Quantum control with Lyapunov function and bang–bang solution in the optomechanics system
Yu Wang, Yi-Hao Kang, Chang-Sheng Hu, Bi-Hua Huang, Jie Song, Yan Xia
Quantum control with Lyapunov function and bang–bang solution in the optomechanics system
We propose a quantum control scheme with the help of Lyapunov control function in the optomechanics system. The principle of the idea is to design suitable control fields to steer the Lyapunov control function to zero as t → ∞ while the quantum system is driven to the target state. Such an evolution makes no limit on the initial state and one needs not manipulate the laser pulses during the evolution. To prove the effectiveness of the scheme, we show two useful applications in the optomechanics system: one is the cooling of nanomechanical resonator and the other is the quantum fluctuation transfer between membranes. Numerical simulation demonstrates that the perfect and fast cooling of nanomechanical resonator and quantum fluctuation transfer between membranes can be rapidly achieved. Besides, some optimizations are made on the traditional Lyapunov control waveform and the optimized bang–bang control fields makes Lyapunov function V decrease faster. The optimized quantum control scheme can achieve the same goal with greater efficiency. Hence, we hope that this work may open a new avenue of the experimental realization of cooling mechanical oscillator, quantum fluctuations transfer between membranes and other quantum optomechanics tasks and become an alternative candidate for quantum manipulation of macroscopic mechanical devices in the near future.
bang–bang solution / quantum control / Lyapunov control / optomechanics system
[1] |
T. J. Kippenberg and K. J. Vahala , Cavity optomechanics: Back-action at the mesoscale, Science 321(5893), 1172(2008)
CrossRef
ADS
Google scholar
|
[2] |
M. Aspelmeyer , T. J. Kippenberg , and F. Marquardt , Cavity optomechanics, Rev. Mod. Phys. 86(4), 1391(2014)
CrossRef
ADS
Google scholar
|
[3] |
I. Wilson-Rae , N. Nooshi , W. Zwerger , and T. J. Kippenberg , Theory of ground state cooling of a mechanical oscillator using dynamical backaction, Phys. Rev. Lett. 99(9), 093901(2007)
CrossRef
ADS
Google scholar
|
[4] |
Y. C. Liu , Y. F. Xiao , X. S. Luan , and C. W. Wong , Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics, Phys. Rev. Lett. 110(15), 153606(2013)
CrossRef
ADS
Google scholar
|
[5] |
X. Y. Lü , Y. Wu , J. R. Johansson , H. Jing , J. Zhang , and F. Nori , Squeezed optomechanics with phase-matched amplification and dissipation, Phys. Rev. Lett. 114(9), 093602(2015)
CrossRef
ADS
Google scholar
|
[6] |
A. Szorkovszky , A. C. Doherty , G. I. Harris , and W. P. Bowen , Mechanical squeezing via parametric amplification and weak measurement, Phys. Rev. Lett. 107(21), 213603(2011)
CrossRef
ADS
Google scholar
|
[7] |
K. Jähne , C. Genes , K. Hammerer , M. Wallquist , E. S. Polzik , and P. Zoller , Cavity-assisted squeezing of a mechanical oscillator, Phys. Rev. A 79(6), 063819(2009)
CrossRef
ADS
Google scholar
|
[8] |
M. Asjad , G. S. Agarwal , M. S. Kim , P. Tombesi , G. D. Giuseppe , and D. Vitali , Robust stationary mechanical squeezing in a kicked quadratic optomechanical system, Phys. Rev. A 89(2), 023849(2014)
CrossRef
ADS
Google scholar
|
[9] |
X. L. Huang , T. Wang , and X. X. Yi , Effects of reservoir squeezing on quantum systems and work extraction, Phys. Rev. E 86(5), 051105(2012)
CrossRef
ADS
Google scholar
|
[10] |
