Dynamics and formation of vortices collapsed from ring dark solitons in a two-dimensional spin–orbit coupled Bose–Einstein condensate

Peng-Hong Lu, Xiao-Fei Zhang, Chao-Qing Dai

PDF(1445 KB)
PDF(1445 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (4) : 42501. DOI: 10.1007/s11467-021-1134-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Dynamics and formation of vortices collapsed from ring dark solitons in a two-dimensional spin–orbit coupled Bose–Einstein condensate

Author information +
History +

Abstract

We consider the dynamics and formation of vortices from ring dark solitons in a two-dimensional Bose–Einstein condensate with the Rashba spin–orbit coupling based on the time-dependent coupled Gross–Pitaevskii equation. Compared with previous results, the system exhibits complex dynamical behaviors in the presence of the spin–orbit coupling. With the modulation of the spin–orbit coupling, not only the lifetime of ring dark solitons is greatly prolonged, but also their attenuation kinetics is significantly affected. For two shallow ring dark solitons with the equal strength of the spin–orbit coupling, the radius of ring dark solitons increases to a maximum value over time and then shrinks into a minimum value. Due to the effect of the snake instability, ring dark solitons split into a series of ring-like clusters of vortex pairs, which perform complex oscillations. This indicates that the system is strongly dependent on the presence of the spin–orbit coupling. Furthermore, the effect of different initial modulation depths on the dynamics of ring dark solitons is investigated.

Graphical abstract

Keywords

Bose–Einstein condensate / Rashba spin–orbit coupling / ring dark solitons / vortex pairs

Cite this article

Download citation ▾
Peng-Hong Lu, Xiao-Fei Zhang, Chao-Qing Dai. Dynamics and formation of vortices collapsed from ring dark solitons in a two-dimensional spin–orbit coupled Bose–Einstein condensate. Front. Phys., 2022, 17(4): 42501 https://doi.org/10.1007/s11467-021-1134-1

