J. Taylor, Beyond spontaneous emission: Giant atom bounded in the continuum, Phys. Rev. A 102(3). 033706 (2020)
CrossRef
ADS
Google scholar
|
[45] |
L. Guo, A. F. Kockum, F. Marquardt, and G. Johansson, Oscillating bound states for a giant atom, Phys. Rev. Researc 2(4). 043014 (2020)
CrossRef
ADS
Google scholar
|
[46] |
X. Wang, T. Liu, A. F. Kockum, H. R. Li, and F. Nori, Tunable chiral bound states with giant atoms, Phys. Rev. Lett. 126(4). 043602 (2021)
CrossRef
ADS
Google scholar
|
[47] |
A. F. Kockum, G. Johansson, and F. Nori, Decoherencefree interaction between giant atoms in waveguide quantum electrodynamics, Phys. Rev. Lett. 120(14). 140404 (2018)
CrossRef
ADS
Google scholar
|
[48] |
A. Carollo, D. Cilluffo, and F. Ciccarello, Mechanism of decoherence-free coupling between giant atoms, Phys. Rev. Researc. 2(4). 043184 (2020)
CrossRef
ADS
Google scholar
|
[49] |
A. F. Kockum, in: International Symposium on Mathematics, Quantum Theory, and Cryptography, Springer Singapore, Singapore, 2021, p.125 [also see arXiv. 1912.13012 (2019)]
|
[50] |
H. J. Kimble, The quantum internet, Nature 453(7198). 1023 (2008)
CrossRef
ADS
Google scholar
|
[51] |
S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, An elementary quantum network of single atoms in optical cavities, Nature 484(7393). 195 (2012)
CrossRef
ADS
Google scholar
|
[52] |
P. Ldahl, Quantum-dot based photonic quantum networks, Quantum Sci. Technol. 3(1). 013001 (2018)
CrossRef
ADS
Google scholar
|
[53] |
J. T. Shen and S. Fan, Theory of single-photon transport in a single-mode waveguide (I): Coupling to a cavity containing a two-level atom, Phys. Rev. A 79(2). 023837 (2009)
CrossRef
ADS
Google scholar
|
[54] |
P. Longo, P. Schmitteckert, and K. Busch, Few-photon transport in low-dimensional systems: Interaction-induced radiation trapping, Phys. Rev. Lett. 104(2). 023602 (2010)
CrossRef
ADS
Google scholar
|
[55] |
W. B. Yan, J. F. Huang, and H. Fan, Tunable singlephoton frequency conversion in a Sagnac interferometer, Sci. Rep. 3(1). 3555 (2013)
CrossRef
ADS
Google scholar
|
[56] |
Z. H. Wang, L. Zhou, Y. Li, and C. P. Sun, Controllable single-photon frequency converter via a one-dimensional waveguide, Phys. Rev. A 89(5). 053813 (2014)
CrossRef
ADS
Google scholar
|
[57] |
W. Z. Jia, Y. W. Wang, and Y. X. Liu, Efficient singlephoton frequency conversion in the microwave domain using superconducting quantum circuits, Phys. Rev. A 96(5). 053832 (2017)
CrossRef
ADS
Google scholar
|
[58] |
A. A. Abdumalikov, Jr., O. Astafiev, A. M. Zagoskin, Y. A. Pashkin, Y. Nkamura, and J. S. Tsai, Electromagnetically induced transparency on a single artificial atom, Phys. Rev. Lett. 104(19). 193601 (2010)
CrossRef
ADS
Google scholar
|
[59] |
P. M. Anisimov, J. P. Dowling, and B. C. Sanders, Objectively discerning Autler–Townes splitting from electromagnetically induced transparency, Phys. Rev. Lett. 107(16). 163604 (2011)
CrossRef
ADS
Google scholar
|
[60] |
X. Gu, S. N. Huai, F. Nori, and Y. X. Liu, Polariton states in circuit QED for electromagnetically induced transparency, Phys. Rev. A 93(6). 063827 (2016)
CrossRef
ADS
Google scholar
|
[61] |
X. Wang, H. R. Li, D. X. Chen, W. X. Liu, and F. L. Li, Tunable electromagnetically induced transparency in a composite superconducting system, Opt. Commun. 366. 321 (2016)
CrossRef
ADS
Google scholar
|
[62] |
J. Long, H. S. Ku, X. Wu, X. Gu, R. E. Lake, M. Bal, Y. X. Liu, and D. P. Pappas, Electromagnetically induced transparency in circuit quantum electrodynamics with nested polariton states, Phys. Rev. Lett. 120(8). 083602 (2018)
CrossRef
ADS
Google scholar
|
[63] |
I. Shomroni, S. Rosenblum, Y. Lovsky, O. Bechler, G. Guendelman, and B. Dayan, All-optical routing of single photons by a one-atom switch controlled by a single photon, Scienc. 345(6199). 903 (2014)
CrossRef
ADS
Google scholar
|
[64] |
K. Inomata, Z. Lin, K. Koshino, W. D. Oliver, J. S. Tsai, T. Yamamoto, and Y. Nakamura, Single microwavephoton detector using an artificial Λ-type three-level system, Nat. Commun. 7(1). 12303 (2016)
CrossRef
ADS
Google scholar
|
[65] |
F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi, S. Saito, and K. Semba, Superconducting qubit–oscillator circuit beyond the ultrastrong-coupling regime, Nat. Phys. 13(1). 44 (2017)
CrossRef
ADS
Google scholar
|
[66] |
A. J. Keller, P. B. Dieterle, M. Fang, B. Berger, J. M. Fink, and O. Painter, Al transmon qubits on silicon-on-insulator for quantum device integration, Appl. Phys. Lett. 111(4). 042603 (2017)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |