Theoretical study of K3Sb/graphene heterostructure for electrochemical nitrogen reduction reaction

Tianyi Wang, Ani Dong, Xiaoli Zhang, Rosalie K. Hocking, Chenghua Sun

PDF(1025 KB)
PDF(1025 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (2) : 23501. DOI: 10.1007/s11467-021-1115-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Theoretical study of K3Sb/graphene heterostructure for electrochemical nitrogen reduction reaction

Author information +
History +

Abstract

Instead of the energy-intensive Haber-Bosch process, electrochemical nitrogen reduction reaction (NRR) is an exciting new carbon neutral technique for ammonia synthesis under ambient conditions. In this work, we investigated K-based electrocatalysts theoretically and demonstrated that K3Sb/graphene performs excellent activity and inhibits hydrogen evolution on alternating reaction pathway. The first hydrogenation step from N2* to NNH* was found to be the most energetic and limiting step (0.61 eV). Graphene substrate plays the critical role to promote electronic conductivity between K3Sb and dinitrogen.

Graphical abstract

Keywords

K3Sb/graphene / K12Sb2Se3 / K3Sb / nitrogen reduction reaction / DFT calculation

Cite this article

Download citation ▾
Tianyi Wang, Ani Dong, Xiaoli Zhang, Rosalie K. Hocking, Chenghua Sun. Theoretical study of K3Sb/graphene heterostructure for electrochemical nitrogen reduction reaction. Front. Phys., 2022, 17(2): 23501 https://doi.org/10.1007/s11467-021-1115-4

