Quantum control with Lyapunov function and bang–bang solution in the optomechanics system

Yu Wang, Yi-Hao Kang, Chang-Sheng Hu, Bi-Hua Huang, Jie Song, Yan Xia

PDF(1903 KB)
PDF(1903 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (3) : 32501. DOI: 10.1007/s11467-021-1119-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Quantum control with Lyapunov function and bang–bang solution in the optomechanics system

Author information +
History +

Abstract

We propose a quantum control scheme with the help of Lyapunov control function in the optomechanics system. The principle of the idea is to design suitable control fields to steer the Lyapunov control function to zero as t → ∞ while the quantum system is driven to the target state. Such an evolution makes no limit on the initial state and one needs not manipulate the laser pulses during the evolution. To prove the effectiveness of the scheme, we show two useful applications in the optomechanics system: one is the cooling of nanomechanical resonator and the other is the quantum fluctuation transfer between membranes. Numerical simulation demonstrates that the perfect and fast cooling of nanomechanical resonator and quantum fluctuation transfer between membranes can be rapidly achieved. Besides, some optimizations are made on the traditional Lyapunov control waveform and the optimized bang–bang control fields makes Lyapunov function V decrease faster. The optimized quantum control scheme can achieve the same goal with greater efficiency. Hence, we hope that this work may open a new avenue of the experimental realization of cooling mechanical oscillator, quantum fluctuations transfer between membranes and other quantum optomechanics tasks and become an alternative candidate for quantum manipulation of macroscopic mechanical devices in the near future.

Graphical abstract

Keywords

bang–bang solution / quantum control / Lyapunov control / optomechanics system

Cite this article

Download citation ▾
Yu Wang, Yi-Hao Kang, Chang-Sheng Hu, Bi-Hua Huang, Jie Song, Yan Xia. Quantum control with Lyapunov function and bang–bang solution in the optomechanics system. Front. Phys., 2022, 17(3): 32501 https://doi.org/10.1007/s11467-021-1119-0

