Interplay of nonreciprocity and nonlinearity on mean-field energy and dynamics of a Bose–Einstein condensate in a double-well potential
Yi-Piao Wu, Guo-Qing Zhang, Cai-Xia Zhang, Jian Xu, Dan-Wei Zhang
Interplay of nonreciprocity and nonlinearity on mean-field energy and dynamics of a Bose–Einstein condensate in a double-well potential
We investigate the mean-field energy spectrum and dynamics in a Bose–Einstein condensate in a double-well potential with non-Hermiticity from the nonreciprocal hopping, and show that the interplay of nonreciprocity and nonlinearity leads to exotic properties. Under the two-mode and mean-field approximations, the nonreciprocal generalization of the nonlinear Schrödinger equation and Bloch equations of motion for this system are obtained. We analyze the phase diagram and the dynamical stability of fixed points. The reentrance of -symmetric phase and the reformation of stable fixed points with increasing the nonreciprocity parameter are found. Besides, we uncover a linear selftrapping effect induced by the nonreciprocity. In the nonlinear case, the self-trapping oscillation is enhanced by the nonreciprocity and then collapses in the -broken phase, and can finally be recovered in the reentrant -symmetric phase.
Bose–Einstein condensate / non-Hermitian physics / nonlinear dynamics / parity–time symmetry
[1] |
C. M. Bender , Making sense of non-Hermitian Hamiltonians, Rep. Prog. Phys. 70 (6), 947 (2007)
CrossRef
ADS
Google scholar
|
[2] |
R. El-Ganainy , K. G. Makris , M. Khajavikhan , Z. H. Musslimani , S. Rotter , and D. N. Christodoulides , NonHermitian physics and PT symmetry, Nat. Phys. 14 (1), 11 (2018)
CrossRef
ADS
Google scholar
|
[3] |
M. A. Miri and A. Alù , Exceptional points in optics and photonics, Science 363 (6422), eaar7709 (2019)
CrossRef
ADS
Google scholar
|
[4] |
Y. Ashida , Z. Gong , and M. Ueda , Non-Hermitian physics, Adv. Phys. 69 (3), 249 (2020)
CrossRef
ADS
Google scholar
|
[5] |
E. J. Bergholtz , J. C. Budich , and F. K. Kunst , Exceptional topology of non-Hermitian systems, Rev. Mod. Phys. 93 (1), 015005 (2021)
CrossRef
ADS
Google scholar
|
[6] |
C. M. Bender and S. Boettcher , Real spectra in nonHermitian Hamiltonians having PT symmetry, Phys. Rev. Lett. 80 (24), 5243 (1998)
CrossRef
ADS
Google scholar
|
[7] |
W. D. Heiss , Exceptional points of non-Hermitian operators, J. Phys. Math. Gen. 37 (6), 2455 (2004)
CrossRef
ADS
Google scholar
|
[8] |
W. D. Heiss , The physics of exceptional points, J. Phys. A Math. Theor. 45 (44), 444016 (2012)
CrossRef
ADS
Google scholar
|
[9] |
L. Pan , S. Chen , and X. Cui , High-order exceptional points in ultracold Bose gases, Phys. Rev. A 99 (1), 011601 (2019)
CrossRef
ADS
Google scholar
|
[10] |
Z. Gong , Y. Ashida , K. Kawabata , K. Takasan , S. Higashikawa , and M. Ueda , Topological phases of nonHermitian systems, Phys. Rev. X 8 (3), 031079 (2018)
CrossRef
ADS
Google scholar
|
[11] |
K. Kawabata , T. Bessho , and M. Sato , Classification of exceptional points and non-Hermitian topological semimetals, Phys. Rev. Lett. 123 (6), 066405 (2019)
