Structure search of two-dimensional systems using CALYPSO methodology

Pengyue Gao, Bo Gao, Shaohua Lu, Hanyu Liu, Jian Lv, Yanchao Wang, Yanming Ma

PDF(2671 KB)
PDF(2671 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (2) : 23203. DOI: 10.1007/s11467-021-1109-2
TOPICAL REVIEW
TOPICAL REVIEW

Structure search of two-dimensional systems using CALYPSO methodology

Author information +
History +

Abstract

The dimensionality of structures allows materials to be classified into zero-, one-, two-, and threedimensional systems. Two-dimensional (2D) systems have attracted a great deal of attention and typically include surfaces, interfaces, and layered materials. Due to their varied properties, 2D systems hold promise for applications such as electronics, optoelectronics, magnetronics, and valleytronics. The design of 2D systems is an area of intensive research because of the rapid development of ab initiostructure-searching methods. In this paper, we highlight recent research progress on accelerating the design of 2D systems using the CALYPSO methodology. Challenges and perspectives for future developments in 2D structure prediction methods are also presented.

Graphical abstract

Keywords

two-dimensional (2D) systems / CALYPSO / structure prediction

Cite this article

Download citation ▾
Pengyue Gao, Bo Gao, Shaohua Lu, Hanyu Liu, Jian Lv, Yanchao Wang, Yanming Ma. Structure search of two-dimensional systems using CALYPSO methodology. Front. Phys., 2022, 17(2): 23203 https://doi.org/10.1007/s11467-021-1109-2

References

[1]
K. S. Novoselov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)
CrossRef ADS Google scholar
[2]
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys.81(1), 109 (2009)
CrossRef ADS Google scholar
[3]
J. Wang, S. Deng, Z. Liu, and Z. Liu, The rare twodimensional materials with Dirac cones, Natl. Sci. Rev.2(1), 22 (2015)
CrossRef ADS Google scholar
[4]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature438(7065), 197 (2005)
CrossRef ADS Google scholar
[5]
Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature438(7065), 201 (2005)
CrossRef ADS Google scholar
[6]
Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, Switchable dual-wavelength synchronously Qswitched erbium-doped fiber laser based on graphene saturable absorber, IEEE Photonics J. 4(3), 869 (2012)
CrossRef ADS Google scholar
[7]
F. Maier, M. Riedel, B. Mantel, J. Ristein, and L. Ley, Origin of surface conductivity in diamond, Phys. Rev. Lett. 85(16), 3472 (2000)
CrossRef ADS Google scholar
[8]
A. Ohtomo and H. Y. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface, Nature427(6973), 423 (2004)
CrossRef ADS Google scholar
[9]
J. P. Buban, Grain boundary strengthening in alumina by rare earth impurities, Science311(5758), 212 (2006)
CrossRef ADS Google scholar
[10]
A. R. Oganov, and C. W. Glass, Crystal structure prediction using ab initio evolutionary techniques: Principles and applications, J. Chem. Phys. 124(24), 244704 (2006)
CrossRef ADS Google scholar
[11]
S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated annealing, Science 220(4598), 671 (1983)
CrossRef ADS Google scholar
[12]
S. Goedecker, Minima hopping: An efficient search method for the global minimum of the potential energy surface of complex molecular systems, J. Chem. Phys. 120(21), 9911 (2004)
CrossRef ADS Google scholar
[13]
D. J. Wales and J. P. K. Doye, Global optimization by basin-hopping and the lowest energy structures of Lennard–Jones clusters containing up to 110 atoms, J. Phys. Chem. A 101(28), 5111 (1997)
CrossRef ADS Google scholar
[14]
R. Martoňák, A. Laio, and M. Parrinello, Predicting crystal structures: The Parrinello–Rahman method revisited, Phys. Rev. Lett. 90(7), 075503 (2003)
CrossRef ADS Google scholar
[15]
C. J. Pickard and R. J. Needs, Ab initio random structure searching, J. Phys.: Condens. Matter 23(5), 053201 (2011)
CrossRef ADS Google scholar
[16]
D. C. Lonie and E. Zurek, XtalOpt: An open-source evolutionary algorithm for crystal structure prediction, Comput. Phys. Commun. 182(2), 372 (2011)
CrossRef ADS Google scholar
[17]
A. N. Kolmogorov, S. Shah, E. R. Margine, A. F. Bialon, T. Hammerschmidt, and R. Drautz, New superconducting and semiconducting Fe–B compounds predicted with an ab initio evolutionary search, Phys. Rev. Lett.105(21), 217003 (2010)
CrossRef ADS Google scholar
[18]
G. Trimarchi and A. Zunger, Global space-group optimization problem: Finding the stablest crystal structure without constraints, Phys. Rev. B75(10), 104113 (2007)
CrossRef ADS Google scholar
[19]
S. Bahmann and J. Kortus, EVO — Evolutionary algorithm for crystal structure prediction, Comput. Phys. Commun. 184(6), 1618 (2013)
CrossRef ADS Google scholar
[20]
W. Bi, Y. Meng, R. S. Kumar, A. L. Cornelius, W. W. Tipton, R. G. Hennig, Y. Zhang, C. Chen, and J. S. Schilling, Pressure-induced structural transitions in europium to 92 GPa, Phys. Rev. B 83(10), 104106 (2011)
CrossRef ADS Google scholar
[21]
S. T. Call, D. Y. Zubarev, and A. I. Boldyrev, Global minimum structure searches via particle swarm optimization, J. Comput. Chem. 28(7), 1177 (2007)
CrossRef ADS Google scholar
[22]
Y. Wang, J. Lv, L. Zhu, and Y. Ma, CALYPSO: A method for crystal structure prediction, Comput. Phys. Commun. 183(10), 2063 (2012)
CrossRef ADS Google scholar
[23]
Y. Wang, J. Lv, L. Zhu, and Y. Ma, Crystal structure prediction via particle-swarm optimization, Phys. Rev. B82(9), 094116 (2010)
CrossRef ADS Google scholar
[24]
J. Chen, G. Schusteritsch, C. J. Pickard, C. G. Salzmann, and A. Michaelides, Two dimensional ice from first principles: Structures and phase transitions, Phys. Rev. Lett.116(2), 025501 (2016)
CrossRef ADS Google scholar
[25]
K. A. Tikhomirova, C. Tantardini, E. V. Sukhanova, Z. I. Popov, S. A. Evlashin, M. A. Tarkhov, V. L. Zhdanov, A. A. Dudin, A. R. Oganov, D. G. Kvashnin, and A. G. Kvashnin, Exotic two-dimensional structure: The first case of hexagonal NaCl, J. Phys. Chem. Lett. 11(10), 3821 (2020)
CrossRef ADS Google scholar
[26]
Z. Zhu, X. Cai, S. Yi, J. Chen, Y. Dai, C. Niu, Z. Guo, M. Xie, F. Liu, J. H. Cho, Y. Jia, and Z. Zhang, Multivalency-driven formation of Te-based monolayer materials: A combined first-principles and experimental study, Phys. Rev. Lett. 119(10), 106101 (2017)
CrossRef ADS Google scholar
[27]
Y. Wang, M. Miao, J. Lv, L. Zhu, K. Yin, H. Liu, and Y. Ma, An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm, J. Chem. Phys. 137(22), 224108 (2012)
CrossRef ADS Google scholar
[28]
X. Luo, J. Yang, H. Liu, X. Wu, Y. Wang, Y. Ma, S. H. Wei, X. Gong, and H. Xiang, Predicting twodimensional boron-carbon compounds by the global optimization method, J. Am. Chem. Soc. 133(40), 16285 (2011)
CrossRef ADS Google scholar
[29]
B. Gao, X. Shao, J. Lv, Y. Wang, and Y. Ma, Structure prediction of atoms adsorbed on two-dimensional layer materials: Method and applications, J. Phys. Chem. C 119(34), 20111 (2015)
CrossRef ADS Google scholar
[30]
S. Lu, Y. Wang, H. Liu, M. S. Miao, and Y. Ma, Selfassembled ultrathin nanotubes on diamond (100) surface, Nat. Commun. 5(1), 3666 (2014)
CrossRef ADS Google scholar
[31]
B. Gao, P. Gao, S. Lu, J. Lv, Y. Wang, and Y. Ma, Interface structure prediction via CALYPSO method, Sci. Bull. (Beijing) 64(5), 301 (2019)
CrossRef ADS Google scholar
[32]
J. Lv, Y. Wang, L. Zhu, and Y. Ma, Particle-swarm structure prediction on clusters, J. Chem. Phys. 137(8), 084104 (2012)
CrossRef ADS Google scholar
[33]
K. Yin, P. Gao, X. Shao, B. Gao, H. Liu, J. Lv, J. S. Tse, Y. Wang, and Y. Ma, An automated predictor for identifying transition states in solids, npj Comput. Mater.6(1), 16 (2020)
CrossRef ADS Google scholar
[34]
P. Gao, Q. Tong, J. Lv, Y. Wang, and Y. Ma, Xray diffraction data-assisted structure searches, Comput. Phys. Commun. 213, 40 (2017)
CrossRef ADS Google scholar
[35]
Y. Zhang, H. Wang, Y. Wang, L. Zhang, and Y. Ma, Computer-assisted inverse design of inorganic electrides, Phys. Rev. X 7(1), 011017 (2017)
CrossRef ADS Google scholar
[36]
X. Zhang, Y. Wang, J. Lv, C. Zhu, Q. Li, M. Zhang, Q. Li, and Y. Ma, First-principles structural design of superhard materials, J. Chem. Phys. 138(11), 114101 (2013)
CrossRef ADS Google scholar
[37]
H. Wang, Y. Wang, J. Lv, Q. Li, L. Zhang, and Y. Ma, CALYPSO structure prediction method and its wide application, Comput. Mater. Sci. 112, 406 (2016)
CrossRef ADS Google scholar
[38]
Y. Wang, J. Lv, L. Zhu, S. Lu, K. Yin, Q. Li, H. Wang, L. Zhang, and Y. Ma, Materials discovery via CALYPSO methodology, J. Phys.: Condens. Matter 27(20), 203203 (2015)
CrossRef ADS Google scholar
[39]
Q. Tong, J. Lv, P. Gao, and Y. Wang, The CALYPSO methodology for structure prediction, Chin. Phys. B28(10), 106105 (2019)
CrossRef ADS Google scholar
[40]
C. Tang, G. Kour, and A. Du, Recent progress on the prediction of two-dimensional materials using CALYPSO, Chin. Phys. B 28(10), 107306 (2019)
CrossRef ADS Google scholar
[41]
L. C. Xu, R. Z. Wang, M. S. Miao, X. L. Wei, Y. P. Chen, H. Yan, W. M. Lau, L. M. Liu, and Y. M. Ma, Two dimensional Dirac carbon allotropes from graphene, Nanoscale 6(2), 1113 (2014)
CrossRef ADS Google scholar
[42]
F. Ma, Y. Jiao, G. Gao, Y. Gu, A. Bilic, Z. Chen, and A. Du, Graphene-like two-dimensional ionic boron with double Dirac cones at ambient condition, Nano Lett. 16(5), 3022 (2016)
CrossRef ADS Google scholar
[43]
M. Xu, G. Zhan, S. Liu, D. Zhang, X. Zhong, Z. Qu, Y. Li, A. Du, H. Zhang, and Y. Wang, PT-symmetry-protected Dirac states in strain-induced hidden MoS2 monolayer, Phys. Rev. B 100(23), 235435 (2019)
CrossRef ADS Google scholar
[44]
X. Tang, W. Sun, C. Lu, L. Kou, and C. Chen, Atomically thin NiB6 monolayer: A robust Dirac material, Phys. Chem. Chem. Phys. 21(2), 617 (2019)
CrossRef ADS Google scholar
[45]
X. Li and Q. Wang, Prediction of a BeP2 monolayer with a compression-induced Dirac semimetal state, Phys. Rev. B 97(8), 085418 (2018)
CrossRef ADS Google scholar
[46]
P. Zhou, Z. S. Ma, and L. Z. Sun, Coexistence of open and closed type nodal line topological semimetals in two dimensional B2C, J. Mater. Chem. C6(5), 1206 (2018)
CrossRef ADS Google scholar
[47]
F. Ma, G. Gao, Y. Jiao, Y. Gu, A. Bilic, H. Zhang, Z. Chen, and A. Du, Predicting a new phase (T″) of twodimensional transition metal di-chalcogenides and straincontrolled topological phase transition, Nanoscale8(9), 4969 (2016)
CrossRef ADS Google scholar
[48]
Z. H. Cui, E. Jimenez-Izal, and A. N. Alexandrova, Prediction of two-dimensional phase of boron with anisotropic electric conductivity, J. Phys. Chem. Lett. 8(6), 1224 (2017)
CrossRef ADS Google scholar
[49]