References

[1]
T. J. Kippenberg and K. J. Vahala , Cavity optomechanics: Back-action at the mesoscale, Science 321(5893), 1172(2008)
CrossRef ADS Google scholar
[2]
M. Aspelmeyer , T. J. Kippenberg , and F. Marquardt , Cavity optomechanics, Rev. Mod. Phys. 86(4), 1391(2014)
CrossRef ADS Google scholar
[3]
I. Wilson-Rae , N. Nooshi , W. Zwerger , and T. J. Kippenberg , Theory of ground state cooling of a mechanical oscillator using dynamical backaction, Phys. Rev. Lett. 99(9), 093901(2007)
CrossRef ADS Google scholar
[4]
Y. C. Liu , Y. F. Xiao , X. S. Luan , and C. W. Wong , Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics, Phys. Rev. Lett. 110(15), 153606(2013)
CrossRef ADS Google scholar
[5]
X. Y. Lü , Y. Wu , J. R. Johansson , H. Jing , J. Zhang , and F. Nori , Squeezed optomechanics with phase-matched amplification and dissipation, Phys. Rev. Lett. 114(9), 093602(2015)
CrossRef ADS Google scholar
[6]
A. Szorkovszky , A. C. Doherty , G. I. Harris , and W. P. Bowen , Mechanical squeezing via parametric amplification and weak measurement, Phys. Rev. Lett. 107(21), 213603(2011)
CrossRef ADS Google scholar
[7]
K. Jähne , C. Genes , K. Hammerer , M. Wallquist , E. S. Polzik , and P. Zoller , Cavity-assisted squeezing of a mechanical oscillator, Phys. Rev. A 79(6), 063819(2009)
CrossRef ADS Google scholar
[8]
M. Asjad , G. S. Agarwal , M. S. Kim , P. Tombesi , G. D. Giuseppe , and D. Vitali , Robust stationary mechanical squeezing in a kicked quadratic optomechanical system, Phys. Rev. A 89(2), 023849(2014)
CrossRef ADS Google scholar
[9]
X. L. Huang , T. Wang , and X. X. Yi , Effects of reservoir squeezing on quantum systems and work extraction, Phys. Rev. E 86(5), 051105(2012)
CrossRef ADS Google scholar
[10]
L. Tian and H. L. Wang , Optical wavelength conversion of quantum states with optomechanics, Phys. Rev. A 82(5), 053806(2010)
CrossRef ADS Google scholar
[11]
C. Genes , D. Vitali , P. Tombesi , S. Gigan , and M. Aspelmeyer , Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes, Phys. Rev. A 77(3), 033804(2008)
CrossRef ADS Google scholar
[12]
A. Nunnenkamp , K. Børkje , J. G. E. Harris , and S. M. Girvin , Cooling and squeezing via quadratic optomechanical coupling, Phys. Rev. A 82(2), 021806(2010)
CrossRef ADS Google scholar
[13]
S. Mancini , D. Vitali , and P. Tombesi , Optomechanical cooling of a macroscopic oscillator by homodyne feedback, Phys. Rev. Lett. 80(4), 688(1998)
CrossRef ADS Google scholar
[14]
R. W. Peterson , T. P. Purdy , N. S. Kampel , R. W. Andrews , P. L. Yu , K. W. Lehnert , and C. A. Regal , Laser cooling of a micromechanical membrane to the quantum backaction limit, Phys. Rev. Lett. 116(6), 063601(2016)
CrossRef ADS Google scholar
[15]
J. Y. Yang , D. Y. Wang , C. H. Bai , S. Y. Guan , X. Y. Gao , A. D. Zhu , and H. F. Wang , Ground-state cooling of mechanical oscillator via quadratic optomechanical coupling with two coupled optical cavities, Opt. Express 27(16), 22855(2019)
CrossRef ADS Google scholar
[16]
F. Marquardt , J. P. Chen , A. A. Clerk , and S. M. Girvin , Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett. 99(9), 093902(2007)
CrossRef ADS Google scholar
[17]
A. H. Safavi-Naeini and O. Painter , Proposal for an optomechanical traveling wave phonon–photon translator, New J. Phys. 13(1), 013017(2011)
CrossRef ADS Google scholar
[18]
K. Stannigel , P. Komar , S. J. M. Habraken , S. D. Bennett , M. D. Lukin , P. Zoller , and P. Rabl , Optomechanical quantum information processing with photons and phonons, Phys. Rev. Lett. 109(1), 013603(2012)
CrossRef ADS Google scholar
[19]
M. Tsang , Cavity quantum electro-optics (II): Inputoutput relations between traveling optical and microwave fields, Phys. Rev. A 84(4), 043845(2011)
CrossRef ADS Google scholar
[20]
X. W. Xu , Y. J. Zhao , and Y. X. Liu , Entangled-state engineering of vibrational modes in a multimembrane optomechanical system, Phys. Rev. A 88(2), 022325(2013)
CrossRef ADS Google scholar
[21]
X. W. Xu , Y. X. Liu , C. P. Sun , and Y. Li , Mechanical PT symmetry in coupled optomechanical systems, Phys. Rev. A 92(1), 013852(2015)
CrossRef ADS Google scholar
[22]
Y. D. Wang and A. A. Clerk , Reservoir-engineered entanglement in optomechanical systems, Phys. Rev. Lett. 110(25), 253601(2013)
CrossRef ADS Google scholar
[23]
V. Fiore , Y. Yang , M. C. Kuzyk , R. Barbour , L. Tian , and H. Wang , Storing optical information as a mechanical excitation in a silica optomechanical resonator, Phys. Rev. Lett. 107(13), 133601(2011)
CrossRef ADS Google scholar
[24]
Y. D. Wang and A. A. Clerk , Using interference for high fidelity quantum state transfer in optomechanics, Phys. Rev. Lett. 108(15), 153603(2012)
CrossRef ADS Google scholar
[25]
S. S. U and A. Narayanan , Mechanical switch for state transfer in dual-cavity optomechanical systems., Phys. Rev. A 88(3), 033802(2013)
CrossRef ADS Google scholar
[26]
K. C. Schwab and M. L. Roukes , Putting mechanics into quantum mechanics, Phys. Today 58(7), 36(2005)
CrossRef ADS Google scholar
[27]
T. Kippenberg and K. Vahala , Cavity opto-mechanics, Opt. Express 15(25), 17172(2007)
CrossRef ADS Google scholar
[28]
V. Fiore , Y. Yang , M. C. Kuzyk , R. Barbour , L. Tian , and H. L. Wang , Storing optical information as a mechanical excitation in a silica optomechanical resonator, Phys. Rev. Lett. 107(13), 133601(2011)
CrossRef ADS Google scholar
[29]
Y. D. Wang and A. A. Clerk , Using interference for high fidelity quantum state transfer in optomechanics, Phys. Rev. Lett. 108(15), 153603(2012)
CrossRef ADS Google scholar
[30]
S. Barzanjeh , M. Abdi , G. J. Milburn , P. Tombesi , and D. Vitali , Reversible optical-to-microwave quantum interface, Phys. Rev. Lett. 109(13), 130503(2012)
CrossRef ADS Google scholar
[31]
H. K. Li , X. X. Ren , Y. C. Liu , and Y. F. Xiao , Photonphoton interactions in a largely detuned optomechanical cavity, Phys. Rev. A 88(5), 053850(2013)
CrossRef ADS Google scholar
[32]
M. D. La Haye , O. Buu , B. Camarota , and K. C. Schwab , Approaching the quantum limit of a nanomechanical resonator, Science 304(5667), 74(2004)
CrossRef ADS Google scholar
[33]
J. J. Li and K. D. Zhu , All-optical mass sensing with coupled mechanical resonator systems, Phys. Rep. 525(3), 223(2013)
CrossRef ADS Google scholar
[34]
B. Pepper , R. Ghobadi , E. Jeffrey , C. Simon , and D. Bouwmeester , Optomechanical superpositions via nested interferometry, Phys. Rev. Lett. 109(2), 023601(2012)
CrossRef ADS Google scholar
[35]
P. Sekatski , M. Aspelmeyer , and N. Sangouard , Macroscopic optomechanics from displaced single-photon entanglement, Phys. Rev. Lett. 112(8), 080502(2014)
CrossRef ADS Google scholar
[36]
A. Carlini , A. Hosoya , T. Koike , and Y. Okudaira , Timeoptimal quantum evolution, Phys. Rev. Lett. 96(6), 060503(2006)
CrossRef ADS Google scholar
[37]
N. Khaneja , R. Brockett , and S. J. Glaser , Time optimal control in spin systems, Phys. Rev. A 63(3), 032308(2001)
CrossRef ADS Google scholar
[38]
P. D’ Alessandro and E. De Santis , Controlled invariance and feedback laws, IE EE Trans. Automat. Contr. 46(7), 1141(2001)
CrossRef ADS Google scholar
[39]
J. P. Palao and R. Kosloff , Quantum computing by an optimal control algorithm for unitary transformations, Phys. Rev. Lett. 89(18), 188301(2002)
CrossRef ADS Google scholar
[40]
M. Mirrahimi , P. Rouchon , and G. Turinici , Lyapunov control of bilinear Schrödinger equations, Automatica 41, 1987(2005)
CrossRef ADS Google scholar
[41]
X. T. Wang and S. G. Schirmer , Entanglement generation between distant atoms by Lyapunov control, Phys. Rev. A 80(4), 042305(2009)
CrossRef ADS Google scholar
[42]
W. Wang , L. C. Wang , and X. X. Yi , Lyapunov control on quantum open systems in decoherence-free subspaces, Phys. Rev. A 82(3), 034308(2010)
CrossRef ADS Google scholar
[43]
Y. H. Chen , W. Qin , and F. Nori , Fast and high-fidelity generation of steady-state entanglement using pulse modulation and parametric amplification, Phys. Rev. A 100(1), 012339(2019)
CrossRef ADS Google scholar
[44]
C. H. Dong , V. Fiore , M. C. Kuzyk , and H. Wang , Optomechanical dark mode, Science 338(6114), 1609(2012)
CrossRef ADS Google scholar
[45]
D. Garg , A. K. Chauhan , and A. Biswas , Adiabatic transfer of energy fluctuations between membranes inside an optical cavity, Phys. Rev. A 96(2), 023837(2017)
CrossRef ADS Google scholar
[46]
Y. H. Chen , Z. C. Shi , J. Song , and Y. Xia , Invariant-based inverse engineering for fluctuation transfer between membranes in an optomechanical cavity system, Phys. Rev. A 97(2), 023841(2018)
CrossRef ADS Google scholar
[47]
Y. H. Kang , Z. C. Shi , B. H. Huang , J. Song , and Y. Xia , Deterministic conversions between Greenberger–Horne–Zeilinger states and W states of spin qubits via Lietransform-based inverse Hamiltonian engineering, Phys. Rev. A 100(1), 012332(2019)
CrossRef ADS Google scholar
[48]
Y. H. Kang and Y. Xia , Unconventional geometric phase gate of transmon qubits with inverse Hamiltonian engineering, IE EE J. Sel. Top. Quantum Electron. 26(3), 6700107(2020)
CrossRef ADS Google scholar
[49]
Y. H. Kang , Z. C. Shi , B. H. Huang , J. Song , and Y. Xia , Flexible scheme for the implementation of nonadiabatic geometric quantum computation, Phys. Rev. A 101(3), 032322(2020)
CrossRef ADS Google scholar
[50]
Y. H. Kang , Y. H. Chen , Z. C. Shi , B. H. Huang , J. Song , and Y. Xia , One-step implementation of N‐qubit nonadiabatic holonomic quantum gates with superconducting qubits via inverse hamiltonian engineering, Ann. Phys. 531(7), 1800427(2019)
CrossRef ADS Google scholar
[51]
Y. Wang , C. S. Hu , Z. C. Shi , B. H. Huang , J. Song , and Y. Xia , Accelerated and noise‐resistant protocol of dissipation‐based Knill–Laflamme–Milburn state generation with Lyapunov control, Ann. Phys. 531(7), 1900006(2019)
CrossRef ADS Google scholar
[52]
Y. H. Zhou , H. Z. Shen , and X. X. Yi , Unconventional photon blockade with second-order nonlinearity, Phys. Rev. A 92(2), 023838(2015)
CrossRef ADS Google scholar
[53]
Z. C. Zhang , J. C. Pei , Y. P. Wang , and X. G. Wang , Measuring orbital angular momentum of vortex beams in optomechanics, Front. Phys. 16(3), 32503(2021)
CrossRef ADS Google scholar
[54]
X. B. Yan , H. L. Lu , F. Gao , F. Gao , and L. Yang , Perfect optical nonreciprocity in a double-cavity optomechanical system, Front. Phys. 14(5), 52601(2019)
CrossRef ADS Google scholar
[55]
M. M. Zhao , Z. Qian , B. P. Hou , Y. Liu , and Y. H. Zhao , Optomechanical properties of a degenerate nonperiodic cavity chain, Front. Phys. 14(2), 22601(2019)
CrossRef ADS Google scholar
[56]
J. H. Liu , Y. B. Zhang , Y. F. Yu , and Z. M. Zhang , Photonphonon squeezing and entanglement in a cavity optomechanical system with a flying atom, Front. Phys. 14(1), 12601(2019)
CrossRef ADS Google scholar
[57]
S. Liu , J. H. Shen , R. H. Zheng , Y. H. Kang , Z. C. Shi , J. Song , and Y. Xia , Optimized nonadiabatic holonomic quantum computation based on Förster resonance in Rydberg atoms, Front. Phys. 17(2), 21502(2022)
CrossRef ADS Google scholar
[58]
Y. H. Kang , Z. C. Shi , J. Song , and Y. Xia , Heralded atomic nonadiabatic holonomic quantum computation with Rydberg blockade, Phys. Rev. A 102(2), 022617(2020)
CrossRef ADS Google scholar
[59]
Y. H. Kang , Z. C. Shi , J. Song , and Y. Xia , Effective discrimination of chiral molecules in a cavity, Opt. Lett. 45(17), 4952(2020)
CrossRef ADS Google scholar
[60]
D. D’ Alessandro , Introduction to Quantum Control and Dynamics, Taylor and Francis Group, Boca Raton, 2007
[61]
Z. C. Shi , X. L. Zhao , and X. X. Yi , Robust state transfer with high fidelity in spin-1/2 chains by Lyapunov control, Phys. Rev. A 91(3), 032301(2015)
CrossRef ADS Google scholar
[62]
X. X. Yi , X. L. Huang , C. F. Wu , and C. H. Oh , Driving quantum systems into decoherence-free subspaces by Lyapunov control, Phys. Rev. A 80(5), 052316(2009)
CrossRef ADS Google scholar
[63]
S. C. Hou , M. A. Khan , X. X. Yi , D. Dong , and I. R. Petersen , Optimal Lyapunov-based quantum control for quantum systems, Phys. Rev. A 86(2), 022321(2012)
CrossRef ADS Google scholar
[64]
J. T. Sheng , X. R. Wei , C. Yang , and H. B. Wu , Selforganized synchronization of phonon lasers, Phys. Rev. Lett. 124(5), 053604(2020)
CrossRef ADS Google scholar
[65]
W. W. Zhou , S. G. Schirmer , M. Zhang , and H. Y. Dai , Bang–bang control design for quantum state transfer based on hyperspherical coordinates and optimal time–energy control, J. Phys. A Math. Theor. 44(10), 105303(2011)
CrossRef ADS Google scholar
[66]
X. T. Wang , S. Vinjanampathy , F. W. Strauch , and K. Jacobs , Ultraefficient cooling of resonators: Beating sideband cooling with quantum control, Phys. Rev. Lett. 107(17), 177204(2011)
CrossRef ADS Google scholar
[67]
L. Tian , Ground state cooling of a nanomechanical resonator via parametric linear coupling, Phys. Rev. B 79(19), 193407(2009)
CrossRef ADS Google scholar
[68]
K. Nishio , K. Kashima , and J. Imura , Effects of time delay in feedback control of linear quantum systems, Phys. Rev. A 79(6), 062105(2009)
CrossRef ADS Google scholar
[69]
X. X. Yi , S. L. Wu , C. Wu , X. L. Feng , and C. H. Oh , Time-delay effects and simplified control fields in quantum Lyapunov control, J. Phys. At. Mol. Opt. Phys. 44(19), 195503(2011)
CrossRef ADS Google scholar
[70]
D. Stefanatos , J. Ruths , and J. S. Li , Frictionless atom cooling in harmonic traps: A time-optimal approach, Phys. Rev. A 82(6), 063422(2010)
CrossRef ADS Google scholar
[71]
X. J. Lu , X. Chen , J. Alonso , and J. G. Muga , Fast transitionless expansions of Gaussian anharmonic traps for cold atoms: Bang–singular–bang control, Phys. Rev. A 89(2), 023627(2014)
CrossRef ADS Google scholar
[72]
M. Palmero , E. Torrontegui , D. Guéry-Odelin , and J. G. Muga , Fast transport of two ions in an anharmonic trap, Phys. Rev. A 88(5), 053423(2013)
CrossRef ADS Google scholar
[73]
M. Palmero , R. Bowler , J. P. Gaebler , D. Leibfried , and J. G. Muga , Fast transport of mixed-species ion chains within a Paul trap, Phys. Rev. A 90(5), 053408(2014)
CrossRef ADS Google scholar
[74]
Y. C. Ding , T. Y. Huang , K. Paul , M. J. Hao , and X. Chen , Smooth bang–bang shortcuts to adiabaticity for atomic transport in a moving harmonic trap, Phys. Rev. A 101(6), 063410(2020)
CrossRef ADS Google scholar
[75]
S. Balasubramanian , S. Y. Han , B. T. Yoshimura , and J. K. Freericks , Bang–bang shortcut to adiabaticity in trapped-ion quantum simulators, Phys. Rev. A 97(2), 022313(2018)
CrossRef ADS Google scholar
[76]
D. Vitali , S. Gigan , A. Ferreira , H. R. Böhm , P. Tombesi , A. Guerreiro , V. Vedral , A. Zeilinger , and M. Aspelmeyer , Optomechanical entanglement between a movable mirror and a cavity field, Phys. Rev. Lett. 98(3), 030405(2007)
CrossRef ADS Google scholar
[77]
C. S. Hu , Z. Q. Liu , Y. Liu , L. T. Shen , H. Z. Wu , and S. B. Zheng , Entanglement beating in a cavity optomechanical system under two-field driving, Phys. Rev. A 101(3), 033810(2020)
CrossRef ADS Google scholar
[78]
G. De Chiara , M. Paternostro , and G. M. Palma , Entanglement detection in hybrid optomechanical systems, Phys. Rev. A 83(5), 052324(2011)
CrossRef ADS Google scholar
[79]
L. Tian and H. L. Wang , Optical wavelength conversion of quantum states with optomechanics, Phys. Rev. A 82(5), 053806(2010)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(1903 KB)

Accesses

Citations

Detail

Sections
Recommended

/