L. Tian and H. L. Wang , Optical wavelength conversion of quantum states with optomechanics, Phys. Rev. A 82(5), 053806(2010)
CrossRef
ADS
Google scholar
|
[11] |
C. Genes , D. Vitali , P. Tombesi , S. Gigan , and M. Aspelmeyer , Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes, Phys. Rev. A 77(3), 033804(2008)
CrossRef
ADS
Google scholar
|
[12] |
A. Nunnenkamp , K. Børkje , J. G. E. Harris , and S. M. Girvin , Cooling and squeezing via quadratic optomechanical coupling, Phys. Rev. A 82(2), 021806(2010)
CrossRef
ADS
Google scholar
|
[13] |
S. Mancini , D. Vitali , and P. Tombesi , Optomechanical cooling of a macroscopic oscillator by homodyne feedback, Phys. Rev. Lett. 80(4), 688(1998)
CrossRef
ADS
Google scholar
|
[14] |
R. W. Peterson , T. P. Purdy , N. S. Kampel , R. W. Andrews , P. L. Yu , K. W. Lehnert , and C. A. Regal , Laser cooling of a micromechanical membrane to the quantum backaction limit, Phys. Rev. Lett. 116(6), 063601(2016)
CrossRef
ADS
Google scholar
|
[15] |
J. Y. Yang , D. Y. Wang , C. H. Bai , S. Y. Guan , X. Y. Gao , A. D. Zhu , and H. F. Wang , Ground-state cooling of mechanical oscillator via quadratic optomechanical coupling with two coupled optical cavities, Opt. Express 27(16), 22855(2019)
CrossRef
ADS
Google scholar
|
[16] |
F. Marquardt , J. P. Chen , A. A. Clerk , and S. M. Girvin , Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett. 99(9), 093902(2007)
CrossRef
ADS
Google scholar
|
[17] |
A. H. Safavi-Naeini and O. Painter , Proposal for an optomechanical traveling wave phonon–photon translator, New J. Phys. 13(1), 013017(2011)
CrossRef
ADS
Google scholar
|
[18] |
K. Stannigel , P. Komar , S. J. M. Habraken , S. D. Bennett , M. D. Lukin , P. Zoller , and P. Rabl , Optomechanical quantum information processing with photons and phonons, Phys. Rev. Lett. 109(1), 013603(2012)
CrossRef
ADS
Google scholar
|
[19] |
M. Tsang , Cavity quantum electro-optics (II): Inputoutput relations between traveling optical and microwave fields, Phys. Rev. A 84(4), 043845(2011)
CrossRef
ADS
Google scholar
|
[20] |
X. W. Xu , Y. J. Zhao , and Y. X. Liu , Entangled-state engineering of vibrational modes in a multimembrane optomechanical system, Phys. Rev. A 88(2), 022325(2013)
CrossRef
ADS
Google scholar
|
[21] |
X. W. Xu , Y. X. Liu , C. P. Sun , and Y. Li , Mechanical PT symmetry in coupled optomechanical systems, Phys. Rev. A 92(1), 013852(2015)
CrossRef
ADS
Google scholar
|
[22] |
Y. D. Wang and A. A. Clerk , Reservoir-engineered entanglement in optomechanical systems, Phys. Rev. Lett. 110(25), 253601(2013)
CrossRef
ADS
Google scholar
|
[23] |
V. Fiore , Y. Yang , M. C. Kuzyk , R. Barbour , L. Tian , and H. Wang , Storing optical information as a mechanical excitation in a silica optomechanical resonator, Phys. Rev. Lett. 107(13), 133601(2011)
CrossRef
ADS
Google scholar
|
[24] |
Y. D. Wang and A. A. Clerk , Using interference for high fidelity quantum state transfer in optomechanics, Phys. Rev. Lett. 108(15), 153603(2012)
CrossRef
ADS
Google scholar
|
[25] |
S. S. U and A. Narayanan , Mechanical switch for state transfer in dual-cavity optomechanical systems., Phys. Rev. A 88(3), 033802(2013)
CrossRef
ADS
Google scholar
|
[26] |
K. C. Schwab and M. L. Roukes , Putting mechanics into quantum mechanics, Phys. Today 58(7), 36(2005)
CrossRef
ADS
Google scholar
|
[27] |
T. Kippenberg and K. Vahala , Cavity opto-mechanics, Opt. Express 15(25), 17172(2007)
CrossRef
ADS
Google scholar
|
[28] |
V. Fiore , Y. Yang , M. C. Kuzyk , R. Barbour , L. Tian , and H. L. Wang , Storing optical information as a mechanical excitation in a silica optomechanical resonator, Phys. Rev. Lett. 107(13), 133601(2011)
CrossRef
ADS
Google scholar
|
[29] |
Y. D. Wang and A. A. Clerk , Using interference for high fidelity quantum state transfer in optomechanics, Phys. Rev. Lett. 108(15), 153603(2012)
CrossRef
ADS
Google scholar
|
[30] |
S. Barzanjeh , M. Abdi , G. J. Milburn , P. Tombesi , and D. Vitali , Reversible optical-to-microwave quantum interface, Phys. Rev. Lett. 109(13), 130503(2012)
CrossRef
ADS
Google scholar
|
[31] |
H. K. Li , X. X. Ren , Y. C. Liu , and Y. F. Xiao , Photonphoton interactions in a largely detuned optomechanical cavity, Phys. Rev. A 88(5), 053850(2013)
CrossRef
ADS
Google scholar
|
[32] |
M. D. La Haye , O. Buu , B. Camarota , and K. C. Schwab , Approaching the quantum limit of a nanomechanical resonator, Science 304(5667), 74(2004)
CrossRef
ADS
Google scholar
|
[33] |
J. J. Li and K. D. Zhu , All-optical mass sensing with coupled mechanical resonator systems, Phys. Rep. 525(3), 223(2013)
CrossRef
ADS
Google scholar
|
[34] |
B. Pepper , R. Ghobadi , E. Jeffrey , C. Simon , and D. Bouwmeester , Optomechanical superpositions via nested interferometry, Phys. Rev. Lett. 109(2), 023601(2012)
CrossRef
ADS
Google scholar
|
[35] |
P. Sekatski , M. Aspelmeyer , and N. Sangouard , Macroscopic optomechanics from displaced single-photon entanglement, Phys. Rev. Lett. 112(8), 080502(2014)
CrossRef
ADS
Google scholar
|
[36] |
A. Carlini , A. Hosoya , T. Koike , and Y. Okudaira , Timeoptimal quantum evolution, Phys. Rev. Lett. 96(6), 060503(2006)
CrossRef
ADS
Google scholar
|
[37] |
N. Khaneja , R. Brockett , and S. J. Glaser , Time optimal control in spin systems, Phys. Rev. A 63(3), 032308(2001)
CrossRef
ADS
Google scholar
|
[38] |
P. D’ Alessandro and E. De Santis , Controlled invariance and feedback laws, IE EE Trans. Automat. Contr. 46(7), 1141(2001)
CrossRef
ADS
Google scholar
|
[39] |
J. P. Palao and R. Kosloff , Quantum computing by an optimal control algorithm for unitary transformations, Phys. Rev. Lett. 89(18), 188301(2002)
CrossRef
ADS
Google scholar
|
[40] |
M. Mirrahimi , P. Rouchon , and G. Turinici , Lyapunov control of bilinear Schrödinger equations, Automatica 41, 1987(2005)
CrossRef
ADS
Google scholar
|
[41] |
X. T. Wang and S. G. Schirmer , Entanglement generation between distant atoms by Lyapunov control, Phys. Rev. A 80(4), 042305(2009)
CrossRef
ADS
Google scholar
|
[42] |
W. Wang , L. C. Wang , and X. X. Yi , Lyapunov control on quantum open systems in decoherence-free subspaces, Phys. Rev. A 82(3), 034308(2010)
CrossRef
ADS
Google scholar
|
[43] |
Y. H. Chen , W. Qin , and F. Nori , Fast and high-fidelity generation of steady-state entanglement using pulse modulation and parametric amplification, Phys. Rev. A 100(1), 012339(2019)
CrossRef
ADS
Google scholar
|
[44] |
C. H. Dong , V. Fiore , M. C. Kuzyk , and H. Wang , Optomechanical dark mode, Science 338(6114), 1609(2012)
CrossRef
ADS
Google scholar
|
[45] |
D. Garg , A. K. Chauhan , and A. Biswas , Adiabatic transfer of energy fluctuations between membranes inside an optical cavity, Phys. Rev. A 96(2), 023837(2017)
CrossRef
ADS
Google scholar
|
[46] |
Y. H. Chen , Z. C. Shi , J. Song , and Y. Xia , Invariant-based inverse engineering for fluctuation transfer between membranes in an optomechanical cavity system, Phys. Rev. A 97(2), 023841(2018)
