Interplay of nonreciprocity and nonlinearity on mean-field energy and dynamics of a Bose–Einstein condensate in a double-well potential

Yi-Piao Wu, Guo-Qing Zhang, Cai-Xia Zhang, Jian Xu, Dan-Wei Zhang

Front. Phys. ›› 2022, Vol. 17 ›› Issue (4) : 42503.

PDF(1664 KB)
Front. Phys. All Journals
PDF(1664 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (4) : 42503. DOI: 10.1007/s11467-021-1133-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Interplay of nonreciprocity and nonlinearity on mean-field energy and dynamics of a Bose–Einstein condensate in a double-well potential

Author information +
History +

Abstract

We investigate the mean-field energy spectrum and dynamics in a Bose–Einstein condensate in a double-well potential with non-Hermiticity from the nonreciprocal hopping, and show that the interplay of nonreciprocity and nonlinearity leads to exotic properties. Under the two-mode and mean-field approximations, the nonreciprocal generalization of the nonlinear Schrödinger equation and Bloch equations of motion for this system are obtained. We analyze the PT phase diagram and the dynamical stability of fixed points. The reentrance of PT -symmetric phase and the reformation of stable fixed points with increasing the nonreciprocity parameter are found. Besides, we uncover a linear selftrapping effect induced by the nonreciprocity. In the nonlinear case, the self-trapping oscillation is enhanced by the nonreciprocity and then collapses in the PT -broken phase, and can finally be recovered in the reentrant PT -symmetric phase.

Graphical abstract

Keywords

Bose–Einstein condensate / non-Hermitian physics / nonlinear dynamics / parity–time symmetry

Cite this article

Download citation ▾
Yi-Piao Wu, Guo-Qing Zhang, Cai-Xia Zhang, Jian Xu, Dan-Wei Zhang. Interplay of nonreciprocity and nonlinearity on mean-field energy and dynamics of a Bose–Einstein condensate in a double-well potential. Front. Phys., 2022, 17(4): 42503 https://doi.org/10.1007/s11467-021-1133-2
This is a preview of subscription content, contact us for subscripton.

References

[1]
C. M. Bender , Making sense of non-Hermitian Hamiltonians, Rep. Prog. Phys. 70 (6), 947 (2007)
CrossRef ADS Google scholar
[2]
R. El-Ganainy , K. G. Makris , M. Khajavikhan , Z. H. Musslimani , S. Rotter , and D. N. Christodoulides , NonHermitian physics and PT symmetry, Nat. Phys. 14 (1), 11 (2018)
CrossRef ADS Google scholar
[3]
M. A. Miri and A. Alù , Exceptional points in optics and photonics, Science 363 (6422), eaar7709 (2019)
CrossRef ADS Google scholar
[4]
Y. Ashida , Z. Gong , and M. Ueda , Non-Hermitian physics, Adv. Phys. 69 (3), 249 (2020)
CrossRef ADS Google scholar
[5]
E. J. Bergholtz , J. C. Budich , and F. K. Kunst , Exceptional topology of non-Hermitian systems, Rev. Mod. Phys. 93 (1), 015005 (2021)
CrossRef ADS Google scholar
[6]
C. M. Bender and S. Boettcher , Real spectra in nonHermitian Hamiltonians having PT symmetry, Phys. Rev. Lett. 80 (24), 5243 (1998)
CrossRef ADS Google scholar
[7]
W. D. Heiss , Exceptional points of non-Hermitian operators, J. Phys. Math. Gen. 37 (6), 2455 (2004)
CrossRef ADS Google scholar
[8]
W. D. Heiss , The physics of exceptional points, J. Phys. A Math. Theor. 45 (44), 444016 (2012)
CrossRef ADS Google scholar
[9]
L. Pan , S. Chen , and X. Cui , High-order exceptional points in ultracold Bose gases, Phys. Rev. A 99 (1), 011601 (2019)
CrossRef ADS Google scholar
[10]
Z. Gong , Y. Ashida , K. Kawabata , K. Takasan , S. Higashikawa , and M. Ueda , Topological phases of nonHermitian systems, Phys. Rev. X 8 (3), 031079 (2018)
CrossRef ADS Google scholar
[11]
K. Kawabata , T. Bessho , and M. Sato , Classification of exceptional points and non-Hermitian topological semimetals, Phys. Rev. Lett. 123 (6), 066405 (2019)
CrossRef ADS Google scholar
[12]
N. Hatano and D. R. Nelson , Localization transitions in non-Hermitian quantum mechanics, Phys. Rev. Lett. 77 (3), 570 (1996)
CrossRef ADS Google scholar
[13]
S. Yao and Z. Wang , Edge states and topological invariants of non-Hermitian systems, Phys. Rev. Lett. 121 (8), 086803 (2018)
CrossRef ADS Google scholar
[14]
F. K. Kunst , E. Edvardsson , J. C. Budich , and E. J. Bergholtz , Biorthogonal bulk–boundary correspondence in non-Hermitian systems, Phys. Rev. Lett. 121 (2), 026808 (2018)
CrossRef ADS Google scholar
[15]
L. Jin and Z. Song , Bulk–boundary correspondence in a non-Hermitian system in one dimension with chiral inversion symmetry, Phys. Rev. B 99 (8), 081103 (2019)
CrossRef ADS Google scholar
[16]
S. Longhi , Topological phase transition in non-Hermitian quasicrystals, Phys. Rev. Lett. 122 (23), 237601 (2019)
CrossRef ADS Google scholar
[17]
H. Jiang , L. J. Lang , C. Yang , S. L. Zhu , and S. Chen , Interplay of non-Hermitian skin effects and Anderson localization in nonreciprocal quasiperiodic lattices, Phys. Rev. B 100 (5), 054301 (2019)
CrossRef ADS Google scholar
[18]
D. W. Zhang , L. Z. Tang , L. J. Lang , H. Yan , and S. L. Zhu , Non-Hermitian topological Anderson insulators, Sci. China Phys. Mech. Astron. 63 (6), 267062 (2020)
CrossRef ADS Google scholar
[19]
X. W. Luo and C. Zhang , Non-Hermitian disorder-induced topological insulators, arXiv: 1912.10652v1 (2019)
[20]
L. Z. Tang , L. F. Zhang , G. Q. Zhang , and D. W. Zhang , Topological Anderson insulators in two-dimensional nonHermitian disordered systems, Phys. Rev. A 101 (6), 063612 (2020)
CrossRef ADS Google scholar
[21]
H. Liu , Z. Su , Z. Q. Zhang , and H. Jiang , Topological Anderson insulator in two-dimensional non-Hermitian systems, Chin. Phys. B 29 (5), 050502 (2020)
CrossRef ADS Google scholar
[22]
Q. B. Zeng and Y. Xu , Winding numbers and generalized mobility edges in non-Hermitian systems, Phys. Rev. Research 2 (3), 033052 (2020)
CrossRef ADS Google scholar
[23]
L. Li , C. H. Lee , S. Mu , and J. Gong , Critical nonHermitian skin effect, Nat. Commun. 11 (1), 5491 (2020)
CrossRef ADS Google scholar
[24]
D. W. Zhang , Y. L. Chen , G. Q. Zhang , L. J. Lang , Z. Li , and S. L. Zhu , Skin superfluid, topological Mott insulators, and asymmetric dynamics in an interacting non-Hermitian Aubry–André–Harper model, Phys. Rev. B 101 (23), 235150 (2020)
CrossRef ADS Google scholar
[25]
T. Liu , J. J. He , T. Yoshida , Z. L. Xiang , and F. Nori , NonHermitian topological Mott insulators in one-dimensional fermionic superlattices, Phys. Rev. B 102 (23), 235151 (2020)
CrossRef ADS Google scholar
[26]
Z. Xu , S. Chen , Z. Xu , and S. Chen , Topological Bose– Mott insulators in one-dimensional non-Hermitian superlattices, Phys. Rev. B 102 (3), 035153 (2020)
CrossRef ADS Google scholar
[27]
T. Helbig , T. Hofmann , S. Imhof , M. Abdelghany , T. Kiessling , L. W. Molenkamp , C. H. Lee , A. Szameit , M. Greiter , and R. Thomale , Generalized bulk–boundary correspondence in non-Hermitian topolectrical circuits, Nat. Phys. 16 (7), 747 (2020)
CrossRef ADS Google scholar
[28]
M. Ezawa , Electric-circuit simulation of the Schrödinger equation and non-Hermitian quantum walks, Phys. Rev. B 100 (16), 165419 (2019)
CrossRef ADS Google scholar
[29]
L. Xiao , T. Deng , K. Wang , G. Zhu , Z. Wang , W. Yi , and P. Xue , Non-Hermitian bulk–boundary correspondence in quantum dynamics, Nat. Phys. 16 (7), 761 (2020)
CrossRef ADS Google scholar
[30]
Z. Yu and S. Fan , Complete optical isolation created by indirect interband photonic transitions, Nat. Photonics 3 (2), 91 (2009)
CrossRef ADS Google scholar
[31]
M. S. Kang , A. Butsch , and P. S. J. Russell , Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre, Nat. Photonics 5 (9), 549 (2011)
CrossRef ADS Google scholar
[32]
L. Bi , J. Hu , P. Jiang , D. H. Kim , G. F. Dionne , L. C. Kimerling , and C. A. Ross , On-chip optical isolation in monolithically integrated non-reciprocal optical resonators, Nat. Photonics 5 (12), 758 (2011)
CrossRef ADS Google scholar
[33]
L. Fan , J. Wang , L. T. Varghese , H. Shen , B. Niu , Y. Xuan , A. M. Weiner , and M. Qi , An all-silicon passive optical diode, Science 335 (6067), 447 (2012)
CrossRef ADS Google scholar
[34]
S. A. R. Horsley , J. H. Wu , M. Artoni , and G. C. La Rocca , Optical nonreciprocity of cold atom Bragg mirrors in motion, Phys. Rev. Lett. 110 (22), 223602 (2013)
CrossRef ADS Google scholar
[35]
B. Peng , Ş. K. Özdemir , F. Lei , F. Monifi , M. Gianfreda , G. L. Long , S. Fan , F. Nori , C. M. Bender , and L. Yang , Parity–time-symmetric whispering-gallery microcavities., Nat. Phys. 10 (5), 394 (2014)
CrossRef ADS Google scholar
[36]
Y. P. Wang , J. W. Rao , Y. Yang , P. C. Xu , Y. S. Gui , B. M. Yao , J. Q. You , and C. M. Hu , Nonreciprocity and unidirectional invisibility in cavity magnonics, Phys. Rev. Lett. 123 (12), 127202 (2019)
CrossRef ADS Google scholar
[37]
