Experimental investigation of light storage of diffraction-free and quasi-diffraction-free beams in hot atomic gas cell
Chengyuan Wang, Yun Chen, Zibin Jiang, Ya Yu, Mingtao Cao, Dong Wei, Hong Gao, Fuli Li
Experimental investigation of light storage of diffraction-free and quasi-diffraction-free beams in hot atomic gas cell
In this article we report on the experimental investigation of light storage for several types of diffractionfree beams (Bessel and Airy beams) and quasi-diffraction-free beams by utilizing electromagnetically induced transparency (EIT) technique in a hot atomic gas cell. The experimental results show that the diffraction-free and quasi-diffraction-free beams have better storage performances when compared with ordinary images possessing similar spatial profiles. Meanwhile, the Bessel beams and the quasidiffraction-free images are able to maintain their spatial profiles with a long storage time while the sidelobes of the Airy beam are gradually depleted with the increment of the storage time. We quantitatively analyze the storage results and give physical explanations behind these phenomena. Furthermore, the self-healing of the retrieved diffraction-free beams is verified, signifying that their characteristics preserve well after storage.
quantum memory / electromagnetically induced transparency / diffraction-free beam
[1] |
L. M.Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Longdistance quantum communication with atomic ensembles and linear optics, Nature 414(6862), 413 (2001)
|
[2] |
H. J. Kimble, The quantum internet, Nature 453(7198), 1023 (2008)
|
[3] |
A. I. Lvovsky, B. C. Sanders, and W. Tittel, Optical quantum memory, Nat. Photonics3(12), 706 (2009)
|
[4] |
K. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard, V. M. Acosta, J. Nunn, and B. J. Sussman, Quantum memories: Emerging applications and recent advances, J. Mod. Opt. 63(20), 2005 (2016)
|
[5] |
I. Novikova, R. L. Walsworth, and Y. Xiao, Electromagnetically induced transparency-based slow and stored light in warm atoms, Laser Photon. Rev. 6(3), 333 (2012)
|
[6] |
T. Jeong and H. S. Moon, Improvement of light storage efficiency using targetable optical pumping, Opt. Commun.427, 596 (2018)
|
[7] |
E. Saglamyurek, T. Hrushevskyi, A. Rastogi, K. Heshami, and L. J. Leblanc, Coherent storage and manipulation of broadband photons via dynamically controlled Autler–Townes splitting, Nat. Photonics 12(12), 774 (2018)
|
[8] |
J. Guo, X. Feng, P. Yang, Z. Yu, L. Q. Chen, C. Yuan, and W. Zhang, High performance raman quantum memory with optimal control in room temperature atoms, Nat. Commun. 10(1), 148 (2019)
|
[9] |
Q. Glorieux, J. B. Clark, A. M. Marino, Z. Zhou, and P. D. Lett, Temporally multiplexed storage of images in a gradient echo memory, Opt. Express 20(11), 12350 (2012)
|
[10] |
I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, and R. L. Walsworth, Optimal control of light pulse storage and retrieval, Phys. Rev. Lett. 98(24), 243602 (2007)
|
[11] |
Y. H. Chen, M. J. Lee, I. C. Wang, S. Du, Y. F. Chen, Y. C. Chen, and I. A. Yu, Coherent optical memory with high storage efficiency and large fractional delay, Phys. Rev. Lett. 110(8), 083601 (2013)
|
[12] |
O. Katz and O. Firstenberg, Light storage for one second in room-temperature alkali vapor, Nat. Commun.9(1), 2074 (2018)
|
[13] |
Y. Wang, J. Li, S. Zhang, K. Su, Y. Zhou, K. Liao, S. Du, H. Yan, and S. L. Zhu, Efficient quantum memory for single-photon polarization qubits, Nat. Photonics 13(5), 346 (2019)
|
[14] |
C. Wang, Y. Yu, Y. Chen, M. Cao, J. Wang, X. Yang, S. Qiu, D. Wei, H. Gao, and F. Li, Efficient quantum memory of orbital angular momentum qubits in cold atoms, Quantum Sci. Technol. 6(4), 045008 (2021)
|
[15] |
Y. W. Cho and Y. H. Kim, Atomic vapor quantum memory for a photonic polarization qubit, Opt. Express 18(25), 25786 (2010)
|
[16] |
Y. H. Ye, M. X. Dong, Y. C. Yu, D. S. Ding, and B. S. Shi, Experimental realization of optical storage of vector beams of light in warm atomic vapor, Opt. Lett. 44(7), 1528 (2019)
|
[17] |
S. Shi, D. S. Ding, W. Zhang, Z. Y. Zhou, M. X. Dong, S. L. Liu, K. Wang, B. S. Shi, and G. C. Guo, Transverse azimuthal dephasing of a vortex spin wave in a hot atomic gas, Phys. Rev. A 95(3), 033823 (2017)
|
[18] |
Y. W. Cho and Y. H. Kim, Storage and retrieval of thermal light in warm atomic vapor, Phys. Rev. A82(3), 033830 (2010)
|
[19] |
P. K. Vudyasetu, R. M. Camacho, and J. C. Howell, Storage and retrieval of multimode transverse images in hot atomic rubidium vapor, Phys. Rev. Lett. 100(12), 123903 (2008)
|
[20] |
Y. W. Cho, J. Oh, and Y. H. Kim, Diffusion-free image storage in hot atomic vapor, Phys. Rev. A 86(1), 013844 (2012)
|
[21] |
L. Wang, Y. Sun, R. Wang, X. Zhang, Y. Chen, Z. Kang, H. Wang, and J. Gao, Storage of airy wavepackets based on electromagnetically induced transparency, Opt. Express 27(5), 6370 (2019)
|
[22] |
J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, Self-healing properties of optical airy beams, Opt. Express 16(17), 12880 (2008)
|
[23] |
C. López-Mariscal and K. Helmerson, Shaped nondiffracting beams, Opt. Lett. 35(8), 1215 (2010)
|
[24] |
A. F. Martínez-Herrera, A. Céspedes-Mota, and S. Lopez-Aguayo, Divide and conquer algorithm for nondiffracting beams, J. Opt. Soc. Am. A 36(12), 1968 (2019)
|
[25] |
M. Mazilu, D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, Light beats the spread: “non-diffracting” beams, Laser Photonics Rev. 4(4), 529 (2010)
|
[26] |
Z. K. Wu, H. Guo, W. Wang, and Y. Z. Gu, Evolution of finite energy airy beams in cubic-quintic atomic vapor system, Front. Phys. 13(1), 134201 (2018)
|
[27] |
C. Hang, Z. Bai, and G. Huang, Storage and retrieval of airy light wave packets in a coherent atomic system, Phys. Rev. A 90(2), 023822 (2014)
|
[28] |
S. Smartsev, R. Chriki, D. Eger, O. Firstenberg, and N. Davidson, Structured beams invariant to coherent diffusion, Opt. Express 28(22), 33708 (2020)
|
[29] |
R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, and N. Davidson, Topological stability of stored optical vortices, Phys. Rev. Lett. 98(20), 203601 (2007)
|
[30] |
O. Firstenberg, M. Shuker, A. Ron, and N. Davidson, Coherent diffusion of polaritons in atomic media, Rev. Mod. Phys. 85(3), 941 (2013)
|
[31] |
N. Ahmed, Z. Zhao, L. Li, H. Huang, M. P. J. Lavery, P. Liao, Y. Yan, Z. Wang, G. Xie, Y. Ren, A. Almaiman, A. J. Willner, S. Ashrafi, A. F. Molisch, M. Tur, and A. E. Willner, Mode-division multiplexing of multiple Bessel-Gaussian beams carrying orbital-angular-momentum for obstruction-tolerant freespace optical and millimetre-wave communication links, Sci. Rep. 6(1), 22082 (2016)
|
[32] |
M. Shuker, O. Firstenberg, R. Pugatch, A. Ron, and N. Davidson, Storing images in warm atomic vapor, Phys. Rev. Lett. 100(22), 223601 (2008)
|
[33] |
R. Chriki, S. Smartsev, D. Eger, O. Firstenberg, and N. Davidson, Coherent diffusion of partial spatial coherence, Optica 6(11), 1406 (2019)
|
[34] |
J. Pinnell, V. Rodríguez-Fajardo, and A. Forbes, How perfect are perfect vortex beams? Opt. Lett. 44(22), 5614 (2019)
|
[35] |
A. S. Ostrovsky, C. Rickenstorff-Parrao, and V. Arrizón, Generation of the “perfect” optical vortex using a liquidcrystal spatial light modulator, Opt. Lett. 38(4), 534 (2013)
|
[36] |
A. Zannotti, C. Denz, M. A. Alonso, and M. R. Dennis, Shaping caustics into propagation-invariant light, Nat. Commun. 11(1), 3597 (2020)
|
[37] |
O. Firstenberg, P. London, D. Yankelev, R. Pugatch, M. Shuker, and N. Davidson, Self-similar modes of coherent diffusion, Phys. Rev. Lett. 105(18), 183602 (2010)
|
[38] |
S. Vyas, Y. Kozawa, and S. Sato, Self-healing of tightly focused scalar and vector Bessel–Gauss beams at the focal plane, J. Opt. Soc. Am. A 28(5), 837 (2011)
|
[39] |
G. Milione, A. Dudley, T. A. Nguyen, O. Chakraborty, E. Karimi, A. Forbes, and R. R. Alfano, Measuring the self-healing of the spatially inhomogeneous states of polarization of vector Bessel beams, J. Opt. 17(3), 035617 (2015)
|
/
〈 | 〉 |