References

[1]
Y. Guo, N. Gao, Y. Bai, J. Zhao, and X. Zeng, Monolayered semiconducting GeAsSe and SnSbTe with ultrahigh hole mobility, Front. Phys. 13(4), 138117 (2018)
[2]
G. Zheng, L. Li, Z. Tian, X. Zhang, and L. Chen, Het-erogeneous single-cluster catalysts (Mn3, Fe3, Co3, and Mo3) supported on nitrogen-doped graphene for robust electrochemical nitrogen reduction, J. Energy Chem. 54, 612 (2021)
[3]
Q. Li, L. He, C. Sun, and X. Zhang, Computational study of MoN2 monolayer as electrochemical catalysts for nitrogen reduction, J. Phys. Chem. C 121(49), 27563 (2017)
[4]
G. Chen, Y. Yuan, H. Jiang, S. Ren, L. Ding, L. Ma, T. Wu, J. Lu, and H. Wang, Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst, Nat. Energy 5(8), 605 (2020)
[5]
L. J. Arachchige, Y. Xu, Z. Dai, X. Zhang, F. Wang, and C. Sun, Theoretical investigation of single and double transition metals anchored on graphyne monolayer for nitrogen reduction reaction, J. Phys. Chem. C 124(28), 15295 (2020)
[6]
W. Gao, P. Wang, J. Guo, F. Chang, T. He, Q. Wang, G. Wu, and P. Chen, Barium hydride-mediated nitrogen transfer and hydrogenation for ammonia synthesis: A case study of cobalt, ACS Catal. 7(5), 3654 (2017)
[7]
P. Wang, F. Chang, W. Gao, J. Guo, G. Wu, T. He, and P. Chen, Breaking scaling relations to achieve lowtemperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation, Nat. Chem. 9(1), 64 (2017)
[8]
C. Guo, J. Ran, A. Vasileff, and S. Qiao, Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions, Energy Environ. Sci. 11(1), 45 (2018)
[9]
C. Lv, Y. Qian, C. Yan, Y. Ding, Y. Liu, G. Chen, and G. Yu, Defect engineering metal-free polymeric carbon nitride electrocatalyst for effective nitrogen fixation under ambient conditions, Angew. Chem. Int. Ed.57(32), 10246 (2018)
[10]
G. Deng, T. Wang, A. A. Alshehri, K. A. Alzahrani, Y. Wang, H. Ye, Y. Luo, and X. Sun, Improving the electrocatalytic N2 reduction activity of Pd nanoparticles through surface modification, J. Mater. Chem. A 7(38), 21674 (2019)
[11]
C. Liu, Q. Li, J. Zhang, Y. Jin, D. R. MacFarlane, and C. Sun, Conversion of dinitrogen to ammonia on Ru atoms supported on boron sheets: A DFT study, J. Mater. Chem. A 7(9), 4771 (2019)
[12]
Y. Hao, Y. Guo, L. Chen, M. Shu, X. Wang, T. Bu, W. Gao, N. Zhang, X. Su, X. Feng, J. Zhou, B. Wang, C. Hu, A. Yin, R. Si, Y. Zhang, and C. Yan, Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water, Nat. Catal. 2(5), 448 (2019)
[13]
W. Wang, H. Zhang, S. Zhang, Y. Liu, G. Wang, C. Sun, and H. Zhao, Potassium-ion-assisted regeneration of active cyano groups in carbon nitride nanoribbons: Visible-lightdriven photocatalytic nitrogen reduction, Angew. Chem. Int. Ed. 58(46), 16644 (2019)
[14]
G. P. Connor and P. L. Holland, Coordination chemistry insights into the role of alkali metal promoters in dinitrogen reduction, Catal. Today 286, 21 (2017)
[15]
D. Yao, C. Tang, L. Li, B. Xia, A. Vasileff, H. Jin, Y. Zhang, and S. Qiao, In situ fragmented bismuth nanoparticles for electrocatalytic nitrogen reduction, Adv. Energy Mater. 10(33), 2001289 (2020)
[16]
L. Kalarasse, B. Bennecer, and F. Kalarasse, Optical properties of the alkali antimonide semiconductors Cs3Sb, Cs2KSb, CsK2Sb and K3Sb, J. Phys. Chem. Solids 71(3), 314 (2010)
[17]
M. Kitano, S. Kanbara, Y. Inoue, N. Kuganathan, P. V. Sushko, T. Yokoyama, M. Hara, and H. Hosono, Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis, Nat. Commun. 6(1), 6731 (2015)