References

[1]
M. Ota , S. Giorgini , and S. Stringari , Magnetic phase transition in a mixture of two interacting superfluid Bose gases at finite temperature, Phys. Rev. Lett. 123 (7), 075301 (2019)
CrossRef ADS Google scholar
[2]
Y. R. Shi , X. L. Wang , G. H. Wang , C. B. Liu , Z. G. Zhou , and H. J. Yang , Analytical solutions for the spin-1 Bose– Einstein condensate in a harmonic trap, Front. Phys. 8 (3), 319 (2013)
CrossRef ADS Google scholar
[3]
R. X. Zhong , Z. P. Chen , C. Q. Huang , Z. H. Luo , H. S. Tan , B. A. Malomed , and Y. Y. Li , Self-trapping under two-dimensional spin–orbit coupling and spatially growing repulsive nonlinearity, Front. Phys. 13 (4), 130311 (2018)
CrossRef ADS Google scholar
[4]
X. F. Zhang , X. H. Hu , D. S. Wang , X. Liu , and W. Liu , Dynamics of Bose–Einstein condensates near Feshbach resonance in external potential, Front. Phys. 6 (1), 46 (2011)
CrossRef ADS Google scholar
[5]
S. B. Prasad , B. C. Mulkerin , and A. M. Martin , Stationary states, dynamical stability, and vorticity of Bose–Einstein condensates in tilted rotating harmonic traps, Phys. Rev. A 101 (6), 063608 (2020)
CrossRef ADS Google scholar
[6]
Z. X. Niu and W. Zhang , Spontaneous formations of dynamical steady states in polariton condensates, Front. Phys. 9, 696278 (2021)
CrossRef ADS Google scholar
[7]
J. Yang and Y. Tan , Fractal structure in the collision of vector solitons, Phys. Rev. Lett. 85 (17), 3624 (2000)
CrossRef ADS Google scholar
[8]
X. Gao and J. Zeng , Two-dimensional matter-wave solitons and vortices in competing cubic–quintic nonlinear lattices, Front. Phys. 13 (1), 130501 (2018)
CrossRef ADS Google scholar
[9]
L. M. Zhao , D. Y. Tang , H. Zhang , X. Wu , C. Lu , and H. Y. Tam , Period-doubling of vector solitons in a ring fiber laser, Opt. Commun. 281 (22), 5614 (2008)
CrossRef ADS Google scholar
[10]
S. Middelkamp , J. J. Chang , C. Hamner , R. CarreteroGonzález , P. G. Kevrekidis , V. Achilleos , D. J. Frantzeskakis , P. Schmelcher , and P. Engels , Dynamics of dark–bright solitons in cigar-shaped Bose–Einstein condensates, Phys. Lett. A 375 (3), 642 (2011)
CrossRef ADS Google scholar
[11]
L. Wen , H. Guo , Y. J. Wang , A. Y. Hu , H. Saito , C. Q. Dai , and X. F. Zhang , Effects of atom numbers on the miscibility-immiscibility transition of a binary Bose– Einstein condensate, Phys. Rev. A 101 (3), 033610 (2020)
CrossRef ADS Google scholar
[12]
Y. J. Wang , L. Wen , G. P. Chen , S. G. Zhang , and X. F. Zhang , Formation, stability, and dynamics of vector bright solitons in a trapless Bose–Einstein condensate with spin–orbit coupling, New J. Phys. 22 (3), 033006 (2020)
CrossRef ADS Google scholar
[13]
M. Kato , X. F. Zhang , D. Sasaki , and H. Saito , Twisted spin vortices in a spin-1 Bose–Einstein condensate with Rashba spin–orbit coupling and dipole–dipole interaction, Phys. Rev. A 94 (4), 043633 (2016)
CrossRef ADS Google scholar
[14]
Z. M. He , L. Wen , Y. J. Wang , G. P. Chen , R. B. Tan , C. Q. Dai , and X. F. Zhang , Dynamics and pattern formation of ring dark solitons in a two-dimensional binary Bose– Einstein condensate with tunable interactions, Phys. Rev. E 99 (6), 062216 (2019)
CrossRef ADS Google scholar
[15]
Y. J. Lin , K. Jimenez-Garcia , and I. B. Spielman , Spin–orbit-coupled Bose–Einstein condensates, Nature 471 (7336), 83 (2011)
CrossRef ADS Google scholar
[16]
Z. Wu , L. Zhang , W. Sun , X. T. Xu , B. Z. Wang , S. C. Ji , Y. Deng , S. Chen , X. J. Liu , and J. W. Pan , Realization of two-dimensional spin–orbit coupling for Bose–Einstein condensates, Science 354 (6308), 83 (2016)
CrossRef ADS Google scholar
[17]
Z. Y. Wang , X. C. Cheng , B. Z. Wang , J. Y. Zhang , Y. H. Lu , C. R. Yi , S. Niu , Y. Deng , X. J. Liu , S. Chen , and J. W. Pan , Realization of an ideal Weyl semimetal band in a quantum gas with 3D spin–orbit coupling, Science 372 (6539), 271 (2021)
CrossRef ADS Google scholar
[18]
L. Zeng and J. Zeng , Gap-type dark localized modes in a Bose–Einstein condensate with optical lattices, Adv. Photonics 1 (04), 046004 (2019)
CrossRef ADS Google scholar
[19]
Y. Xu , Y. Zhang , and B. Wu , Bright solitons in spin–orbitcoupled Bose–Einstein condensates, Phys. Rev. A 87 (1), 013614 (2013)
CrossRef ADS Google scholar
[20]
T. F. Xu and C. Zhang , Interference of bright solitons in harmonically trapped pseudo-spin polarization Bose– Einstein condensates, Chaos Solitons Fractals 117, 209 (2018)
CrossRef ADS Google scholar
[21]
K. Zhou and Z. Zhang , Ground state properties of a two dimensional Fermi superfluid with an anisotropic spin–orbit coupling, J. Phys. Chem. Solids 128, 207 (2019)
CrossRef ADS Google scholar
[22]
C. Becker , S. Stellmer , P. Soltan-Panahi , S. Dörscher , M. Baumert , E. M. Richter , J. Kronjäger , K. Bongs , and K. Sengstock , Oscillations and interactions of dark and dark– bright solitons in Bose–Einstein condensates, Nat. Phys. 4 (6), 496 (2008)
CrossRef ADS Google scholar
[23]
D. Cao , I. L. Chern , and J. C. Wei , On ground state of spinor Bose–Einstein condensates, Differential Equations & Applications Nodea. 18 (4), 427 (2011)
CrossRef ADS Google scholar
[24]
G. W. Hanson , S. A. Hassani Gangaraj , C. Lee , D. G. Angelakis , and M. Tame , Quantum plasmonic excitation in graphene and loss-insensitive propagation, Phys. Rev. A 92 (1), 013828 (2015)
CrossRef ADS Google scholar
[25]
S. J. Yang , Q. S. Wu , S. N. Zhang , S. Feng , W. Guo , Y. C. Wen , and Y. Yu , Generating ring dark solitons in an evolving Bose–Einstein condensate, Phys. Rev. A 76 (6), 063606 (2007)
CrossRef ADS Google scholar
[26]
D. S. Kharenko , A. E. Bednyakova , E. V. Podivilov , M. P. Fedoruk , and S. A. Babin , Optimization and coherent combining of Raman dissipative solitons in fiber laser, CLEO-Europe, 2015
[27]
L. X. Wang , C. Q. Dai , L. Wen , T. Liu , H. F. Jiang , H. Saito , S. G. Zhang , and X. F. Zhang , Dynamics of vortices followed by the collapse of ring dark solitons in a twocomponent Bose–Einstein condensate, Phys. Rev. A 97 (6), 063607 (2018)
CrossRef ADS Google scholar
[28]
M. Kato , X. F. Zhang , and H. Saito , Vortex pairs in a spin–orbit-coupled Bose–Einstein condensate, Phys. Rev. A 95 (4), 043605 (2017)
CrossRef ADS Google scholar
[29]
Y. J. Wang , L. Wen , H. Guo , R. B. Tan , S. G. Zhang , and X. F. Zhang , Spin–orbit-coupled Bose–Einstein condensates in radially periodic potentials, J. Phys. Soc. Jpn. 88 (2), 024005 (2019)
CrossRef ADS Google scholar
[30]
C. F. Liu , Y. M. Yu , S. C. Gou , and W. M. Liu , Vortex chain in anisotropic spin–orbit-coupled spin-1 Bose– Einstein condensates, Phys. Rev. A 87 (6), 063630 (2013)
CrossRef ADS Google scholar
[31]
X. H. Hu , X. F. Zhang , D. Zhao , H. G. Luo , and W. M. Liu , Dynamics and modulation of ring dark solitons in two-dimensional Bose–Einstein condensates with tunable interaction, Phys. Rev. A 79 (2), 023619 (2009)
CrossRef ADS Google scholar
[32]
G. Theocharis , D. J. Frantzeskakis , P. G. Kevrekidis , B. A. Malomed , and Y. S. Kivshar , Ring dark solitons and vortex necklaces in Bose–Einstein condensates, Phys. Rev. Lett. 90 (12), 120403 (2003)
CrossRef ADS Google scholar
[33]
A. L. Fetter , Rotating trapped Bose–Einstein condensates, Laser Phys. 18 (1), 1 (2008)
CrossRef ADS Google scholar
[34]
A. L. Fetter and A. A. Svidzinsky , Vortices in a trapped dilute Bose–Einstein condensate, J. Phys.: Condens. Matter 13 (12), R135 (2001)
CrossRef ADS Google scholar
[35]
V. Pérez-García , M. García-March , and A. Ferrando , Symmetry-assisted vorticity control in Bose–Einstein condensates, Phys. Rev. A 75 (3), 723 (2012)
[36]
A. Ferrando , M. Zacarés , M. Á. García-March , J. A. Monsoriu , and P. F. de Córdoba , Vortex transmutation, Phys. Rev. Lett. 95 (12), 123901 (2005)
CrossRef ADS Google scholar
[37]
L. T. Vuong , T. D. Grow , A. Ishaaya , A. L. Gaeta , G. W. ’t Hooft , E. R. Eliel , and G. Fibich , Collapse of optical vortices, Phys. Rev. Lett. 96 (13), 133901 (2006)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(1445 KB)

Accesses

Citations

Detail

Sections
Recommended

/