CrossRef
ADS
Google scholar
|
[47] |
Y. H. Kang , Z. C. Shi , B. H. Huang , J. Song , and Y. Xia , Deterministic conversions between Greenberger–Horne–Zeilinger states and W states of spin qubits via Lietransform-based inverse Hamiltonian engineering, Phys. Rev. A 100(1), 012332(2019)
CrossRef
ADS
Google scholar
|
[48] |
Y. H. Kang and Y. Xia , Unconventional geometric phase gate of transmon qubits with inverse Hamiltonian engineering, IE EE J. Sel. Top. Quantum Electron. 26(3), 6700107(2020)
CrossRef
ADS
Google scholar
|
[49] |
Y. H. Kang , Z. C. Shi , B. H. Huang , J. Song , and Y. Xia , Flexible scheme for the implementation of nonadiabatic geometric quantum computation, Phys. Rev. A 101(3), 032322(2020)
CrossRef
ADS
Google scholar
|
[50] |
Y. H. Kang , Y. H. Chen , Z. C. Shi , B. H. Huang , J. Song , and Y. Xia , One-step implementation of N‐qubit nonadiabatic holonomic quantum gates with superconducting qubits via inverse hamiltonian engineering, Ann. Phys. 531(7), 1800427(2019)
CrossRef
ADS
Google scholar
|
[51] |
Y. Wang , C. S. Hu , Z. C. Shi , B. H. Huang , J. Song , and Y. Xia , Accelerated and noise‐resistant protocol of dissipation‐based Knill–Laflamme–Milburn state generation with Lyapunov control, Ann. Phys. 531(7), 1900006(2019)
CrossRef
ADS
Google scholar
|
[52] |
Y. H. Zhou , H. Z. Shen , and X. X. Yi , Unconventional photon blockade with second-order nonlinearity, Phys. Rev. A 92(2), 023838(2015)
CrossRef
ADS
Google scholar
|
[53] |
Z. C. Zhang , J. C. Pei , Y. P. Wang , and X. G. Wang , Measuring orbital angular momentum of vortex beams in optomechanics, Front. Phys. 16(3), 32503(2021)
CrossRef
ADS
Google scholar
|
[54] |
X. B. Yan , H. L. Lu , F. Gao , F. Gao , and L. Yang , Perfect optical nonreciprocity in a double-cavity optomechanical system, Front. Phys. 14(5), 52601(2019)
CrossRef
ADS
Google scholar
|
[55] |
M. M. Zhao , Z. Qian , B. P. Hou , Y. Liu , and Y. H. Zhao , Optomechanical properties of a degenerate nonperiodic cavity chain, Front. Phys. 14(2), 22601(2019)
CrossRef
ADS
Google scholar
|
[56] |
J. H. Liu , Y. B. Zhang , Y. F. Yu , and Z. M. Zhang , Photonphonon squeezing and entanglement in a cavity optomechanical system with a flying atom, Front. Phys. 14(1), 12601(2019)
CrossRef
ADS
Google scholar
|
[57] |
S. Liu , J. H. Shen , R. H. Zheng , Y. H. Kang , Z. C. Shi , J. Song , and Y. Xia , Optimized nonadiabatic holonomic quantum computation based on Förster resonance in Rydberg atoms, Front. Phys. 17(2), 21502(2022)
CrossRef
ADS
Google scholar
|
[58] |
Y. H. Kang , Z. C. Shi , J. Song , and Y. Xia , Heralded atomic nonadiabatic holonomic quantum computation with Rydberg blockade, Phys. Rev. A 102(2), 022617(2020)
CrossRef
ADS
Google scholar
|
[59] |
Y. H. Kang , Z. C. Shi , J. Song , and Y. Xia , Effective discrimination of chiral molecules in a cavity, Opt. Lett. 45(17), 4952(2020)
CrossRef
ADS
Google scholar
|
[60] |
D. D’ Alessandro , Introduction to Quantum Control and Dynamics, Taylor and Francis Group, Boca Raton, 2007
|
[61] |
Z. C. Shi , X. L. Zhao , and X. X. Yi , Robust state transfer with high fidelity in spin-1/2 chains by Lyapunov control, Phys. Rev. A 91(3), 032301(2015)
CrossRef
ADS
Google scholar
|
[62] |
X. X. Yi , X. L. Huang , C. F. Wu , and C. H. Oh , Driving quantum systems into decoherence-free subspaces by Lyapunov control, Phys. Rev. A 80(5), 052316(2009)
CrossRef
ADS
Google scholar
|
[63] |