Y. Ding and Y. Wang, Geometric and electronic structures of two-dimensional SiC3 compound, J. Phys. Chem. C 118(8), 4509 (2014)
CrossRef ADS Google scholar
[50]
H. Zhang, Y. Li, J. Hou, A. Du, and Z. Chen, Dirac state in the FeB2 monolayer with graphene-like boron sheet, Nano Lett. 16(10), 6124 (2016)
CrossRef ADS Google scholar
[51]
B. Wang, S. Yuan, Y. Li, L. Shi, and J. Wang, A new Dirac cone material: A graphene-like Be3C2 monolayer, Nanoscale9(17), 5577 (2017)
CrossRef ADS Google scholar
[52]
P. F. Liu, L. Zhou, S. Tretiak, and L. M. Wu, Twodimensional hexagonal M3C2 (M= Zn, Cd and Hg) monolayers: Novel quantum spin Hall insulators and Dirac cone materials, J. Mater. Chem. C5(35), 9181 (2017)
CrossRef ADS Google scholar
[53]
J. Zhou and P. Jena, Two-dimensional topological crystalline quantum spin Hall effect in transition metal intercalated compounds, Phys. Rev. B 95(8), 081102 (2017)
CrossRef ADS Google scholar
[54]
H. Li, Y. Xu, X. Sun, and S. Wang, Mg3X2 (X= C, Si) monolayer in a honeycomb-Kagome lattice: A global minimum structure, J. Alloys Compd.765, 969 (2018)
CrossRef ADS Google scholar
[55]
K. Jiang, A. Cui, S. Shao, J. Feng, H. Dong, B. Chen, Y. Wang, Z. Hu, and J. Chu, New pressure stabilization structure in two-dimensional PtSe2, J. Phys. Chem. Lett.11(17), 7342 (2020)
CrossRef ADS Google scholar
[56]
C. Ding, G. Gong, Y. Liu, F. Zheng, Z. Zhang, H. Yang, Z. Li, Y. Xing, J. Ge, K. He, W. Li, P. Zhang, J. Wang, L. Wang, and Q. K. Xue, Signature of superconductivity in orthorhombic CoSb monolayer films on SrTiO3 (001), ACS Nano13(9), 10434 (2019)
CrossRef ADS Google scholar
[57]
L. Yan, T. Bo, P. F. Liu, B. T. Wang, Y. G. Xiao, and M. H. Tang, Prediction of phonon-mediated superconductivity in two-dimensional Mo2B2, J. Mater. Chem. C 7(9), 2589 (2019)
CrossRef ADS Google scholar
[58]
T. Bo, P. F. Liu, L. Yan, and B. T. Wang, Electron–phonon coupling superconductivity in two-dimensional orthorhombic MB6 (M= Mg, Ca, Ti, Y) and hexagonal MB6 (M= Mg, Ca, Sc, Ti), Phys. Rev. Mater. 4(11), 114802 (2020)
CrossRef ADS Google scholar
[59]
D. Fan, S. Lu, Y. Guo, and X. Hu, Two-dimensional stoichiometric boron carbides with unexpected chemical bonding and promising electronic properties, J. Mater. Chem. C 6(7), 1651 (2018)
CrossRef ADS Google scholar
[60]
Z. Qu, S. Lin, M. Xu, J. Hao, J. Shi, W. Cui, and Y. Li, Prediction of strain-induced phonon-mediated superconductivity in monolayer YS, J. Mater. Chem. C7(36), 11184 (2019)
CrossRef ADS Google scholar
[61]
L. Yan, T. Bo, W. Zhang, P. F. Liu, Z. Lu, Y. G. Xiao, M. H. Tang, and B. T. Wang, Novel structures of twodimensional tungsten boride and their superconductivity, Phys. Chem. Chem. Phys. 21(28), 15327 (2019)
CrossRef ADS Google scholar
[62]
H. Li, Y. Hao, D. Sun, D. Zhou, G. Liu, H. Wang, and Q. Li, Mechanical properties and superconductivity in two-dimensional B2O under extreme strain, Phys. Chem. Chem. Phys. 21(46), 25859 (2019)
CrossRef ADS Google scholar
[63]
L. Yan, P. F. Liu, H. Li, Y. Tang, J. He, X. Huang, B. T. Wang, and L. Zhou, Theoretical dissection of superconductivity in two-dimensional honeycomb borophene oxide B2O crystal with a high stability, npj Comput. Mater. 6(1), 94 (2020)
CrossRef ADS Google scholar
[64]
L. Yan, T. Bo, P. F. Liu, L. Zhou, J. Zhang, M. H. Tang, Y. G. Xiao, and B. T. Wang, Superconductivity in predicted two dimensional XB6 (X= Ga, J. Mater. Chem. C 8(5), 1704 (2020)
CrossRef ADS Google scholar
[65]
F. Zheng, X. B. Li, P. Tan, Y. Lin, L. Xiong, X. Chen, and J. Feng, Emergent superconductivity in two-dimensional NiTe2 crystals, Phys. Rev. B101(10), 100505 (2020)
CrossRef ADS Google scholar
[66]
Z. Qu, F. Han, T. Yu, M. Xu, Y. Li, and G. Yang, Boron Kagome-layer induced intrinsic superconductivity in a MnB3 monolayer with a high critical temperature, Phys. Rev. B102(7), 075431 (2020)
CrossRef ADS Google scholar
[67]
D. Fan, S. Lu, C. Chen, M. Jiang, X. Li, and X. Hu, Versatile two-dimensional boron monosulfide polymorphs with tunable bandgaps and superconducting properties, Appl. Phys. Lett.117(1), 013103 (2020)
CrossRef ADS Google scholar
[68]
Y. Li, Y. Liao, and Z. Chen, Be2C monolayer with quasi‐planar hexacoordinate carbons: A global minimum structure, Angew. Chem. 126(28), 7376 (2014)
CrossRef ADS Google scholar
[69]
L. M. Yang, V. Bačić, I. A. Popov, A. I. Boldyrev, T. Heine, T. Frauenheim, and E. Ganz, Two-dimensional Cu2Si monolayer with planar hexacoordinate copper and silicon bonding, J. Am. Chem. Soc. 137(7), 2757 (2015)
CrossRef ADS Google scholar
[70]
H. Zhang, Y. Li, J. Hou, K. Tu, and Z. Chen, FeB6 monolayers: The graphene-like material with hypercoordinate transition metal, J. Am. Chem. Soc. 138(17), 5644 (2016)
CrossRef ADS Google scholar
[71]
X. Qu, J. Yang, Y. Wang, J. Lv, Z. Chen, and Y. Ma, A two-dimensional TiB4 monolayer exhibits planar octacoordinate Ti, Nanoscale9(45), 17983 (2017)
CrossRef ADS Google scholar
[72]
Y. Wang, M. Qiao, Y. Li, and Z. Chen, A two-dimensional CaSi monolayer with quasi-planar pentacoordinate silicon, Nanoscale Horiz.3(3), 327 (2018)
CrossRef ADS Google scholar
[73]
L. Meng, Y. Zhang, J. Zhang, and W. Wu, Completely flat 2D Zn3O2 monolayer with triangle and pentangle coordinated networks, J. Phys.: Condens. Matter 30(9), 095301 (2018)
CrossRef ADS Google scholar
[74]
Y. Wang, F. Li, Y. Li, and Z. Chen, Semi-metallic Be5C2 monolayer global minimum with quasi-planar pentacoordinate carbons and negative Poisson’s ratio, Nat. Commun.7(1), 11488 (2016)
CrossRef ADS Google scholar
[75]
C. Zhu, H. Lv, X. Qu, M. Zhang, J. Wang, S. Wen, Q. Li, Y. Geng, Z. Su, X. Wu, Y. Li, and Y. Ma, TMC (TM= Co, Ni, and Cu) monolayers with planar pentacoordinate carbon and their potential applications, J. Mater. Chem. C 7(21), 6406 (2019)
CrossRef ADS Google scholar
[76]
D. Fan, C. Chen, S. Lu, X. Li, M. Jiang, and X. Hu, Highly stable two-dimensional iron monocarbide with planar hypercoordinate moiety and superior Li-ion storage performance, ACS Appl. Mater. Interfaces12(27), 30297 (2020)
CrossRef ADS Google scholar
[77]
C. Tang, K. K. Ostrikov, S. Sanvito, and A. Du, Prediction of room-temperature ferromagnetism and large perpendicular magnetic anisotropy in a planar hypercoordinate FeB3 monolayer, Nanoscale Horiz. 6(1), 43 (2021)
CrossRef ADS Google scholar
[78]
T. Yu, S. Zhang, F. Li, Z. Zhao, L. Liu, H. Xu, and G. Yang, Stable and metallic two-dimensional TaC2 as an anode material for lithium-ion battery, J. Mater. Chem. A5(35), 18698 (2017)
CrossRef ADS Google scholar
[79]
S. Jana, S. Thomas, C. H. Lee, B. Jun, and S. U. Lee, B3S monolayer: Prediction of a high-performance anode material for lithium-ion batteries, J. Mater. Chem. A 7(20), 12706 (2019)
CrossRef ADS Google scholar
[80]
G. Yuan, T. Bo, X. Qi, P.-F. Liu, Z. Huang, and B.-T. Wang, Monolayer Zr2B2: A promising two-dimensional anode material for Li-ion batteries, Appl. Surf. Sci.480, 448 (2019)
CrossRef ADS Google scholar
[81]
T. Bo, P. F. Liu, J. Zhang, F. Wang, and B. T. Wang, Tetragonal and trigonal Mo2B2 monolayers: Two new low-dimensional materials for Li-ion and Na-ion batteries, Phys. Chem. Chem. Phys.21(9), 5178 (2019)
CrossRef ADS Google scholar
[82]
Y. Y. Wu, T. Bo, J. Zhang, Z. Lu, Z. Wang, Y. Li, and B. T. Wang, Novel two-dimensional tetragonal vanadium carbides and nitrides as promising materials for Li-ion batteries, Phys. Chem. Chem. Phys. 21(35), 19513 (2019)
CrossRef ADS Google scholar
[83]
Y. Guo, T. Bo, Y. Wu, J. Zhang, Z. Lu, W. Li, X. Li, P. Zhang, and B. Wang, YS2 monolayer as a high-efficient anode material for rechargeable Li-ion and Na-ion batteries, Solid State Ionics 345, 115187 (2020)
CrossRef ADS Google scholar
[84]
X. H. Cai, Q. Yang, S. Zheng, and M. Wang, Net‐C18: A predicted two-dimensional planar carbon allotrope and potential for an anode in lithium-ion battery, Energy Environ. Mater. 4, 458 (2021)
CrossRef ADS Google scholar
[85]
G. Guo, R. Wang, S. Luo, B. Ming, C. Wang, M. Zhang, Y. Zhang, and H. Yan, Metallic two-dimensional C3N allotropes with electron and ion channels for highperformance Li-ion battery anode materials, Appl. Surf. Sci. 518, 146254 (2020)
CrossRef ADS Google scholar
[86]
D. Li, Two-dimensional C5678: A promising carbon-based high-performance lithium-ion battery anode, Mater. Adv. 2(1), 398 (2021)
CrossRef ADS Google scholar
[87]
C. Kou, Y. Tian, M. Zhang, E. Zurek, X. Qu, X. Wang, K. Yin, Y. Yan, L. Gao, M. Lu, and W. Yang, M-graphene: A metastable two-dimensional carbon allotrope, 2D Mater. 7(2), (2020)
CrossRef ADS Google scholar
[88]
X. Li, Q. Wang, and P. Jena, ψ-graphene: A new metallic allotrope of planar carbon with potential applications as anode materials for lithium-ion batteries, J. Phys. Chem. Lett.8(14), 3234 (2017)
CrossRef ADS Google scholar
[89]
T. Yu, Z. Zhao, L. Liu, S. Zhang, H. Xu, and G. Yang, TiC3 monolayer with high specific capacity for sodiumion batteries, J. Am. Chem. Soc. 140(18), 5962 (2018)
CrossRef ADS Google scholar
[90]
A. Byeon, M. Q. Zhao, C. E. Ren, J. Halim, S. Kota, P. Urbankowski, B. Anasori, M. W. Barsoum, and Y. Gogotsi, Two-dimensional titanium carbide MXene as a cathode material for hybrid magnesium/lithium-ion batteries, ACS Appl. Mater. Interfaces9(5), 4296 (2017)
CrossRef ADS Google scholar
[91]
Z. Zhao, T. Yu, S. Zhang, H. Xu, G. Yang, and Y. Liu, Metallic P3C monolayer as anode for sodium-ion batteries, J. Mater. Chem. A 7(1), 405 (2019)
CrossRef ADS Google scholar
[92]
T. Li, C. He, and W. Zhang, A novel porous C4N4 monolayer as a potential anchoring material for lithium–sulfur battery design, J. Mater. Chem. A7(8), 4134 (2019)
CrossRef ADS Google scholar
[93]
Y. Yu, Z. Guo, Q. Peng, J. Zhou, and Z. Sun, Novel two-dimensional molybdenum carbides as high capacity anodes for lithium/sodium-ion batteries, J. Mater. Chem. A 7(19), 12145 (2019)
CrossRef ADS Google scholar
[94]
H. Huang, H. H. Wu, C. Chi, B. Huang, and T. Y. Zhang, Ab initioinvestigations of orthogonal ScC2 and ScN2 monolayers as promising anode materials for sodium-ion batteries, J. Mater. Chem. A 7(15), 8897 (2019)
CrossRef ADS Google scholar
[95]
C. Zhu, X. Qu, M. Zhang, J. Wang, Q. Li, Y. Geng, Y. Ma, and Z. Su, Planar NiC3 as a reversible anode material with high storage capacity for lithium-ion and sodium-ion batteries, J. Mater. Chem. A 7(21), 13356 (2019)
CrossRef ADS Google scholar
[96]
Y. Wang, Y. Li, and Z. Chen, Not your familiar two dimensional transition metal disulfide: Structural and electronic properties of the PdS2 monolayer, J. Mater. Chem. C 3(37), 9603 (2015)
CrossRef ADS Google scholar
[97]
C. Zhang and Q. Sun, A honeycomb BeN2 sheet with a desirable direct band gap and high carrier mobility, J. Phys. Chem. Lett. 7(14), 2664 (2016)