CrossRef
ADS
Google scholar
|
[12] |
N. Hatano and D. R. Nelson , Localization transitions in non-Hermitian quantum mechanics, Phys. Rev. Lett. 77 (3), 570 (1996)
CrossRef
ADS
Google scholar
|
[13] |
S. Yao and Z. Wang , Edge states and topological invariants of non-Hermitian systems, Phys. Rev. Lett. 121 (8), 086803 (2018)
CrossRef
ADS
Google scholar
|
[14] |
F. K. Kunst , E. Edvardsson , J. C. Budich , and E. J. Bergholtz , Biorthogonal bulk–boundary correspondence in non-Hermitian systems, Phys. Rev. Lett. 121 (2), 026808 (2018)
CrossRef
ADS
Google scholar
|
[15] |
L. Jin and Z. Song , Bulk–boundary correspondence in a non-Hermitian system in one dimension with chiral inversion symmetry, Phys. Rev. B 99 (8), 081103 (2019)
CrossRef
ADS
Google scholar
|
[16] |
S. Longhi , Topological phase transition in non-Hermitian quasicrystals, Phys. Rev. Lett. 122 (23), 237601 (2019)
CrossRef
ADS
Google scholar
|
[17] |
H. Jiang , L. J. Lang , C. Yang , S. L. Zhu , and S. Chen , Interplay of non-Hermitian skin effects and Anderson localization in nonreciprocal quasiperiodic lattices, Phys. Rev. B 100 (5), 054301 (2019)
CrossRef
ADS
Google scholar
|
[18] |
D. W. Zhang , L. Z. Tang , L. J. Lang , H. Yan , and S. L. Zhu , Non-Hermitian topological Anderson insulators, Sci. China Phys. Mech. Astron. 63 (6), 267062 (2020)
CrossRef
ADS
Google scholar
|
[19] |
X. W. Luo and C. Zhang , Non-Hermitian disorder-induced topological insulators, arXiv: 1912.10652v1 (2019)
|
[20] |
L. Z. Tang , L. F. Zhang , G. Q. Zhang , and D. W. Zhang , Topological Anderson insulators in two-dimensional nonHermitian disordered systems, Phys. Rev. A 101 (6), 063612 (2020)
CrossRef
ADS
Google scholar
|
[21] |
H. Liu , Z. Su , Z. Q. Zhang , and H. Jiang , Topological Anderson insulator in two-dimensional non-Hermitian systems, Chin. Phys. B 29 (5), 050502 (2020)
CrossRef
ADS
Google scholar
|
[22] |
Q. B. Zeng and Y. Xu , Winding numbers and generalized mobility edges in non-Hermitian systems, Phys. Rev. Research 2 (3), 033052 (2020)
CrossRef
ADS
Google scholar
|
[23] |
L. Li , C. H. Lee , S. Mu , and J. Gong , Critical nonHermitian skin effect, Nat. Commun. 11 (1), 5491 (2020)
CrossRef
ADS
Google scholar
|
[24] |
D. W. Zhang , Y. L. Chen , G. Q. Zhang , L. J. Lang , Z. Li , and S. L. Zhu , Skin superfluid, topological Mott insulators, and asymmetric dynamics in an interacting non-Hermitian Aubry–André–Harper model, Phys. Rev. B 101 (23), 235150 (2020)
CrossRef
ADS
Google scholar
|
[25] |
T. Liu , J. J. He , T. Yoshida , Z. L. Xiang , and F. Nori , NonHermitian topological Mott insulators in one-dimensional fermionic superlattices, Phys. Rev. B 102 (23), 235151 (2020)
CrossRef
ADS
Google scholar
|
[26] |
Z. Xu , S. Chen , Z. Xu , and S. Chen , Topological Bose– Mott insulators in one-dimensional non-Hermitian superlattices, Phys. Rev. B 102 (3), 035153 (2020)
CrossRef
ADS
Google scholar
|
[27] |