S. C. Hou , M. A. Khan , X. X. Yi , D. Dong , and I. R. Petersen , Optimal Lyapunov-based quantum control for quantum systems, Phys. Rev. A 86(2), 022321(2012)
CrossRef
ADS
Google scholar
|
[64] |
J. T. Sheng , X. R. Wei , C. Yang , and H. B. Wu , Selforganized synchronization of phonon lasers, Phys. Rev. Lett. 124(5), 053604(2020)
CrossRef
ADS
Google scholar
|
[65] |
W. W. Zhou , S. G. Schirmer , M. Zhang , and H. Y. Dai , Bang–bang control design for quantum state transfer based on hyperspherical coordinates and optimal time–energy control, J. Phys. A Math. Theor. 44(10), 105303(2011)
CrossRef
ADS
Google scholar
|
[66] |
X. T. Wang , S. Vinjanampathy , F. W. Strauch , and K. Jacobs , Ultraefficient cooling of resonators: Beating sideband cooling with quantum control, Phys. Rev. Lett. 107(17), 177204(2011)
CrossRef
ADS
Google scholar
|
[67] |
L. Tian , Ground state cooling of a nanomechanical resonator via parametric linear coupling, Phys. Rev. B 79(19), 193407(2009)
CrossRef
ADS
Google scholar
|
[68] |
K. Nishio , K. Kashima , and J. Imura , Effects of time delay in feedback control of linear quantum systems, Phys. Rev. A 79(6), 062105(2009)
CrossRef
ADS
Google scholar
|
[69] |
X. X. Yi , S. L. Wu , C. Wu , X. L. Feng , and C. H. Oh , Time-delay effects and simplified control fields in quantum Lyapunov control, J. Phys. At. Mol. Opt. Phys. 44(19), 195503(2011)
CrossRef
ADS
Google scholar
|
[70] |
D. Stefanatos , J. Ruths , and J. S. Li , Frictionless atom cooling in harmonic traps: A time-optimal approach, Phys. Rev. A 82(6), 063422(2010)
CrossRef
ADS
Google scholar
|
[71] |
X. J. Lu , X. Chen , J. Alonso , and J. G. Muga , Fast transitionless expansions of Gaussian anharmonic traps for cold atoms: Bang–singular–bang control, Phys. Rev. A 89(2), 023627(2014)
CrossRef
ADS
Google scholar
|
[72] |
M. Palmero , E. Torrontegui , D. Guéry-Odelin , and J. G. Muga , Fast transport of two ions in an anharmonic trap, Phys. Rev. A 88(5), 053423(2013)
CrossRef
ADS
Google scholar
|
[73] |
M. Palmero , R. Bowler , J. P. Gaebler , D. Leibfried , and J. G. Muga , Fast transport of mixed-species ion chains within a Paul trap, Phys. Rev. A 90(5), 053408(2014)
CrossRef
ADS
Google scholar
|
[74] |
Y. C. Ding , T. Y. Huang , K. Paul , M. J. Hao , and X. Chen , Smooth bang–bang shortcuts to adiabaticity for atomic transport in a moving harmonic trap, Phys. Rev. A 101(6), 063410(2020)
CrossRef
ADS
Google scholar
|
[75] |
S. Balasubramanian , S. Y. Han , B. T. Yoshimura , and J. K. Freericks , Bang–bang shortcut to adiabaticity in trapped-ion quantum simulators, Phys. Rev. A 97(2), 022313(2018)
CrossRef
ADS
Google scholar
|
[76] |
D. Vitali , S. Gigan , A. Ferreira , H. R. Böhm , P. Tombesi , A. Guerreiro , V. Vedral , A. Zeilinger , and M. Aspelmeyer , Optomechanical entanglement between a movable mirror and a cavity field, Phys. Rev. Lett. 98(3), 030405(2007)
CrossRef
ADS
Google scholar
|
[77] |
C. S. Hu , Z. Q. Liu , Y. Liu , L. T. Shen , H. Z. Wu , and S. B. Zheng , Entanglement beating in a cavity optomechanical system under two-field driving, Phys. Rev. A 101(3), 033810(2020)
CrossRef
ADS
Google scholar
|
[78] |
G. De Chiara , M. Paternostro , and G. M. Palma , Entanglement detection in hybrid optomechanical systems, Phys. Rev. A 83(5), 052324(2011)
CrossRef
ADS
Google scholar
|
[79] |
L. Tian and H. L. Wang , Optical wavelength conversion of quantum states with optomechanics, Phys. Rev. A 82(5), 053806(2010)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |