Theoretical study of K3Sb/graphene heterostructure for electrochemical nitrogen reduction reaction
Tianyi Wang, Ani Dong, Xiaoli Zhang, Rosalie K. Hocking, Chenghua Sun
Theoretical study of K3Sb/graphene heterostructure for electrochemical nitrogen reduction reaction
Instead of the energy-intensive Haber-Bosch process, electrochemical nitrogen reduction reaction (NRR) is an exciting new carbon neutral technique for ammonia synthesis under ambient conditions. In this work, we investigated K-based electrocatalysts theoretically and demonstrated that K3Sb/graphene performs excellent activity and inhibits hydrogen evolution on alternating reaction pathway. The first hydrogenation step from N2* to NNH* was found to be the most energetic and limiting step (0.61 eV). Graphene substrate plays the critical role to promote electronic conductivity between K3Sb and dinitrogen.
K3Sb/graphene / K12Sb2Se3 / K3Sb / nitrogen reduction reaction / DFT calculation
[1] |
Y. Guo, N. Gao, Y. Bai, J. Zhao, and X. Zeng, Monolayered semiconducting GeAsSe and SnSbTe with ultrahigh hole mobility, Front. Phys. 13(4), 138117 (2018)
|
[2] |
G. Zheng, L. Li, Z. Tian, X. Zhang, and L. Chen, Het-erogeneous single-cluster catalysts (Mn3, Fe3, Co3, and Mo3) supported on nitrogen-doped graphene for robust electrochemical nitrogen reduction, J. Energy Chem. 54, 612 (2021)
|
[3] |
Q. Li, L. He, C. Sun, and X. Zhang, Computational study of MoN2 monolayer as electrochemical catalysts for nitrogen reduction, J. Phys. Chem. C 121(49), 27563 (2017)
|
[4] |
G. Chen, Y. Yuan, H. Jiang, S. Ren, L. Ding, L. Ma, T. Wu, J. Lu, and H. Wang, Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst, Nat. Energy 5(8), 605 (2020)
|
[5] |
L. J. Arachchige, Y. Xu, Z. Dai, X. Zhang, F. Wang, and C. Sun, Theoretical investigation of single and double transition metals anchored on graphyne monolayer for nitrogen reduction reaction, J. Phys. Chem. C 124(28), 15295 (2020)
|
[6] |
W. Gao, P. Wang, J. Guo, F. Chang, T. He, Q. Wang, G. Wu, and P. Chen, Barium hydride-mediated nitrogen transfer and hydrogenation for ammonia synthesis: A case study of cobalt, ACS Catal. 7(5), 3654 (2017)
|
[7] |
P. Wang, F. Chang, W. Gao, J. Guo, G. Wu, T. He, and P. Chen, Breaking scaling relations to achieve lowtemperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation, Nat. Chem. 9(1), 64 (2017)
|
[8] |
C. Guo, J. Ran, A. Vasileff, and S. Qiao, Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions, Energy Environ. Sci. 11(1), 45 (2018)
|
[9] |
C. Lv, Y. Qian, C. Yan, Y. Ding, Y. Liu, G. Chen, and G. Yu, Defect engineering metal-free polymeric carbon nitride electrocatalyst for effective nitrogen fixation under ambient conditions, Angew. Chem. Int. Ed.57(32), 10246 (2018)
|
[10] |
G. Deng, T. Wang, A. A. Alshehri, K. A. Alzahrani, Y. Wang, H. Ye, Y. Luo, and X. Sun, Improving the electrocatalytic N2 reduction activity of Pd nanoparticles through surface modification, J. Mater. Chem. A 7(38), 21674 (2019)