[18]
Z. Yi, Y. Qian, S. Jiang, Y. Li, N. Lin, and Y. Qian, Self-wrinkled graphene as a mechanical buffer: A rational design to boost the K-ion storage performance of Sb2Se3 nanoparticles, Chem. Eng. J. 379, 122352 (2020)
[19]
X. Huang, J. Deng, Y. Qi, D. Liu, Y. Wu, W. Gao, W. Zhong, F. Zhang, S. Bao, and M. Xu, A highly-effective nitrogen-doped porous carbon sponge electrode for advanced K-Se batteries, Inorg. Chem. Front.7(5), 1182 (2020)
[20]
Y. Yi, Z. Sun, C. Li, Z. Tian, C. Lu, Y. Shao, J. Li, J. Sun, and Z. Liu, Designing 3D biomorphic nitrogen-doped MoSe2/graphene composites toward high-performance potassium-ion capacitors, Adv. Funct. Mater. 30(4), 1903878 (2019)
[21]
I. Y. Jeon, M. Choi, H. J. Choi, S. M. Jung, M. J. Kim, J. M. Seo, S. Y. Bae, S. Yoo, G. Kim, H. Y. Jeong, N. Park, and J. B. Baek, Antimony-doped graphene nanoplatelets, Nat. Commun. 6(1), 7123 (2015)
[22]
A. Tang, M. Long, P. Liu, L. Tan, and Z. He, Morphologic control of Sb-rich Sb2Se3 to adjust its catalytic hydrogenation properties for p-nitrophenol, RSC Adv. 4(100), 57322 (2014)
[23]
L. Xu, L. Yang, and E. Ganz, Electrocatalytic reduction of N2 using metal-doped borophene, ACS Appl. Mater. Interfaces13(12), 14091 (2021)
[24]
S. Lv, C. Huang, G. Li, and L. Yang, Electrocatalytic mechanism of N2 reduction reaction by single-atom catalyst rectangular TM-TCNQ monolayers, ACS Appl. Mater. Interfaces 13(25), 29641 (2021)
[25]
C. Huang, G. Li, L. M. Yang, and E. Ganz, Ammonia synthesis using single-atom catalysts based on twodimensional organometallic metal phthalocyanine monolayers under ambient conditions, ACS Appl. Mater. Interfaces 13(1), 608 (2021)
[26]
K. Chu, Y. Liu, Y. Li, Y. Guo, and Y. Tian, Two-dimensional (2D)/2D interface engineering of a MoS2/C3N4 heterostructure for promoted electrocatalytic nitrogen fixation, ACS Appl. Mater. Interfaces 12(6), 7081 (2020)
[27]
W. Fu, H. He, Z. Zhang, C. Wu, X. Wang, H. Wang, Q. Zeng, L. Sun, X. Wang, J. Zhou, Q. Fu, P. Yu, Z. Shen, C. Jin, B. I. Yakobson, and Z. Liu, Strong interfacial coupling of MoS2/g-C3N4 van de Waals solids for highly active water reduction, Nano Energy 27, 44 (2016)
[28]
Y. Huang, T. Yang, L. Yang, R. Liu, G. Zhang, J. Jiang, Y. Luo, P. Lian, and S. Tang, Graphene-boron nitride hybrid supported single Mo atom electrocatalysts for efficient nitrogen reduction reaction, J. Mater. Chem. A 7(25), 15173 (2019)
[29]
Y. Tian, S. Hu, X. Sheng, Y. Duan, J. Jakowski, B. G. Sumpter, and J. Huang, Non-transition-metal catalytic system for N2 reduction to NH3: A density functional theory study of Al-doped graphene, J. Phys. Chem. Lett. 9(3), 570 (2018)
[30]
J. Jiang, Graphene versus MoS2: A short review, Front. Phys. 10(3), 287 (2015)
[31]
B. Jiang, Y. Wang, C. Liao, Y. Chang, Y. Su, R. Jeng, and C. Chen, Improved blend film morphology and free carrier generation provide a high-performance ternary polymer solar cell, ACS Appl. Mater. Interfaces 13(1), 1076 (2021)
[32]
T. Xu, B. Ma, J. Liang, L. Yue, Q. Liu, T. Li, H. Zhao, Y. Luo, S. Lu, and X. Sun, recent progress in metal-free electrocatalysts toward ambient N2 reduction reaction, Wuli Huaxue Xuebao 37, 2009043 (2021)
[33]
N. Zhao, J. Qin, L. Chu, L. Wang, D. Xu, X. Wang, H. Yang, J. Zhang, and X. Li, Heterogeneous interface of Se@Sb@C boosting potassium storage, Nano Energy 78, 105345 (2020)
[34]