T. Helbig , T. Hofmann , S. Imhof , M. Abdelghany , T. Kiessling , L. W. Molenkamp , C. H. Lee , A. Szameit , M. Greiter , and R. Thomale , Generalized bulk–boundary correspondence in non-Hermitian topolectrical circuits, Nat. Phys. 16 (7), 747 (2020)
CrossRef
ADS
Google scholar
|
[28] |
M. Ezawa , Electric-circuit simulation of the Schrödinger equation and non-Hermitian quantum walks, Phys. Rev. B 100 (16), 165419 (2019)
CrossRef
ADS
Google scholar
|
[29] |
L. Xiao , T. Deng , K. Wang , G. Zhu , Z. Wang , W. Yi , and P. Xue , Non-Hermitian bulk–boundary correspondence in quantum dynamics, Nat. Phys. 16 (7), 761 (2020)
CrossRef
ADS
Google scholar
|
[30] |
Z. Yu and S. Fan , Complete optical isolation created by indirect interband photonic transitions, Nat. Photonics 3 (2), 91 (2009)
CrossRef
ADS
Google scholar
|
[31] |
M. S. Kang , A. Butsch , and P. S. J. Russell , Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre, Nat. Photonics 5 (9), 549 (2011)
CrossRef
ADS
Google scholar
|
[32] |
L. Bi , J. Hu , P. Jiang , D. H. Kim , G. F. Dionne , L. C. Kimerling , and C. A. Ross , On-chip optical isolation in monolithically integrated non-reciprocal optical resonators, Nat. Photonics 5 (12), 758 (2011)
CrossRef
ADS
Google scholar
|
[33] |
L. Fan , J. Wang , L. T. Varghese , H. Shen , B. Niu , Y. Xuan , A. M. Weiner , and M. Qi , An all-silicon passive optical diode, Science 335 (6067), 447 (2012)
CrossRef
ADS
Google scholar
|
[34] |
S. A. R. Horsley , J. H. Wu , M. Artoni , and G. C. La Rocca , Optical nonreciprocity of cold atom Bragg mirrors in motion, Phys. Rev. Lett. 110 (22), 223602 (2013)
CrossRef
ADS
Google scholar
|
[35] |
B. Peng , Ş. K. Özdemir , F. Lei , F. Monifi , M. Gianfreda , G. L. Long , S. Fan , F. Nori , C. M. Bender , and L. Yang , Parity–time-symmetric whispering-gallery microcavities., Nat. Phys. 10 (5), 394 (2014)
CrossRef
ADS
Google scholar
|
[36] |
Y. P. Wang , J. W. Rao , Y. Yang , P. C. Xu , Y. S. Gui , B. M. Yao , J. Q. You , and C. M. Hu , Nonreciprocity and unidirectional invisibility in cavity magnonics, Phys. Rev. Lett. 123 (12), 127202 (2019)
CrossRef
ADS
Google scholar
|
[37] |
Y. Zhao , J. Rao , Y. Gui , Y. Wang , and C. M. Hu , Broadband nonreciprocity realized by locally controlling the Magnon’s radiation, Phys. Rev. Appl. 14 (1), 014035 (2020)
CrossRef
ADS
Google scholar
|
[38] |
Z. Shen , Y. L. Zhang , Y. Chen , C. L. Zou , Y. F. Xiao , X. B. Zou , F. W. Sun , G. C. Guo , and C. H. Dong , Experimental realization of optomechanically induced nonreciprocity, Nat. Photonics 10 (10), 657 (2016)
CrossRef
ADS
Google scholar
|
[39] |
F. Ruesink , M. A. Miri , A. Alù , and E. Verhagen , Nonreciprocity and magnetic-free isolation based on optomechanical interactions, Nat. Commun. 7 (1), 13662 (2016)
CrossRef
ADS
Google scholar
|
[40] |
N. R. Bernier , L. D. Tóth , A. Koottandavida , M. A. Ioannou , D. Malz , A. Nunnenkamp , A. K. Feofanov , and T. J. Kippenberg , Nonreciprocal reconfigurable microwave optomechanical circuit, Nat. Commun. 8 (1), 604 (2017)
CrossRef
ADS
Google scholar
|
[41] |
K. Fang , J. Luo , A. Metelmann , M. H. Matheny , F. Marquardt , A. A. Clerk , and O. Painter , Generalized nonreciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering, Nat. Phys. 13 (5), 465 (2017)
CrossRef
ADS
Google scholar
|
[42] |
G. A. Peterson , F. Lecocq , K. Cicak , R. W. Simmonds , J. Aumentado , and J. D. Teufel , Demonstration of effcient nonreciprocity in a microwave optomechanical circuit, Phys. Rev. X 7 (3), 031001 (2017)
CrossRef
ADS
Google scholar
|
[43] |
H. Xu , L. Jiang , A. A. Clerk , and J. G. E. Harris , Nonreciprocal control and cooling of phonon modes in an optomechanical system, Nature 568 (7750), 65 (2019)
CrossRef
ADS
Google scholar
|
[44] |
W. Gou , T. Chen , D. Xie , T. Xiao , T. S. Deng , B. Gadway , W. Yi , and B. Yan , Tunable nonreciprocal quantum transport through a dissipative Aharonov–Bohm ring in ultracold atoms, Phys. Rev. Lett. 124 (7), 070402 (2020)
CrossRef
ADS
Google scholar
|
[45] |
D. W. Zhang , Y. Q. Zhu , Y. X. Zhao , H. Yan , and S. L. Zhu , Topological quantum matter with cold atoms, Adv. Phys. 67 (4), 253 (2018)
CrossRef
ADS
Google scholar
|
[46] |
Y. V. Kartashov , B. A. Malomed , and L. Torner , Solitons in nonlinear lattices, Rev. Mod. Phys. 83 (1), 247 (2011)
CrossRef
ADS
Google scholar
|
[47] |
O. Morsch and M. Oberthaler , Dynamics of Bose–Einstein condensates in optical lattices, Rev. Mod. Phys. 78 (1), 179 (2006)
CrossRef
ADS
Google scholar
|
[48] |
B. Wu and Q. Niu , Nonlinear Landau–Zener tunneling, Phys. Rev. A 61 (2), 023402 (2000)
CrossRef
ADS
Google scholar
|
[49] |
J. Liu , L. Fu , B. Y. Ou , S. G. Chen , D. I. Choi , B. Wu , and Q. Niu , Theory of nonlinear Landau–Zener tunneling, Phys. Rev. A 66 (2), 023404 (2002)
CrossRef
ADS
Google scholar
|
[50] |
J. Liu , B. Wu , and Q. Niu , Nonlinear evolution of quantum states in the adiabatic regime, Phys. Rev. Lett. 90 (17), 170404 (2003)
CrossRef
ADS
Google scholar
|
[51] |
M. E. Kellman and V. Tyng , Bifurcation effects in coupled Bose–Einstein condensates, Phys. Rev. A 66 (1), 013602 (2002)
CrossRef
ADS
Google scholar
|
[52] |
A. P. Hines , R. H. McKenzie , and G. J. Milburn , Quantum entanglement and fixed-point bifurcations, Phys. Rev. A 71 (4), 042303 (2005)
CrossRef
ADS
Google scholar
|
[53] |
I. Siddiqi , R. Vijay , F. Pierre , C. M. Wilson , L. Frunzio , M. Metcalfe , C. Rigetti , R. J. Schoelkopf , M. H. Devoret , D. Vion , and D. Esteve , Direct observation of dynamical bifurcation between two driven oscillation states of a Josephson junction, Phys. Rev. Lett. 94 (2), 027005 (2005)
CrossRef
ADS
Google scholar
|
[54] |
T. Zibold , E. Nicklas , C. Gross , and M. K. Oberthaler , Classical bifurcation at the transition from Rabi to Josephson dynamics, Phys. Rev. Lett. 105 (20), 204101 (2010)
CrossRef
ADS
Google scholar
|
[55] |
C. Lee , L. B. Fu , and Y. S. Kivshar , Many-body quantum coherence and interaction blockade in Josephson-linked Bose–Einstein condensates, Europhys. Lett. 81 (6), 60006 (2008)
CrossRef
ADS
Google scholar
|
[56] |