|
[11] |
C. Liu, Q. Li, J. Zhang, Y. Jin, D. R. MacFarlane, and C. Sun, Conversion of dinitrogen to ammonia on Ru atoms supported on boron sheets: A DFT study, J. Mater. Chem. A 7(9), 4771 (2019)
|
[12] |
Y. Hao, Y. Guo, L. Chen, M. Shu, X. Wang, T. Bu, W. Gao, N. Zhang, X. Su, X. Feng, J. Zhou, B. Wang, C. Hu, A. Yin, R. Si, Y. Zhang, and C. Yan, Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water, Nat. Catal. 2(5), 448 (2019)
|
[13] |
W. Wang, H. Zhang, S. Zhang, Y. Liu, G. Wang, C. Sun, and H. Zhao, Potassium-ion-assisted regeneration of active cyano groups in carbon nitride nanoribbons: Visible-lightdriven photocatalytic nitrogen reduction, Angew. Chem. Int. Ed. 58(46), 16644 (2019)
|
[14] |
G. P. Connor and P. L. Holland, Coordination chemistry insights into the role of alkali metal promoters in dinitrogen reduction, Catal. Today 286, 21 (2017)
|
[15] |
D. Yao, C. Tang, L. Li, B. Xia, A. Vasileff, H. Jin, Y. Zhang, and S. Qiao, In situ fragmented bismuth nanoparticles for electrocatalytic nitrogen reduction, Adv. Energy Mater. 10(33), 2001289 (2020)
|
[16] |
L. Kalarasse, B. Bennecer, and F. Kalarasse, Optical properties of the alkali antimonide semiconductors Cs3Sb, Cs2KSb, CsK2Sb and K3Sb, J. Phys. Chem. Solids 71(3), 314 (2010)
|
[17] |
M. Kitano, S. Kanbara, Y. Inoue, N. Kuganathan, P. V. Sushko, T. Yokoyama, M. Hara, and H. Hosono, Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis, Nat. Commun. 6(1), 6731 (2015)
|
[18] |
Z. Yi, Y. Qian, S. Jiang, Y. Li, N. Lin, and Y. Qian, Self-wrinkled graphene as a mechanical buffer: A rational design to boost the K-ion storage performance of Sb2Se3 nanoparticles, Chem. Eng. J. 379, 122352 (2020)
|
[19] |
X. Huang, J. Deng, Y. Qi, D. Liu, Y. Wu, W. Gao, W. Zhong, F. Zhang, S. Bao, and M. Xu, A highly-effective nitrogen-doped porous carbon sponge electrode for advanced K-Se batteries, Inorg. Chem. Front.7(5), 1182 (2020)
|
[20] |
Y. Yi, Z. Sun, C. Li, Z. Tian, C. Lu, Y. Shao, J. Li, J. Sun, and Z. Liu, Designing 3D biomorphic nitrogen-doped MoSe2/graphene composites toward high-performance potassium-ion capacitors, Adv. Funct. Mater. 30(4), 1903878 (2019)
|
[21] |
I. Y. Jeon, M. Choi, H. J. Choi, S. M. Jung, M. J. Kim, J. M. Seo, S. Y. Bae, S. Yoo, G. Kim, H. Y. Jeong, N. Park, and J. B. Baek, Antimony-doped graphene nanoplatelets, Nat. Commun. 6(1), 7123 (2015)
|
[22] |
A. Tang, M. Long, P. Liu, L. Tan, and Z. He, Morphologic control of Sb-rich Sb2Se3 to adjust its catalytic hydrogenation properties for p-nitrophenol, RSC Adv. 4(100), 57322 (2014)
|
[23] |
L. Xu, L. Yang, and E. Ganz, Electrocatalytic reduction of N2 using metal-doped borophene, ACS Appl. Mater. Interfaces13(12), 14091 (2021)
|
[24] |
S. Lv, C. Huang, G. Li, and L. Yang, Electrocatalytic mechanism of N2 reduction reaction by single-atom catalyst rectangular TM-TCNQ monolayers, ACS Appl. Mater. Interfaces 13(25), 29641 (2021)
|
[25] |