CrossRef ADS Google scholar
[98]
X. Li, S. Zhang, C. Zhang, and Q. Wang, Stabilizing benzene-like planar N6 rings to form a single atomic honeycomb BeN3 sheet with high carrier mobility, Nanoscale10(3), 949 (2018)
CrossRef ADS Google scholar
[99]
Q. Wu, W. W. Xu, L. Ma, J. Wang, and X. C. Zeng, Two-dimensional AuMX2 (M= Al, Ga, In; X= S, Se) monolayers featuring intracrystalline aurophilic interactions with novel electronic and optical properties, ACS Appl. Mater. Interfaces 10(19), 16739 (2018)
CrossRef ADS Google scholar
[100]
L. B. Meng, S. Ni, Y. J. Zhang, B. Li, X. W. Zhou, and W. D. Wu, Two-dimensional zigzag-shaped Cd2C monolayer with a desirable bandgap and high carrier mobility, J. Mater. Chem. C 6(34), 9175 (2018)
CrossRef ADS Google scholar
[101]
K. Zhao, X. Li, S. Wang, and Q. Wang, 2D planar penta- MN2 (M= Pd, Pt) sheets identified through structure search, Phys. Chem. Chem. Phys. 21(1), 246 (2019)
CrossRef ADS Google scholar
[102]
Q. Wu, W. W. Xu, D. Lin, J. Wang, and X. C. Zeng, Twodimensional gold sulfide monolayers with direct band gap and ultrahigh electron mobility, J. Phys. Chem. Lett.10(13), 3773 (2019)
CrossRef ADS Google scholar
[103]
C. Tang, F. Ma, C. Zhang, Y. Jiao, S. K. Matta, K. Ostrikov, and A. Du, 2D boron dichalcogenides from the substitution of Mo with ionic B2 pair in MoX2 (X= S, Se and Te): High stability, large excitonic effect and high charge carrier mobility, J. Mater. Chem. C7(6), 1651 (2019)
CrossRef ADS Google scholar
[104]
W. Yi, X. Chen, Z. Wang, Y. Ding, B. Yang, and X. Liu, A novel two-dimensional δ-InP3 monolayer with high stability, tunable bandgap, high carrier mobility, and gas sensing of NO2, J. Mater. Chem. C 7(24), 7352 (2019)
CrossRef ADS Google scholar
[105]
C. Pu, J. Yu, R. Yu, X. Tang, and D. Zhou, Hydrogenated PtP2 monolayer: Theoretical predictions on the structure and charge carrier mobility, J. Mater. Chem. C 7(39), 12231 (2019)
CrossRef ADS Google scholar
[106]
H. Zhang, X. Li, X. Meng, S. Zhou, G. Yang, and X. Zhou, Isoelectronic analogues of graphene: The BCN monolayers with visible-light absorption and high carrier mobility, J. Phys.: Condens. Matter 31(12), 125301 (2019)
CrossRef ADS Google scholar
[107]
Y. Qian, H. Wu, E. Kan, and K. Deng, Graphene-like quaternary compound SiBCN: A new wide direct band gap semiconductor predicted by a first-principles study, EPL118(1), 17002 (2017)
CrossRef ADS Google scholar
[108]
G. Wang, R. Pandey, and S. P. Karna, Carbon phosphide monolayers with superior carrier mobility, Nanoscale 8(16), 8819 (2016)
CrossRef ADS Google scholar
[109]
X. Chen, D. Wang, X. Liu, L.Liand B. Sanyal, Twodimensional square-A2B (A= Cu, Ag, Au, and B= S, Se): Auxetic semiconductors with high carrier mobilities and unusually low lattice thermal conductivities, J. Phys. Chem. Lett. 11(8), 2925 (2020)
CrossRef ADS Google scholar
[110]
C. Wang, T. Yu, A. Bergara, X. Du, F. Li, and G. Yang, Anisotropic PC6N monolayer with wide band gap and ultrahigh carrier mobility, J. Phys. Chem. C 124(7), 4330 (2020)
CrossRef ADS Google scholar
[111]
Y. Sun, B. Xu, and L. Yi, HfN2 monolayer: A new directgap semiconductor with high and anisotropic carrier mobility, Chin. Phys. B 29(2), 023102 (2020)
CrossRef ADS Google scholar
[112]
Y. M. Dou, C. W. Zhang, P. Li, and P. J. Wang, SnxPy monolayers: A new type of two-dimensional materials with high stability, carrier mobility, and magnetic properties, Nanoscale Res. Lett. 15(1), 155 (2020)
CrossRef ADS Google scholar
[113]
D. Liang, T. Jing, D. Mingsen, and S. Cai, Twodimensional ScN with high carrier mobility and unexpected mechanical properties, Nanotechnology32(15), 155201 (2021)
CrossRef ADS Google scholar
[114]
L. Shao, X. Duan, Y. Li, F. Zeng, H. Ye, and P. Ding, Two-dimensional Ga2O2 monolayer with tunable band gap and high hole mobility, Phys. Chem. Chem. Phys. 23(1), 666 (2021)
CrossRef ADS Google scholar
[115]
Q. Wu, W. W. Xu, B. Qu, L. Ma, X. Niu, J. Wang, and X. C. Zeng, Au6S2 monolayer sheets: Metallic and semiconducting polymorphs, Mater. Horiz. 4(6), 1085 (2017)
CrossRef ADS Google scholar
[116]
C. S. Liu, H. H. Zhu, X. J. Ye, and X. H. Yan, Prediction of a new BeC monolayer with perfectly planar tetracoordinate carbons, Nanoscale9(18), 5854 (2017)
CrossRef ADS Google scholar
[117]
F. Shojaei and H. S. Kang, Partially Planar BP3 with High Electron Mobility as a Phosphorene Analog, J. Mater. Chem. C 5(43), 11267 (2017)
CrossRef ADS Google scholar
[118]
F. Li, Y. Wang, H. Wu, Z. Liu, U. Aeberhard, and Y.Li, Benzene-like N6 rings in a Be2N6 monolayer: A stable 2D semiconductor with high carrier mobility, J. Mater. Chem. C 5(44), 11515 (2017)
CrossRef ADS Google scholar
[119]
L. Zhao, W. Yi, J. Botana, F. Gu, and M. Miao, Nitrophosphorene: A 2D semiconductor with both large direct gap and superior mobility, J. Phys. Chem. C 121(51), 28520 (2017)
CrossRef ADS Google scholar
[120]
Y. Guo, L. Ma, K. Mao, M. Ju, Y. Bai, J. Zhao, and X. C. Zeng, Eighteen functional monolayer metal oxides: Wide bandgap semiconductors with superior oxidation resistance and ultrahigh carrier mobility, Nanoscale Horiz.4(3), 592 (2019)
CrossRef ADS Google scholar
[121]
Y. Guo, Q. Wu, Y. Li, N. Lu, K. Mao, Y. Bai, J. Zhao, J. Wang, and X. C. Zeng, Copper(i) sulfide: A twodimensional semiconductor with superior oxidation resistance and high carrier mobility, Nanoscale Horiz. 4(1), 223 (2019)