C. Lee , Universality and anomalous mean-field breakdown of symmetry-breaking transitions in a coupled twocomponent Bose–Einstein condensate, Phys. Rev. Lett. 102 (7), 070401 (2009)
CrossRef
ADS
Google scholar
|
[57] |
C. Lee , J. Huang , H. Deng , H. Dai , and J. Xu , Nonlinear quantum interferometry with Bose condensed atoms, Front. Phys. 7 (1), 109 (2012)
CrossRef
ADS
Google scholar
|
[58] |
A. Burchianti , C. Fort , and M. Modugno , Josephson plasma oscillations and the Gross–Pitaevskii equation: Bogoliubov approach versus two-mode model, Phys. Rev. A 95 (2), 023627 (2017)
CrossRef
ADS
Google scholar
|
[59] |
S. Martínez-Garaot , G. Pettini , and M. Modugno , Nonlinear mixing of Bogoliubov modes in a bosonic Josephson junction, Phys. Rev. A 98 (4), 043624 (2018)
CrossRef
ADS
Google scholar
|
[60] |
D. W. Zhang , L. B. Fu , Z. D. Wang , and S. L. Zhu , Josephson dynamics of a spin–orbit-coupled Bose–Einstein condensate in a double-well potential, Phys. Rev. A 85 (4), 043609 (2012)
CrossRef
ADS
Google scholar
|
[61] |
D. W. Zhang , Z. D. Wang , and S. L. Zhu , Relativistic quantum effects of Dirac particles simulated by ultracold atoms, Front. Phys. 7 (1), 31 (2012)
CrossRef
ADS
Google scholar
|
[62] |
W. Y. Wang , J. Lin , and J. Liu , Cyclotron dynamics of a Bose–Einstein condensate in a quadruple-well potential with synthetic gauge fields, Front. Phys. 16 (5), 52502 (2021)
CrossRef
ADS
Google scholar
|
[63] |
A. Smerzi , S. Fantoni , S. Giovanazzi , and S. R. Shenoy , Quantum coherent atomic tunneling between two trapped Bose–Einstein condensates, Phys. Rev. Lett. 79 (25), 4950 (1997)
CrossRef
ADS
Google scholar
|
[64] |
S. Raghavan , A. Smerzi , S. Fantoni , and S. R. Shenoy , Coherent oscillations between two weakly coupled Bose–Einstein condensates: Josephson effects, ff oscillations, and macroscopic quantum self-trapping, Phys. Rev. A 59 (1), 620 (1999)
CrossRef
ADS
Google scholar
|
[65] |
M. Albiez , R. Gati , J. Fölling , S. Hunsmann , M. Cristiani , and M. K. Oberthaler , Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction, Phys. Rev. Lett. 95 (1), 010402 (2005)
CrossRef
ADS
Google scholar
|
[66] |
M. Abbarchi , A. Amo , V. G. Sala , D. D. Solnyshkov , H. Flayac , L. Ferrier , I. Sagnes , E. Galopin , A. Lemaĭtre , G. Malpuech , and J. Bloch , Macroscopic quantum selftrapping and Josephson oscillations of exciton polaritons, Nat. Phys. 9 (5), 275 (2013)
CrossRef
ADS
Google scholar
|
[67] |
V. V. Konotop , J. Yang , and D. A. Zezyulin , Nonlinear waves in PT-symmetric systems, Rev. Mod. Phys. 88 (3), 035002 (2016)
CrossRef
ADS
Google scholar
|
[68] |
E. M. Graefe , H. J. Korsch , and A. E. Niederle , Mean-field dynamics of a non-Hermitian Bose–Hubbard dimer, Phys. Rev. Lett. 101 (15), 150408 (2008)
CrossRef
ADS
Google scholar
|
[69] |
E. M. Graefe , U. Günther , H. J. Korsch , and A. E. Niederle , A non-HermitianPT symmetric Bose–Hubbard model: Eigenvalue rings from unfolding higher-order exceptional points, J. Phys. A Math. Theor. 41 (25), 255206 (2008)
CrossRef
ADS
Google scholar
|
[70] |