Z. Yi, Y. Qian, J. Tian, K. Shen, N. Lin, and Y. Qian, Selftemplating growth of Sb2Se3@microtube: A conventionalloying- type anode material for enhanced K-ion batteries, J. Mater. Chem. A 7(19), 12283 (2019)
[35]
J. Chen, X. Xu, T. Li, K. Pandiselvi, and J. Wang, Toward high performance 2D/2D hybrid photocatalyst by electrostatic assembly of rationally modified carbon nitride on reduced graphene oxide, Sci. Rep. 6(1), 37318 (2016)
[36]
L.Xia, J. Yang, H. Wang, R. Zhao, H. Chen, W. Fang, A. M. Asiri, F. Xie, G. Cui, and X. Sun, Sulfur-doped graphene for efficient electrocatalytic N2-to-NH3 fixation, Chem. Commun. 55(23), 3371 (2019)
[37]
X. Yang and R. Zhang, High-capacity graphene-confined antimony nanoparticles as a promising anode material for potassium-ion batteries, J. Alloys Compd. 834, 155191 (2020)
[38]
K. S. Novoselov, D. V. Andreeva, W. Ren, and G. Shan, Graphene and other two-dimensional materials, Front. Phys. 14(1), 13301 (2019)
[39]
L. J. Arachchige, Y. Xu, Z. Dai, X. Zhang, F. Wang, and C. Sun, Double transition metal atoms anchored on graphdiyne as promising catalyst for electrochemical nitrogen reduction reaction, J. Mater. Sci. Technol. 77, 244 (2021)
[40]
Q. Li, S. Qiu, C. Liu, M. Liu, L. He, X. Zhang, and C. Sun, Computational design of single-molybdenum catalysts for the nitrogen reduction reaction, J. Phys. Chem. C 123(4), 2347 (2019)
[41]
Z. Cui, W. Du, C. Xiao, Q. Li, R. Sa, C. Sun, and Z. Ma, Enhancing hydrogen evolution of MoS2 Basal planes by combining single-boron catalyst and compressive strain, Front. Phys. 15(6), 63502 (2020)
[42]
H. Zhang, C. Cui, and Z. Luo, MoS2 supported Fe2 clusters catalyzing nitrogen reduction reaction to produce ammonia, J. Phys. Chem. C 124(11), 6260 (2020)
[43]
Q. Li, C. Liu, S. Qiu, F. Zhou, L. He, X. Zhang, and C. Sun, Exploration of iron borides as electrochemical catalysts for the nitrogen reduction reaction, J. Mater. Chem. A 7(37), 21507 (2019)
[44]
D. Jiao, Y. Liu, Q. Cai, and J. Zhao, Coordination tunes the activity and selectivity of the nitrogen reduction reaction on single-atom iron catalysts: A computational study, J. Mater. Chem. A 9, 1240 (2021)
[45]
Y. Liu, Z. Tai, J. Zhang, W. Pang, Q. Zhang, H. Feng, K. Konstantinov, Z. Guo, and H. Liu, Boosting potassium-ion batteries by few-layered composite anodes prepared via solution-triggered one-step shear exfoliation, Nat. Commun.9(1), 3645 (2018)
[46]
X. Hu, J. Zheng, and Z. Ren, Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation, Front. Phys. 13(2), 137302 (2018)
[47]
X. Guo, J. Gu, S. Lin, S. Zhang, Z. Chen, and S. Huang, Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction via atomically dispersed biatom catalysts, J. Am. Chem. Soc. 142(12), 5709 (2020)
[48]
L. Li, X. Wang, H. Guo, G. Yao, H. Yu, Z. Tian, B. Li, and L. Chen, Theoretical screening of single transition metal atoms embedded in MXene defects as superior electrocatalyst of nitrogen reduction reaction, Small Methods 3(11), 1900337 (2019)
[49]
Y. Huang, T. Yang, L. Yang, R. Liu, G. Zhang, J. Jiang, Y. Luo, P. Lian, and S. Tang, Graphene-boron nitride hybrid-supported single Mo atom electrocatalysts for efficient nitrogen reduction reaction, J. Mater. Chem. A Mater. Energy Sustain. 7(25), 15173 (2019)
[50]
Z. Feng, Y. Tang, W. Chen, D. Wei, Y. Ma, and X. Dai, O-doped graphdiyne as metal-free catalysts for nitrogen reduction reaction, Mol. Catal. 483, 110705 (2020)
[51]