Y. Zhao , J. Rao , Y. Gui , Y. Wang , and C. M. Hu , Broadband nonreciprocity realized by locally controlling the Magnon’s radiation, Phys. Rev. Appl. 14 (1), 014035 (2020)
CrossRef ADS Google scholar
[38]
Z. Shen , Y. L. Zhang , Y. Chen , C. L. Zou , Y. F. Xiao , X. B. Zou , F. W. Sun , G. C. Guo , and C. H. Dong , Experimental realization of optomechanically induced nonreciprocity, Nat. Photonics 10 (10), 657 (2016)
CrossRef ADS Google scholar
[39]
F. Ruesink , M. A. Miri , A. Alù , and E. Verhagen , Nonreciprocity and magnetic-free isolation based on optomechanical interactions, Nat. Commun. 7 (1), 13662 (2016)
CrossRef ADS Google scholar
[40]
N. R. Bernier , L. D. Tóth , A. Koottandavida , M. A. Ioannou , D. Malz , A. Nunnenkamp , A. K. Feofanov , and T. J. Kippenberg , Nonreciprocal reconfigurable microwave optomechanical circuit, Nat. Commun. 8 (1), 604 (2017)
CrossRef ADS Google scholar
[41]
K. Fang , J. Luo , A. Metelmann , M. H. Matheny , F. Marquardt , A. A. Clerk , and O. Painter , Generalized nonreciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering, Nat. Phys. 13 (5), 465 (2017)
CrossRef ADS Google scholar
[42]
G. A. Peterson , F. Lecocq , K. Cicak , R. W. Simmonds , J. Aumentado , and J. D. Teufel , Demonstration of effcient nonreciprocity in a microwave optomechanical circuit, Phys. Rev. X 7 (3), 031001 (2017)
CrossRef ADS Google scholar
[43]
H. Xu , L. Jiang , A. A. Clerk , and J. G. E. Harris , Nonreciprocal control and cooling of phonon modes in an optomechanical system, Nature 568 (7750), 65 (2019)
CrossRef ADS Google scholar
[44]
W. Gou , T. Chen , D. Xie , T. Xiao , T. S. Deng , B. Gadway , W. Yi , and B. Yan , Tunable nonreciprocal quantum transport through a dissipative Aharonov–Bohm ring in ultracold atoms, Phys. Rev. Lett. 124 (7), 070402 (2020)
CrossRef ADS Google scholar
[45]
D. W. Zhang , Y. Q. Zhu , Y. X. Zhao , H. Yan , and S. L. Zhu , Topological quantum matter with cold atoms, Adv. Phys. 67 (4), 253 (2018)
CrossRef ADS Google scholar
[46]
Y. V. Kartashov , B. A. Malomed , and L. Torner , Solitons in nonlinear lattices, Rev. Mod. Phys. 83 (1), 247 (2011)
CrossRef ADS Google scholar
[47]
O. Morsch and M. Oberthaler , Dynamics of Bose–Einstein condensates in optical lattices, Rev. Mod. Phys. 78 (1), 179 (2006)
CrossRef ADS Google scholar
[48]
B. Wu and Q. Niu , Nonlinear Landau–Zener tunneling, Phys. Rev. A 61 (2), 023402 (2000)
CrossRef ADS Google scholar
[49]
J. Liu , L. Fu , B. Y. Ou , S. G. Chen , D. I. Choi , B. Wu , and Q. Niu , Theory of nonlinear Landau–Zener tunneling, Phys. Rev. A 66 (2), 023404 (2002)
CrossRef ADS Google scholar
[50]
J. Liu , B. Wu , and Q. Niu , Nonlinear evolution of quantum states in the adiabatic regime, Phys. Rev. Lett. 90 (17), 170404 (2003)
CrossRef ADS Google scholar
[51]
M. E. Kellman and V. Tyng , Bifurcation effects in coupled Bose–Einstein condensates, Phys. Rev. A 66 (1), 013602 (2002)
CrossRef ADS Google scholar
[52]
A. P. Hines , R. H. McKenzie , and G. J. Milburn , Quantum entanglement and fixed-point bifurcations, Phys. Rev. A 71 (4), 042303 (2005)
CrossRef ADS Google scholar
[53]
I. Siddiqi , R. Vijay , F. Pierre , C. M. Wilson , L. Frunzio , M. Metcalfe , C. Rigetti , R. J. Schoelkopf , M. H. Devoret , D. Vion , and D. Esteve , Direct observation of dynamical bifurcation between two driven oscillation states of a Josephson junction, Phys. Rev. Lett. 94 (2), 027005 (2005)