D. Witthaut , F. Trimborn , and S. Wimberger , Dissipationinduced coherence and stochastic resonance of an open two-mode Bose–Einstein condensate, Phys. Rev. A 79 (3), 033621 (2009)
CrossRef
ADS
Google scholar
|
[71] |
E. M. Graefe and C. Liverani , Mean-field approximation for a Bose–Hubbard dimer with complex interaction strength, J. Phys. A Math. Theor. 46 (45), 455201 (2013)
CrossRef
ADS
Google scholar
|
[72] |
E. M. Graefe , H. J. Korsch , and A. E. Niederle , Quantum-classical correspondence for a non-Hermitian Bose–Hubbard dimer, Phys. Rev. A 82 (1), 013629 (2010)
CrossRef
ADS
Google scholar
|
[73] |
E. M. Graefe , Stationary states of a PT symmetric twomode Bose–Einstein condensate, J. Phys. A Math. Theor. 45 (44), 444015 (2012)
CrossRef
ADS
Google scholar
|
[74] |
H. Cartarius and G. Wunner , Model of a PT-symmetric Bose–Einstein condensate in a δ-function double-well potential, Phys. Rev. A 86 (1), 013612 (2012)
CrossRef
ADS
Google scholar
|
[75] |
D. Dast D. Haag H. Cartarius G. Wunner R. Eichler , and J. Main , A Bose–Einstein condensate in a PT-symmetric double well, Fortschr. Phys. 61 (2-3), 124 (2013)
CrossRef
ADS
Google scholar
|
[76] |
D. Dast , D. Haag , H. Cartarius , J. Main , and G. Wunner , Eigenvalue structure of a Bose–Einstein condensate in a PT-symmetric double well, J. Phys. A Math. Theor. 46 (37), 375301 (2013)
CrossRef
ADS
Google scholar
|
[77] |
F. Single , H. Cartarius , G. Wunner , and J. Main , Coupling approach for the realization of a PT-symmetric potential for a Bose–Einstein condensate in a double well, Phys. Rev. A 90 (4), 042123 (2014)
CrossRef
ADS
Google scholar
|
[78] |
R. Fortanier , D. Dast , D. Haag , H. Cartarius , J. Main , G. Wunner , and R. Gutöhrlein , Dipolar Bose–Einstein condensates in a PT-symmetric double-well potential, Phys. Rev. A 89 (6), 063608 (2014)
CrossRef
ADS
Google scholar
|
[79] |
D. Dast , D. Haag , H. Cartarius , J. Main , and G. Wunner , Bose–Einstein condensates with balanced gain and loss beyond mean-field theory, Phys. Rev. A 94 (5), 053601 (2016)
CrossRef
ADS
Google scholar
|
[80] |
D. Haag , D. Dast , H. Cartarius , and G. Wunner PTsymmetric gain and loss in a rotating Bose–Einstein condensate, Phys. Rev. A 97 (3), 033607 (2018)
CrossRef
ADS
Google scholar
|
[81] |
Y. Zhang , Z. Chen , B. Wu , T. Busch , and V. V. Konotop , Asymmetric loop spectra and unbroken phase protection due to nonlinearities in PT-symmetric periodic potentials, Phys. Rev. Lett. 127 (3), 034101 (2021)
CrossRef
ADS
Google scholar
|
[82] |
B. Wu and Q. Niu , Landau and dynamical instabilities of the superflow of Bose–Einstein condensates in optical lattices, Phys. Rev. A 64 (6), 061603 (2001)
CrossRef
ADS
Google scholar
|
[83] |
B. Wu and Q. Niu , Superfluidity of Bose–Einstein condensate in an optical lattice: Landau–Zener tunnelling and dynamical instability, New J. Phys. 5, 104 (2003)
CrossRef
ADS
Google scholar
|
[84] |
A. P. Seyranian and A. A. Mailybaev , Multiparameter Stability Theory with Mechanical Applications, World Scientific, 2003
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |