Revisiting the dynamics of Bose–Einstein condensates in a double well by deep learning with a hybrid network
Shurui Li, Jianqin Xu, Jing Qian, Weiping Zhang
Revisiting the dynamics of Bose–Einstein condensates in a double well by deep learning with a hybrid network
Deep learning, accounting for the use of an elaborate neural network, has recently been developed as an efficient and powerful tool to solve diverse problems in physics and other sciences. In the present work, we propose a novel learning method based on a hybrid network integrating two different kinds of neural networks: Long Short-Term Memory (LSTM) and Deep Residual Network (ResNet), in order to overcome the difficulty met in numerically simulating strongly-oscillating dynamical evolutions of physical systems. By taking the dynamics of Bose–Einstein condensates in a double-well potential as an example, we show that our new method makes a highly efficient pre-learning and a high-fidelity prediction about the whole dynamics. This benefits from the advantage of the combination of the LSTM and the ResNet and is impossibly achieved with a single network in the case of direct learning. Our method can be applied for simulating complex cooperative dynamics in a system with fast multiplefrequency oscillations with the aid of auxiliary spectrum analysis.
double-well / deep learning / hybrid neural network
[1] |
I. A.Luchnikov, S. V. Vintskevich, D. A. Grigoriev, and S. N. Filippov, Machine learning non-Markovian quantum dynamics, Phys. Rev. Lett. 124(14), 140502 (2020)
|
[2] |
X. Liu, G. Zhang, J. Li, G. Shi, M. Zhou, B. Huang, Y. Tang, X. Song, and W. Yang, Deep learning for Feynman’s path integral in strong-field time-dependent dynamics, Phys. Rev. Lett. 124(11), 113202 (2020)
|
[3] |
G. Carleo and M. Troyer, Solving the quantum many body problem with artificial neural networks, Science 355(6325), 602 (2017)
|
[4] |
A. Hentschel and B. C. Sanders, Machine learning for precise quantum measurement, Phys. Rev. Lett. 104(6), 063603 (2010)
|
[5] |
P. Zhang, H. Shen, and H. Zhai, Machine learning topological invariants with neural networks, Phys. Rev. Lett. 120(6), 066401 (2018)
|
[6] |
G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. Melko, and G. Carleo, Neural-network quantum state tomography, Nat. Phys. 14(5), 447 (2018)
|
[7] |
K. Ch’ng, J. Carrasquilla, R. G. Melko, and E. Khatami, Machine learning phases of strongly correlated fermions, Phys. Rev. X 7(3), 031038 (2017)
|
[8] |
E. van Nieuwenburg, Y. Liu, and S. D. Huber, Learning phase transitions by confusion, Nat. Phys. 13(5), 435 (2017)
|
[9] |
J. Carrasquilla and R. Melko, Machine learning phases of matter, Nat. Phys. 13(5), 431 (2017)
|
[10] |
S. Lu, L. Duan, and D. Deng, Quantum adversarial machine learning, Phys. Rev. Research 2(3), 033212 (2020)
|
[11] |
X. Ouyang, X. Huang, Y. Wu, W. Zhang, X. Wang, H. Zhang, L. He, X. Chang, and L. Duan, Experimental demonstration of quantum-enhanced machine learning in a nitrogen-vacancy-center system, Phys. Rev. A 101(1), 012307 (2020)
|
[12] |
V. Dunjko, J. M. Taylor, and H. J. Briegel, Quantum enhanced machine learning, Phys. Rev. Lett. 117(13), 130501 (2016)
|
[13] |
G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Contr. Signals Syst. 2(4), 303 (1989)
|
[14] |
L. Ba and R. Caruana, Do deep nets really need to be deep? Adv. Neural Inf. Process. Syst. 3, 2654 (2014)
|
[15] |
D. S. P. Salazar, Nonequilibrium thermodynamics of restricted Boltzmann machines, Phys. Rev. E 96(2), 022131 (2017)
|
[16] |
G. Hinton, S. Osindero, and Y. W. Teh, A fast learning algorithm for deep belief nets, Neural Comput. 18(7), 1527 (2006)
|
[17] |
Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, Gradientbased learning applied to document recognition, Proc. IEEE 86(11), 2278 (1998)
|
[18] |
M. Hibat-Allah, M. Ganahl, L. E. Hayward, R. G. Melko, and J. Carrasquilla, Recurrent neural network wave functions, Phys. Rev. Research 2(2), 023358 (2020)
|
[19] |
A. Diaz Rivero and C. Dvorkin, Direct detection of dark matter substructure in strong lens images with convolutional neural networks, Phys. Rev. D 101(2), 023515 (2020)
|
[20] |
M. K. Mulimani, J. K. Alageshan, and R. Pandit, Deep learning-assisted detection and termination of spiral and broken-spiral waves in mathematical models for cardiac tissue, Phys. Rev. Research 2(2), 023155 (2020)
|
[21] |
V. Novičenko, J. Ruseckas, and E. Anisimovas, Quantum dynamics in potentials with fast spatial oscillations, Phys. Rev. A 99(4), 043608 (2019)
|
[22] |
C. E. Shannon, Communication in the presence of noise, Proceedings of the IRE 37(1), 10 (1949)
|
[23] |
S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Comput. 9(8), 1735 (1997)
|
[24] |
K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770 (2016)
|
[25] |
X. Liang, H. Zhang, S. Liu, Y. Li, and Y. S. Zhang, Generation of Bose–Einstein condensates’ ground state through machine learning, Sci. Rep. 8, 16337 (2018)
|
[26] |
G. Spagnolli, G. Semeghini, L. Masi, G. Ferioli, A. Trenkwalder, S. Coop, M. Landini, L. Pezzè, G. Modugno, M. Inguscio, A. Smerzi, and M. Fattori, Crossing over from attractive to repulsive interactions in a tunneling bosonic Josephson junction, Phys. Rev. Lett. 118(23), 230403 (2017)
|
[27] |
M. Pigneur and J. Schmiedmayer, Analytical pendulum model for a bosonic Josephson junction, Phys. Rev. A98(6), 063632 (2018)
|
[28] |
S. Martínez-Garaot, G. Pettini, and M. Modugno, Nonlinear mixing of Bogoliubov modes in a bosonic Josephson junction, Phys. Rev. A 98(4), 043624 (2018)
|
[29] |
J. Dobrzyniecki, and T. Sowiński, Effective two-mode description of a few ultra-cold bosons in a double-well potential, Phys. Lett. A 382(6), 394 (2018)
|
[30] |
G. Valtolina, A. Burchianti, A. Amico, E. Neri, K. Xhani, J. A. Seman, A. Trombettoni, A. Smerzi, M. Zaccanti, M. Inguscio, and G. Roati, Josephson effect in fermionic superfluids across the BEC–BCS crossover, Science 350(6267), 1505 (2015)
|
[31] |
M. Jääskeläinen and P. Meystre, Dynamics of Bose–Einstein condensates in double-well potentials, Phys. Rev. A 71(4), 043603 (2005)
|
[32] |
N. R. Thomas, A. C. Wilson, and C. J. Foot, Double-well magnetic trap for Bose–Einstein condensates, Phys. Rev. A 65(6), 063406 (2002)
|
[33] |
R. W. Spekkens and J. E. Sipe, Spatial fragmentation of a Bose–Einstein condensate in a double-well potential, Phys. Rev. A 59(5), 3868 (1999)
|
[34] |
H. M. Cataldo and D. M. Jezek, Dynamics in asymmetric double-well condensates, Phys. Rev. A 90(4), 043610 (2014)
|
[35] |
Y. Shin, M. Saba, T. A. Pasquini, W. Ketterle, D. E. Pritchard, and A. E. Leanhardt, Atom interferometry with Bose–Einstein condensates in a double-well potential, Phys. Rev. Lett. 92(5), 050405 (2004)
|
[36] |
M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, and M. K. Oberthaler, Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction, Phys. Rev. Lett. 95(1), 010402 (2005)
|
[37] |
A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Quantum coherent atomic tunneling between two trapped Bose–Einstein condensates, Phys. Rev. Lett. 79(25), 4950 (1997)
|
[38] |
D. P. Kingma and J. L. Ba, Adam: A method for stochastic optimization, arXiv: 1412.6980 (2014)
|
[39] |
J. D. Scargle, Studies in astronomical time series Analysis (iii) — Fourier transforms, autocorrelation functions, and cross-correlation functions of unevenly spaced data, Astrophys. J. 343, 874 (1989)
|
[40] |
D. O. Pushkin, D. E. Melnikov, and V. M. Shevtsova, Ordering of small particles in one-dimensional coherent structures by time-periodic flows, Phys. Rev. Lett. 106(23), 234501 (2011)
|
[41] |
F. Tajik, M. Sedighi, M. Khorrami, A. A. Masoudi, and G. Palasantzas, Chaotic behavior in Casimir oscillators: A case study for phase-change materials, Phys. Rev. E 96(4), 042215 (2017)
|
[42] |
Z. Liu, Chaotic Dynamics Foundation and Its Application in Brain Functions, Beijing: Science Press, 2018
|
[43] |
S. Efthymiou, M. J. S. Beach, and R. G. Melko, Superresolving the Ising model with convolutional neural networks, Phys. Rev. B 99(7), 075113 (2019)
|
[44] |
Z. Li, S. Wu, J. Gao, H. Zhou, Z. Yan, R. Ren, S. Yin, and X. Jin, Fast correlated-photon imaging enhanced by deep learning, Optica 8(3), 323 (2021)
|
[45] |
O. Vandans, K. Yang, Z. Wu, and L. Dai, Identifying knot types of polymer conformations by machine learning, Phys. Rev. E 101(2), 022502 (2020)
|
[46] |
J. Liu, H. Ding, C. Zhang, S. Xie, and Q. Wang, Practical phase-modulation stabilization in quantum key distribution via machine learning, Phys. Rev. Appl. 12(1), 014059 (2019)
|
[47] |
F. Milletari, N. Navab, and S. Ahmadi, V-net: Fully convolutional neural networks for volumetric medical image segmentation, in: 2016 Fourth International Conference on 3D Vision (3DV), pp 565–571 (2016)
|
[48] |
L. Xie, Q. Yu, Y. Zhou, Y. Wang, E. K. Fishman, and A. L. Yuille, Recurrent saliency transformation network for tiny target segmentation in abdominal CT scans, IEEE Trans. Med. Imaging 39(2), 514 (2020)
|
[49] |
J. Dobrzyniecki, X. Li, A. E. B. Nielsen, and T. Sowiński, Effective three-body interactions for bosons in a double well confinement, Phys. Rev. A 97(1), 013609 (2018)
|
[50] |
B. Yun, Y. Wang, J. Chen, H. Wang, W. Shen, and Q. Li, SpecTr: Spectral transformer for hyperspectral pathology image segmentation, arXiv: 2103.03604 (2021)
|
/
〈 | 〉 |