CrossRef ADS Google scholar
[54]
T. Zibold , E. Nicklas , C. Gross , and M. K. Oberthaler , Classical bifurcation at the transition from Rabi to Josephson dynamics, Phys. Rev. Lett. 105 (20), 204101 (2010)
CrossRef ADS Google scholar
[55]
C. Lee , L. B. Fu , and Y. S. Kivshar , Many-body quantum coherence and interaction blockade in Josephson-linked Bose–Einstein condensates, Europhys. Lett. 81 (6), 60006 (2008)
CrossRef ADS Google scholar
[56]
C. Lee , Universality and anomalous mean-field breakdown of symmetry-breaking transitions in a coupled twocomponent Bose–Einstein condensate, Phys. Rev. Lett. 102 (7), 070401 (2009)
CrossRef ADS Google scholar
[57]
C. Lee , J. Huang , H. Deng , H. Dai , and J. Xu , Nonlinear quantum interferometry with Bose condensed atoms, Front. Phys. 7 (1), 109 (2012)
CrossRef ADS Google scholar
[58]
A. Burchianti , C. Fort , and M. Modugno , Josephson plasma oscillations and the Gross–Pitaevskii equation: Bogoliubov approach versus two-mode model, Phys. Rev. A 95 (2), 023627 (2017)
CrossRef ADS Google scholar
[59]
S. Martínez-Garaot , G. Pettini , and M. Modugno , Nonlinear mixing of Bogoliubov modes in a bosonic Josephson junction, Phys. Rev. A 98 (4), 043624 (2018)
CrossRef ADS Google scholar
[60]
D. W. Zhang , L. B. Fu , Z. D. Wang , and S. L. Zhu , Josephson dynamics of a spin–orbit-coupled Bose–Einstein condensate in a double-well potential, Phys. Rev. A 85 (4), 043609 (2012)
CrossRef ADS Google scholar
[61]
D. W. Zhang , Z. D. Wang , and S. L. Zhu , Relativistic quantum effects of Dirac particles simulated by ultracold atoms, Front. Phys. 7 (1), 31 (2012)
CrossRef ADS Google scholar
[62]
W. Y. Wang , J. Lin , and J. Liu , Cyclotron dynamics of a Bose–Einstein condensate in a quadruple-well potential with synthetic gauge fields, Front. Phys. 16 (5), 52502 (2021)
CrossRef ADS Google scholar
[63]
A. Smerzi , S. Fantoni , S. Giovanazzi , and S. R. Shenoy , Quantum coherent atomic tunneling between two trapped Bose–Einstein condensates, Phys. Rev. Lett. 79 (25), 4950 (1997)
CrossRef ADS Google scholar
[64]
S. Raghavan , A. Smerzi , S. Fantoni , and S. R. Shenoy , Coherent oscillations between two weakly coupled Bose–Einstein condensates: Josephson effects, ff oscillations, and macroscopic quantum self-trapping, Phys. Rev. A 59 (1), 620 (1999)
CrossRef ADS Google scholar
[65]
M. Albiez , R. Gati , J. Fölling , S. Hunsmann , M. Cristiani , and M. K. Oberthaler , Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction, Phys. Rev. Lett. 95 (1), 010402 (2005)
CrossRef ADS Google scholar
[66]
M. Abbarchi , A. Amo , V. G. Sala , D. D. Solnyshkov , H. Flayac , L. Ferrier , I. Sagnes , E. Galopin , A. Lemaĭtre , G. Malpuech , and J. Bloch , Macroscopic quantum selftrapping and Josephson oscillations of exciton polaritons, Nat. Phys. 9 (5), 275 (2013)
CrossRef ADS Google scholar
[67]
V. V. Konotop , J. Yang , and D. A. Zezyulin , Nonlinear waves in PT-symmetric systems, Rev. Mod. Phys. 88 (3), 035002 (2016)
CrossRef ADS Google scholar
[68]
E. M. Graefe , H. J. Korsch , and A. E. Niederle , Mean-field dynamics of a non-Hermitian Bose–Hubbard dimer, Phys. Rev. Lett. 101 (15), 150408 (2008)
CrossRef ADS Google scholar
[69]