X. Hu, Y. Sun, S. Guo, J. Sun, Y. Fu, S. Chen, S. Zhang, and J. Zhu, Identifying electrocatalytic activity and mechanism of Ce1/3NbO3 perovskite for nitrogen reduction to ammonia at ambient conditions, Appl. Catal. B 280, 119419 (2021)
[52]
T. M. Figg, P. L. Holland, and T. R. Cundari, Cooperativity between low-valent iron and potassium promoters in dinitrogen fixation, Inorg. Chem. 51(14), 7546 (2012)
[53]
Q. Zhang, B. Liu, L. Yu, Y. Bei, and B. Tang, Synergistic promotion of the electrochemical reduction of nitrogen to ammonia by phosphorus and potassium, ChemCatChem12(1), 334 (2020)
[54]
Y. Liu, P. Deng, R. Wu, X. Zhang, C. Sun, and H. Li, Oxygen vacancies for promoting the electrochemical nitrogen reduction reaction, J. Mater. Chem. A 9(11), 6694 (2021)
[55]
M. A. Ahsan, T. He, K. Eid, A. M. Abdullah, M. L. Curry, A. Du, A. R. P. Santiago, L. Echegoyen, and J. C. Noveron, Tuning the intermolecular electron transfer of low-dimensional and metal-free BCN/C60 electrocatalysts via interfacial defects for efficient hydrogen and oxygen electrochemistry, J. Am. Chem. Soc. 143(2), 1203 (2021)
[56]
T. Wang, S. Qiu, Z. Dai, R. Hocking, and C. Sun, Exploration of TiO2 as substrates for single metal catalysts: A DFT study, Appl. Surf. Sci. 533, 147362 (2020)
[57]
X. Chen, W. J. Ong, X. Zhao, P. Zhang, and N. Li, Insights into electrochemical nitrogen reduction reaction mechanisms: Combined effect of single transition-metal and boron atom, J. Energy Chem. 58, 577 (2021)
[58]
M. Yao, Z. Shi, P. Zhang, W. J. Ong, J. Jiang, W. Y. Ching, and N. Li, Density functional theory study of single metal atoms embedded into MBene for electrocatalytic conversion of N2 to NH3, ACS Appl. Nano Mater. 3(10), 9870 (2020)
[59]
M. Qu, G. Qin, J. Fan, A. Du, and Q. Sun, Theoretical insights into the performance of single and double transition metal atoms doped on N-graphenes for N2 electroreduction, Appl. Surf. Sci. 537, 148012 (2021)
[60]
C. Liu, Q. Li, C. Wu, J. Zhang, Y. Jin, D. R. MacFarlane, and C. Sun, Single-boron catalysts for nitrogen reduction reaction, J. Am. Chem. Soc. 141(7), 2884 (2019)
[61]
X. Wang, S. Qiu, J. Feng, Y. Tong, F. Zhou, Q. Li, L. Song, S. Chen, K. H. Wu, P. Su, S. Ye, F. Hou, S. X. Dou, H. K. Liu, G. Q. Lu, C. Sun, J. Liu, and J. Liang, Confined Fe-Cu clusters as sub-nanometer reactors for efficiently regulating the electrochemical nitrogen reduction reaction, Adv. Mater. 32, 2004382 (2020)
[62]
L. Lin, Z. Shi, J. Huang, P. Wang, W. Y. C. He, and Z. Zhang, Molecular adsorption properties of CH4 with noble metals doped onto oxygen vacancy defect of anatase TiO2 (101) surface: First-principles calculations, Appl. Surf. Sci. 514, 145900 (2020)
[63]
J. Yu, C. He, C. Pu, L. Fu, D. Zhou, K. Xie, J. Huo, C. Zhao, and L. Yu, Prediction of stable BC3N2 monolayer from first-principles calculations: Stoichiometry, crystal structure, electronic and adsorption properties, Chin. Chem. Lett. (2021)
[64]
J. Wang, C. He, J. Huo, L. Fu, and C. Zhao, A theoretical evaluation of possible N2 reduction mechanism on Mo2B2, Adv. Theory Simul. 4(5), 2100003 (2021)
[65]
M. Xiao, L. Zhang, B. Luo, M. Lyu, Z. Wang, H. Huang, S. Wang, A. Du, and L. Wang, Molten-salt-mediated synthesis of an atomic nickel co-catalyst on TiO2 for improvedphotocatalytic H2 evolution, Angew. Chem. Int. Ed. 132(18), 7297 (2020)

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(1025 KB)

Accesses

Citations

Detail

Sections
Recommended

/