C. Huang, G. Li, L. M. Yang, and E. Ganz, Ammonia synthesis using single-atom catalysts based on twodimensional organometallic metal phthalocyanine monolayers under ambient conditions, ACS Appl. Mater. Interfaces 13(1), 608 (2021)
|
[26] |
K. Chu, Y. Liu, Y. Li, Y. Guo, and Y. Tian, Two-dimensional (2D)/2D interface engineering of a MoS2/C3N4 heterostructure for promoted electrocatalytic nitrogen fixation, ACS Appl. Mater. Interfaces 12(6), 7081 (2020)
|
[27] |
W. Fu, H. He, Z. Zhang, C. Wu, X. Wang, H. Wang, Q. Zeng, L. Sun, X. Wang, J. Zhou, Q. Fu, P. Yu, Z. Shen, C. Jin, B. I. Yakobson, and Z. Liu, Strong interfacial coupling of MoS2/g-C3N4 van de Waals solids for highly active water reduction, Nano Energy 27, 44 (2016)
|
[28] |
Y. Huang, T. Yang, L. Yang, R. Liu, G. Zhang, J. Jiang, Y. Luo, P. Lian, and S. Tang, Graphene-boron nitride hybrid supported single Mo atom electrocatalysts for efficient nitrogen reduction reaction, J. Mater. Chem. A 7(25), 15173 (2019)
|
[29] |
Y. Tian, S. Hu, X. Sheng, Y. Duan, J. Jakowski, B. G. Sumpter, and J. Huang, Non-transition-metal catalytic system for N2 reduction to NH3: A density functional theory study of Al-doped graphene, J. Phys. Chem. Lett. 9(3), 570 (2018)
|
[30] |
J. Jiang, Graphene versus MoS2: A short review, Front. Phys. 10(3), 287 (2015)
|
[31] |
B. Jiang, Y. Wang, C. Liao, Y. Chang, Y. Su, R. Jeng, and C. Chen, Improved blend film morphology and free carrier generation provide a high-performance ternary polymer solar cell, ACS Appl. Mater. Interfaces 13(1), 1076 (2021)
|
[32] |
T. Xu, B. Ma, J. Liang, L. Yue, Q. Liu, T. Li, H. Zhao, Y. Luo, S. Lu, and X. Sun, recent progress in metal-free electrocatalysts toward ambient N2 reduction reaction, Wuli Huaxue Xuebao 37, 2009043 (2021)
|
[33] |
N. Zhao, J. Qin, L. Chu, L. Wang, D. Xu, X. Wang, H. Yang, J. Zhang, and X. Li, Heterogeneous interface of Se@Sb@C boosting potassium storage, Nano Energy 78, 105345 (2020)
|
[34] |
Z. Yi, Y. Qian, J. Tian, K. Shen, N. Lin, and Y. Qian, Selftemplating growth of Sb2Se3@microtube: A conventionalloying- type anode material for enhanced K-ion batteries, J. Mater. Chem. A 7(19), 12283 (2019)
|
[35] |
J. Chen, X. Xu, T. Li, K. Pandiselvi, and J. Wang, Toward high performance 2D/2D hybrid photocatalyst by electrostatic assembly of rationally modified carbon nitride on reduced graphene oxide, Sci. Rep. 6(1), 37318 (2016)
|
[36] |
L.Xia, J. Yang, H. Wang, R. Zhao, H. Chen, W. Fang, A. M. Asiri, F. Xie, G. Cui, and X. Sun, Sulfur-doped graphene for efficient electrocatalytic N2-to-NH3 fixation, Chem. Commun. 55(23), 3371 (2019)
|
[37] |
X. Yang and R. Zhang, High-capacity graphene-confined antimony nanoparticles as a promising anode material for potassium-ion batteries, J. Alloys Compd. 834, 155191 (2020)
|
[38] |
K. S. Novoselov, D. V. Andreeva, W. Ren, and G. Shan, Graphene and other two-dimensional materials, Front. Phys. 14(1), 13301 (2019)
|
[39] |