E. M. Graefe , U. Günther , H. J. Korsch , and A. E. Niederle , A non-HermitianPT symmetric Bose–Hubbard model: Eigenvalue rings from unfolding higher-order exceptional points, J. Phys. A Math. Theor. 41 (25), 255206 (2008)
CrossRef ADS Google scholar
[70]
D. Witthaut , F. Trimborn , and S. Wimberger , Dissipationinduced coherence and stochastic resonance of an open two-mode Bose–Einstein condensate, Phys. Rev. A 79 (3), 033621 (2009)
CrossRef ADS Google scholar
[71]
E. M. Graefe and C. Liverani , Mean-field approximation for a Bose–Hubbard dimer with complex interaction strength, J. Phys. A Math. Theor. 46 (45), 455201 (2013)
CrossRef ADS Google scholar
[72]
E. M. Graefe , H. J. Korsch , and A. E. Niederle , Quantum-classical correspondence for a non-Hermitian Bose–Hubbard dimer, Phys. Rev. A 82 (1), 013629 (2010)
CrossRef ADS Google scholar
[73]
E. M. Graefe , Stationary states of a PT symmetric twomode Bose–Einstein condensate, J. Phys. A Math. Theor. 45 (44), 444015 (2012)
CrossRef ADS Google scholar
[74]
H. Cartarius and G. Wunner , Model of a PT-symmetric Bose–Einstein condensate in a δ-function double-well potential, Phys. Rev. A 86 (1), 013612 (2012)
CrossRef ADS Google scholar
[75]
D. Dast D. Haag H. Cartarius G. Wunner R. Eichler , and J. Main , A Bose–Einstein condensate in a PT-symmetric double well, Fortschr. Phys. 61 (2-3), 124 (2013)
CrossRef ADS Google scholar
[76]
D. Dast , D. Haag , H. Cartarius , J. Main , and G. Wunner , Eigenvalue structure of a Bose–Einstein condensate in a PT-symmetric double well, J. Phys. A Math. Theor. 46 (37), 375301 (2013)
CrossRef ADS Google scholar
[77]
F. Single , H. Cartarius , G. Wunner , and J. Main , Coupling approach for the realization of a PT-symmetric potential for a Bose–Einstein condensate in a double well, Phys. Rev. A 90 (4), 042123 (2014)
CrossRef ADS Google scholar
[78]
R. Fortanier , D. Dast , D. Haag , H. Cartarius , J. Main , G. Wunner , and R. Gutöhrlein , Dipolar Bose–Einstein condensates in a PT-symmetric double-well potential, Phys. Rev. A 89 (6), 063608 (2014)
CrossRef ADS Google scholar
[79]
D. Dast , D. Haag , H. Cartarius , J. Main , and G. Wunner , Bose–Einstein condensates with balanced gain and loss beyond mean-field theory, Phys. Rev. A 94 (5), 053601 (2016)
CrossRef ADS Google scholar
[80]
D. Haag , D. Dast , H. Cartarius , and G. Wunner PTsymmetric gain and loss in a rotating Bose–Einstein condensate, Phys. Rev. A 97 (3), 033607 (2018)
CrossRef ADS Google scholar
[81]
Y. Zhang , Z. Chen , B. Wu , T. Busch , and V. V. Konotop , Asymmetric loop spectra and unbroken phase protection due to nonlinearities in PT-symmetric periodic potentials, Phys. Rev. Lett. 127 (3), 034101 (2021)
CrossRef ADS Google scholar
[82]
B. Wu and Q. Niu , Landau and dynamical instabilities of the superflow of Bose–Einstein condensates in optical lattices, Phys. Rev. A 64 (6), 061603 (2001)
CrossRef ADS Google scholar
[83]
B. Wu and Q. Niu , Superfluidity of Bose–Einstein condensate in an optical lattice: Landau–Zener tunnelling and dynamical instability, New J. Phys. 5, 104 (2003)
CrossRef ADS Google scholar
[84]
A. P. Seyranian and A. A. Mailybaev , Multiparameter Stability Theory with Mechanical Applications, World Scientific, 2003
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(1664 KB)

585

Accesses

5

Citations

Detail

Sections
Recommended

/