L. J. Arachchige, Y. Xu, Z. Dai, X. Zhang, F. Wang, and C. Sun, Double transition metal atoms anchored on graphdiyne as promising catalyst for electrochemical nitrogen reduction reaction, J. Mater. Sci. Technol. 77, 244 (2021)
|
[40] |
Q. Li, S. Qiu, C. Liu, M. Liu, L. He, X. Zhang, and C. Sun, Computational design of single-molybdenum catalysts for the nitrogen reduction reaction, J. Phys. Chem. C 123(4), 2347 (2019)
|
[41] |
Z. Cui, W. Du, C. Xiao, Q. Li, R. Sa, C. Sun, and Z. Ma, Enhancing hydrogen evolution of MoS2 Basal planes by combining single-boron catalyst and compressive strain, Front. Phys. 15(6), 63502 (2020)
|
[42] |
H. Zhang, C. Cui, and Z. Luo, MoS2 supported Fe2 clusters catalyzing nitrogen reduction reaction to produce ammonia, J. Phys. Chem. C 124(11), 6260 (2020)
|
[43] |
Q. Li, C. Liu, S. Qiu, F. Zhou, L. He, X. Zhang, and C. Sun, Exploration of iron borides as electrochemical catalysts for the nitrogen reduction reaction, J. Mater. Chem. A 7(37), 21507 (2019)
|
[44] |
D. Jiao, Y. Liu, Q. Cai, and J. Zhao, Coordination tunes the activity and selectivity of the nitrogen reduction reaction on single-atom iron catalysts: A computational study, J. Mater. Chem. A 9, 1240 (2021)
|
[45] |
Y. Liu, Z. Tai, J. Zhang, W. Pang, Q. Zhang, H. Feng, K. Konstantinov, Z. Guo, and H. Liu, Boosting potassium-ion batteries by few-layered composite anodes prepared via solution-triggered one-step shear exfoliation, Nat. Commun.9(1), 3645 (2018)
|
[46] |
X. Hu, J. Zheng, and Z. Ren, Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation, Front. Phys. 13(2), 137302 (2018)
|
[47] |
X. Guo, J. Gu, S. Lin, S. Zhang, Z. Chen, and S. Huang, Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction via atomically dispersed biatom catalysts, J. Am. Chem. Soc. 142(12), 5709 (2020)
|
[48] |
L. Li, X. Wang, H. Guo, G. Yao, H. Yu, Z. Tian, B. Li, and L. Chen, Theoretical screening of single transition metal atoms embedded in MXene defects as superior electrocatalyst of nitrogen reduction reaction, Small Methods 3(11), 1900337 (2019)
|
[49] |
Y. Huang, T. Yang, L. Yang, R. Liu, G. Zhang, J. Jiang, Y. Luo, P. Lian, and S. Tang, Graphene-boron nitride hybrid-supported single Mo atom electrocatalysts for efficient nitrogen reduction reaction, J. Mater. Chem. A Mater. Energy Sustain. 7(25), 15173 (2019)
|
[50] |
Z. Feng, Y. Tang, W. Chen, D. Wei, Y. Ma, and X. Dai, O-doped graphdiyne as metal-free catalysts for nitrogen reduction reaction, Mol. Catal. 483, 110705 (2020)
|
[51] |
X. Hu, Y. Sun, S. Guo, J. Sun, Y. Fu, S. Chen, S. Zhang, and J. Zhu, Identifying electrocatalytic activity and mechanism of Ce1/3NbO3 perovskite for nitrogen reduction to ammonia at ambient conditions, Appl. Catal. B 280, 119419 (2021)
|
[52] |
T. M. Figg, P. L. Holland, and T. R. Cundari, Cooperativity between low-valent iron and potassium promoters in dinitrogen fixation, Inorg. Chem. 51(14), 7546 (2012)
|
[53] |
Q. Zhang, B. Liu, L. Yu, Y. Bei, and B. Tang, Synergistic promotion of the electrochemical reduction of nitrogen to ammonia by phosphorus and potassium, ChemCatChem12(1), 334 (2020)
|
[54] |
Y. Liu, P. Deng, R. Wu, X. Zhang, C. Sun, and H. Li, Oxygen vacancies for promoting the electrochemical nitrogen reduction reaction, J. Mater. Chem. A 9(11), 6694 (2021)
|
[55] |
M. A. Ahsan, T. He, K. Eid, A. M. Abdullah, M. L. Curry, A. Du, A. R. P. Santiago, L. Echegoyen, and J. C. Noveron, Tuning the intermolecular electron transfer of low-dimensional and metal-free BCN/C60 electrocatalysts via interfacial defects for efficient hydrogen and oxygen electrochemistry, J. Am. Chem. Soc. 143(2), 1203 (2021)
|
[56] |
T. Wang, S. Qiu, Z. Dai, R. Hocking, and C. Sun, Exploration of TiO2 as substrates for single metal catalysts: A DFT study, Appl. Surf. Sci. 533, 147362 (2020)
|
[57] |
X. Chen, W. J. Ong, X. Zhao, P. Zhang, and N. Li, Insights into electrochemical nitrogen reduction reaction mechanisms: Combined effect of single transition-metal and boron atom, J. Energy Chem. 58, 577 (2021)
|
[58] |
M. Yao, Z. Shi, P. Zhang, W. J. Ong, J. Jiang, W. Y. Ching, and N. Li, Density functional theory study of single metal atoms embedded into MBene for electrocatalytic conversion of N2 to NH3, ACS Appl. Nano Mater. 3(10), 9870 (2020)
|
[59] |
M. Qu, G. Qin, J. Fan, A. Du, and Q. Sun, Theoretical insights into the performance of single and double transition metal atoms doped on N-graphenes for N2 electroreduction, Appl. Surf. Sci. 537, 148012 (2021)
|
[60] |
C. Liu, Q. Li, C. Wu, J. Zhang, Y. Jin, D. R. MacFarlane, and C. Sun, Single-boron catalysts for nitrogen reduction reaction, J. Am. Chem. Soc. 141(7), 2884 (2019)
|
[61] |
X. Wang, S. Qiu, J. Feng, Y. Tong, F. Zhou, Q. Li, L. Song, S. Chen, K. H. Wu, P. Su, S. Ye, F. Hou, S. X. Dou, H. K. Liu, G. Q. Lu, C. Sun, J. Liu, and J. Liang, Confined Fe-Cu clusters as sub-nanometer reactors for efficiently regulating the electrochemical nitrogen reduction reaction, Adv. Mater. 32, 2004382 (2020)
|
[62] |
L. Lin, Z. Shi, J. Huang, P. Wang, W. Y. C. He, and Z. Zhang, Molecular adsorption properties of CH4 with noble metals doped onto oxygen vacancy defect of anatase TiO2 (101) surface: First-principles calculations, Appl. Surf. Sci. 514, 145900 (2020)
|
[63] |
J. Yu, C. He, C. Pu, L. Fu, D. Zhou, K. Xie, J. Huo, C. Zhao, and L. Yu, Prediction of stable BC3N2 monolayer from first-principles calculations: Stoichiometry, crystal structure, electronic and adsorption properties, Chin. Chem. Lett. (2021)
|
[64] |
J. Wang, C. He, J. Huo, L. Fu, and C. Zhao, A theoretical evaluation of possible N2 reduction mechanism on Mo2B2, Adv. Theory Simul. 4(5), 2100003 (2021)
|
[65] |
M. Xiao, L. Zhang, B. Luo, M. Lyu, Z. Wang, H. Huang, S. Wang, A. Du, and L. Wang, Molten-salt-mediated synthesis of an atomic nickel co-catalyst on TiO2 for improvedphotocatalytic H2 evolution, Angew. Chem. Int. Ed. 132(18), 7297 (2020)
|
/
〈 | 〉 |