CrossRef ADS Google scholar
[122]
H. Xiao, X. Wang, R. Wang, L. Xu, S. Liang, and C. Yang, Intrinsic magnetism and biaxial strain tuning in two-dimensional metal halides V3X8 (X= F, Cl, Br, I) from first principles and Monte Carlo simulation, Phys. Chem. Chem. Phys.21(22), 11731 (2019)
CrossRef ADS Google scholar
[123]
J. Sun, X. Zhong, W. Cui, J. Shi, J. Hao, M. Xu, and Y. Li, The intrinsic magnetism, quantum anomalous Hall effect and Curie temperature in 2D transition metal trihalides, Phys. Chem. Chem. Phys. 22(4), 2429 (2020)
CrossRef ADS Google scholar
[124]
Y. Jiao, W. Wu, F.Ma, Z. M. Yu, Y. Lu, X. L. Sheng, Y. Zhang, and S. A. Yang, Room temperature ferromagnetism and antiferromagnetism in two-dimensional iron arsenides, Nanoscale11(35), 16508 (2019)
CrossRef ADS Google scholar
[125]
L. Zhang, G. Shi, B. Peng, P. Gao, L. Chen, N. Zhong, L. Mu, L. Zhang, P. Zhang, L. Gou, Y. Zhao, S. Liang, J. Jiang, Z. Zhang, H. Ren, X. Lei, R. Yi, Y. Qiu, Y. Zhang, X. Liu, M. Wu, L. Yan, C. Duan, S. Zhang, and H. Fang, Novel 2D CaCl crystals with metallicity, room-temperature ferromagnetism, heterojunction, piezoelectricity-like property, and monovalent calcium ions, Natl. Sci. Rev. 8(7), nwaa274 (2020)
CrossRef ADS Google scholar
[126]
Z. Guan, and S. Ni, Strain-controllable high curie temperature, large valley polarization, and magnetic crystal anisotropy in a 2D ferromagnetic Janus VSeTe monolayer, ACS Appl. Mater. Interfaces12(47), 53067 (2020)
CrossRef ADS Google scholar
[127]
Z. Guan and S. Ni, Predicted 2D ferromagnetic Janus VSeTe monolayer with high curie temperature, large valley polarization and magnetic crystal anisotropy, Nanoscale12(44), 22735 (2020)
CrossRef ADS Google scholar
[128]
C. Zhang, Y. Nie, S. Sanvito, and A. Du, First-principles prediction of a room-temperature ferromagnetic Janus VSSe monolayer with piezoelectricity, ferroelasticity, and large valley polarization, Nano Lett. 19(2), 1366 (2019)
CrossRef ADS Google scholar
[129]
S. Zheng, C. Huang, T. Yu, M. Xu, S. Zhang, H. Xu, Y. Liu, E. Kan, Y. Wang, and G. Yang, High-temperature ferromagnetism in an Fe3P monolayer with a large magnetic anisotropy, J. Phys. Chem. Lett. 10(11), 2733 (2019)
CrossRef ADS Google scholar
[130]
B. Wang, Y. Zhang, L. Ma, Q. Wu, Y. Guo, X. Zhang, and J. Wang, MnX (X= P, As) monolayers: A new type of two-dimensional intrinsic room temperature ferromagnetic half-metallic material with large magnetic anisotropy, Nanoscale11(10), 4204 (2019)
CrossRef ADS Google scholar
[131]
H. Pan, Y. Han, J. Li, H. Zhang, Y. Du, and N. Tang, Half-metallicity in a honeycomb–Kagome-lattice Mg3C2 monolayer with carrier doping, Phys. Chem. Chem. Phys.20(20), 14166 (2018)
CrossRef ADS Google scholar
[132]
M. Xu, X. Zhong, J. Lv, W. Cui, J. Shi, V. Kanchana, G. Vaitheeswaran, J. Hao, Y. Wang, and Y. Li, Ti-fractioninduced electronic and magnetic transformations in titanium oxide films, J. Chem. Phys. 150(15), 154704 (2019)
CrossRef ADS Google scholar
[133]
W. Luo, K. Xu, and H. Xiang, Two-dimensional hyperferroelectric metals: A different route to ferromagneticferroelectric multiferroics, Phys. Rev. B 96(23), 235415 (2017)
CrossRef ADS Google scholar
[134]
P. Li, W. Zhang, D. Li, C. Liang, and X. C. Zeng, Multifunctional binary monolayers GexPy: Tunable band gap, ferromagnetism, and photocatalyst for water splitting, ACS Appl. Mater. Interfaces10(23), 19897 (2018)
CrossRef ADS Google scholar
[135]
Y. Gao, M. Wu, and X. C. Zeng, Phase transitions and ferroelasticity–multiferroicity in bulk and twodimensional silver and copper monohalides, Nanoscale Horiz.4(5), 1106 (2019)
CrossRef ADS Google scholar
[136]
M. Xu, C. Huang, Y. Li, S. Liu, X. Zhong, P. Jena, E. Kan, and Y. Wang, Electrical control of magnetic phase transition in a type-I multiferroic double-metal trihalide monolayer, Phys. Rev. Lett.124(6), 067602 (2020)
CrossRef ADS Google scholar
[137]
H. Wang, X. Li, J. Sun, Z. Liu, and J. Yang, BP5 monolayer with multiferroicity and negative Poisson’s ratio: A prediction by global optimization method, 2D Mater.4(4), 045020 (2017)
CrossRef ADS Google scholar
[138]
B. Wang, H. Gao, Q. Lu, W. Xie, Y. Ge, Y. H. Zhao, K. Zhang, and Y. Liu, Type-I and type-II nodal lines coexistence in the antiferromagnetic monolayer CrAs2, Phys. Rev. B98(11), 115164 (2018)
CrossRef ADS Google scholar
[139]
L. Hu, X. Wu, and J. Yang, Mn2C monolayer: A 2D antiferromagnetic metal with high Néel temperature and large spin–orbit coupling, Nanoscale 8(26), 12939 (2016)
CrossRef ADS Google scholar
[140]
S. Zhang, Y. Li, T. Zhao, and Q. Wang, Robust ferromagnetism in monolayer chromium nitride, Sci. Rep.4(1), 5241 (2015)
CrossRef ADS Google scholar
[141]
Y. Zhang, J. Pang, M. Zhang, X. Gu, and L. Huang, Two-dimensional Co2S2 monolayer with robust ferromagnetism, Sci. Rep. 7(1), 15993 (2017)
CrossRef ADS Google scholar
[142]
C. Huang, J. Feng, F. Wu, D. Ahmed, B. Huang, H. Xiang, K. Deng, and E. Kan, Toward intrinsic roomtemperature ferromagnetism in two-dimensional semiconductors, J. Am. Chem. Soc.140(36), 11519 (2018)
CrossRef ADS Google scholar
[143]
Q. Wu, Y. Zhang, Q. Zhou, J. Wang, and X. C. Zeng, Transition-metal dihydride monolayers: A new family of two-dimensional ferromagnetic materials with intrinsic room-temperature half-metallicity, J. Phys. Chem. Lett.9(15), 4260 (2018)
CrossRef ADS Google scholar
[144]
X. Tang, W. Sun, Y. Gu, C. Lu, L. Kou, and C. Chen, CoB6 Monolayer: A robust two-dimensional ferromagnet, Phys. Rev. B 99(4), 045445 (2019)
CrossRef ADS Google scholar
[145]
Y. Wang, F. Li, Y. Li, and Z. Chen, Semi-metallic Be5C2 monolayer global minimum with quasi-planar pentacoordinate carbons and negative Poisson’s ratio, Nat. Commun.7(1), 11488 (2016)
CrossRef ADS Google scholar
[146]
Z. Gao, X. Dong, N. Li, and J. Ren, Novel twodimensional silicon dioxide with in-plane negative Poisson’s ratio, Nano Lett. 17(2), 772 (2017)
CrossRef ADS Google scholar
[147]
L. Meng, Y. Zhang, M. Zhou, J. Zhang, X. Zhou, S. Ni, and W. Wu, Unique zigzag-shaped buckling Zn2C monolayer with strain-tunable band gap and negative Poisson ratio, Inorg. Chem. 57(4), 1958 (2018)
CrossRef ADS Google scholar
[148]
S. Liu, H. Du, G. Li, L. Li, X. Shi, and B. Liu, Twodimensional carbon dioxide with high stability, a negative Poisson’s ratio and a huge band gap, Phys. Chem. Chem. Phys. 20(31), 20615 (2018)
CrossRef ADS Google scholar
[149]
C. Zhang, T. He, S. K. Matta, T. Liao, L. Kou, Z. Chen, and A. Du, Predicting novel 2D MB2 (M= Ti, Hf, V, Nb, Ta) monolayers with ultrafast Dirac transport channel and electron-orbital controlled negative Poisson’s ratio, J. Phys. Chem. Lett. 10(10), 2567 (2019)
CrossRef ADS Google scholar
[150]
B. Wang, Q. Wu, Y. Zhang, L. Ma, and J. Wang, Auxetic B4N monolayer: A promising 2D material with in-plane negative Poisson’s ratio and large anisotropic mechanics, ACS Appl. Mater. Interfaces 11(36), 33231 (2019)
CrossRef ADS Google scholar
[151]
H. Du, G. Li, J. Chen, Z. Lv, Y. Chen, and S. Liu, A novel SiO monolayer with a negative Poisson’s ratio and Dirac semimetal properties, Phys. Chem. Chem. Phys.22(35), 20107 (2020)
CrossRef ADS Google scholar
[152]
J. Lv, M. Xu, S. Lin, X. Shao, X. Zhang, Y. Liu, Y. Wang, Z. Chen, and Y. Ma, Direct-gap semiconducting tri-layer silicene with 29% photovoltaic efficiency, Nano Energy51(July), 489 (2018)
CrossRef ADS Google scholar
[153]
H. Zhang, Y. Liao, G. Yang, and X. Zhou, Theoretical studies on the electronic and optical properties of honeycomb BC3 monolayer: A promising candidate for metalfree photocatalysts, ACS Omega3(9), 10517 (2018)
CrossRef ADS Google scholar
[154]
H. Wang, X. Li, Z. Liu, and J. Yang, ψ-phosphorene: A new allotrope of phosphorene, Phys. Chem. Chem. Phys. 19(3), 2402 (2017)
CrossRef ADS Google scholar
[155]
X. Fu, J. Guo, L. Li, and T. Dai, Structural and electronic properties of predicting two-dimensional BC2P and BC3P3 monolayers by the global optimization method, Chem. Phys. Lett.726, 69 (2019)
CrossRef ADS Google scholar
[156]
J. Guan, L. Zhang, K. Deng, Y. Du, and E. Kan, Computational dissection of 2D SiC7 monolayer: A direct band gap semiconductor and high power conversion efficiency, Adv. Theory Simul. 2(8), 1900058 (2019)
CrossRef ADS Google scholar
[157]
C. Kou, Y. Tian, L. Gao, M. Lu, M. Zhang, H. Liu, D. Zhang, X. Cui, and W. Yang, Theoretical design of two-dimensional carbon nitrides, Nanotechnology31(49), 495707 (2020)
CrossRef ADS Google scholar
[158]
H. Chang, K. Tu, X. Zhang, J. Zhao, X. Zhou, and H. Zhang, B4C3 monolayer with impressive electronic, optical, and mechanical properties: A potential metal-free photocatalyst for CO2 reduction under visible light, J. Phys. Chem. C 123(41), 25091 (2019)
CrossRef ADS Google scholar
[159]
Y. Ding, X. Nie, H. Dong, N. Rujisamphan, and Y. Li, Predicting a new graphene derivative C3H as potential photocatalyst for water splitting and CO2 reduction, Physica E 127, 114562 (2021)
CrossRef ADS Google scholar
[160]
J. Zhang, J. Ren, H. Fu, Z. Ding, H. Li, and S. Meng, Two-dimensional silicon-carbon hybrids with a honeycomb lattice: New family for two-dimensional photovoltaic materials, Sci. China Phys. Mech. Astron.58(10), 106801 (2015)
CrossRef ADS Google scholar
[161]
D. Fan, S. Lu, Y. Guo, and X. Hu, Novel bonding patterns and optoelectronic properties of the twodimensional SixCy monolayers, J. Mater. Chem. C5(14), 3561 (2017)
CrossRef ADS Google scholar
[162]
Y. Chen, Z. Lao, B. Sun, X. Feng, S. A. T. Redfern, H. Liu, J. Lv, H. Wang, and Z. Chen, Identifying the groundstate NP sheet through a global structure search in twodimensional space and its promising high-efficiency photovoltaic properties, ACS Mater. Lett. 1(3), 375 (2019)
CrossRef ADS Google scholar
[163]
X. Cai, Y. Chen, B. Sun, J. Chen, H. Wang, Y. Ni, L. Tao, H. Wang, S. Zhu, X. Li, Y. Wang, J. Lv, X. Feng, S. A. T. Redfern, and Z. Chen, Two-dimensional blue-AsP monolayers with tunable direct band gap and ultrahigh carrier mobility show promising high-performance photovoltaic properties, Nanoscale11(17), 8260 (2019)
CrossRef ADS Google scholar
[164]
W.Luo and H. Xiang, Two-dimensional phosphorus oxides as energy and information materials, Angew. Chem. Int. Ed. 55(30), 8575 (2016)
CrossRef ADS Google scholar
[165]
M. Zhang, G. Gao, A. Kutana, Y. Wang, X. Zou, J. S. Tse, B. I. Yakobson, H. Li, H. Liu, and Y. Ma, Two-dimensional boron–nitrogen–carbon monolayers with tunable direct band gaps, Nanoscale7(28), 12023 (2015)
CrossRef ADS Google scholar
[166]
B. Huang, H. L. Zhuang, M. Yoon, B. G. Sumpter, and S. H. Wei, Highly stable two-dimensional silicon phosphides: Different stoichiometries and exotic electronic properties, Phys. Rev. B 91(12), 121401 (2015)
CrossRef ADS Google scholar
[167]
C. Zhang, J. Liu, H. Shen, X. Z. Li, and Q. Sun, Identifying the ground state geometry of a MoN2 sheet through a global structure search and its tunable P-electron halfmetallicity, Chem. Mater. 29(20), 8588 (2017)
CrossRef ADS Google scholar
[168]
Y. Hu, S. S. Li, W. X. Ji, C. W. Zhang, M. Ding, P. J. Wang, and S. S. Yan, Glide mirror plane protected nodalloop in an anisotropic half-metallic MnNF monolayer, J. Phys. Chem. Lett. 11(2), 485 (2020)
CrossRef ADS Google scholar
[169]
X. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang, and X. C. Zeng, Two-dimensional boron monolayer sheets, ACS Nano6(8), 7443 (2012)
CrossRef ADS Google scholar
[170]
X. Yu, L. Li, X. W. Xu, and C. C. Tang, Prediction of two-dimensional boron sheets by particle swarm optimization algorithm, J. Phys. Chem. C116(37), 20075 (2012)
CrossRef ADS Google scholar
[171]
B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, and K. Wu, Experimental realization of two-dimensional boron sheets, Nat. Chem.8(6), 563 (2016)
CrossRef ADS Google scholar
[172]
S. Liu, B. Liu, X. Shi, J. Lv, S. Niu, M. Yao, Q. Li, R. Liu, T. Cui, and B. Liu, Two-dimensional penta-BP5 sheets: High-stability, strain-tunable electronic structure and excellent mechanical properties, Sci. Rep. 7(1), 2404 (2017)
CrossRef ADS Google scholar
[173]
W. Eerenstein, N. D. Mathur, and J. F. Scott, Multiferroic and magnetoelectric materials, Nature 442(7104), 759 (2006)
CrossRef ADS Google scholar
[174]
M. M. Vopson, Fundamentals of multiferroic materials and their possible applications, Crit. Rev. Solid State Mater. Sci. 40(4), 223 (2015)
CrossRef ADS Google scholar
[175]
L. Meng, Y. Wang, L. Zhang, S. Du, R. Wu, L. Li, Y. Zhang, G. Li, H. Zhou, W. A. Hofer, and H. J. Gao, Buckled silicene formation on Ir(111), Nano Lett. 13(2), 685 (2013)
CrossRef ADS Google scholar
[176]
B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, and B. Aufray, Epitaxial growth of a silicene sheet, Appl. Phys. Lett.97(22), 223109 (2010)
CrossRef ADS Google scholar
[177]
P. De Padova, P. Vogt, A. Resta, J. Avila, I. Razado-Colambo, C. Quaresima, C. Ottaviani, B. Olivieri, T. Bruhn, T. Hirahara, T. Shirai, S. Hasegawa, M. Carmen Asensio, and G. Le Lay, Evidence of Dirac fermions in multilayer silicene, Appl. Phys. Lett.102(16), 163106 (2013)
CrossRef ADS Google scholar
[178]
B. Feng, Z. Ding, S. Meng, Y. Yao, X. He, P. Cheng, L. Chen, and K. Wu, Evidence of silicene in honeycomb structures of silicon on Ag(111), Nano Lett.12(7), 3507 (2012)
CrossRef ADS Google scholar
[179]
A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, and Y. Yamada-Takamura, Experimental evidence for epitaxial silicene on diboride thin films, Phys. Rev. Lett.108(24), 245501 (2012)
CrossRef ADS Google scholar
[180]
B. Aufray, A. Kara, S. Vizzini, H. Oughaddou, C. Léandri, B. Ealet, and G. Le Lay, Graphene-like silicon nanoribbons on Ag(110): A possible formation of silicene, Appl. Phys. Lett. 96(18), 183102 (2010)
CrossRef ADS Google scholar
[181]
A. J. Mannix, B. Kiraly, B. L. Fisher, M. C. Hersam, and N. P. Guisinger, Silicon growth at the two-dimensional limit on Ag(111), ACS Nano 8(7), 7538 (2014)
CrossRef ADS Google scholar
[182]
P. De Padova, J. Avila, A. Resta, I. Razado-Colambo, C. Quaresima, C. Ottaviani, B. Olivieri, T. Bruhn, P. Vogt, M. C. Asensio, and G. Le Lay, The quasiparticle band dispersion in epitaxial multilayer silicene, J. Phys.: Condens. Matter25(38), 382202 (2013)
CrossRef ADS Google scholar
[183]
P. De Padova, C. Ottaviani, C. Quaresima, B. Olivieri, P. Imperatori, E. Salomon, T. Angot, L. Quagliano, C. Romano, A. Vona, M. Muniz-Miranda, A. Generosi, B. Paci, and G. Le Lay,24 h stability of thick multilayer silicene in air, 2D Mater.1(2), 021003 (2014)
CrossRef ADS Google scholar
[184]
H. Li, X. Liao, G. Chen, D. J. Hill, Z. Dong, and T. Huang, Event-triggered asynchronous intermittent communication strategy for synchronization in complex dynamical networks, Neural Netw. 66, 1 (2015)
CrossRef ADS Google scholar
[185]
J. Zhao, H. Liu, Z. Yu, R. Quhe, S. Zhou, Y. Wang, C. C. Liu, H. Zhong, N. Han, J. Lu, Y. Yao, and K. Wu, Rise of silicene: A competitive 2D material, Prog. Mater. Sci.83, 24 (2016)
CrossRef ADS Google scholar
[186]
K. S. Novoselov, V. I. Fal ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, A roadmap for graphene., Nature490(7419), 192 (2012)
CrossRef ADS Google scholar
[187]
R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen, P. Hofmann, and L. Hornekær, Bandgap opening in graphene induced by patterned hydrogen adsorption, Nat. Mater. 9(4), 315 (2010)
CrossRef ADS Google scholar
[188]
K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller, and M. Chhowalla, Atomic and electronic structure of graphene-oxide, Nano Lett. 9(3), 1058 (2009)
CrossRef ADS Google scholar
[189]
B. Gao, X. Shao, J. Lv, Y. Wang, and Y. Ma, Structure prediction of atoms adsorbed on two-dimensional layer materials: Method and applications, J. Phys. Chem. C 119(34), 20111 (2015)
CrossRef ADS Google scholar
[190]
H. J. Xiang, S. H. Wei, and X. G. Gong, Structural motifs in oxidized graphene: A genetic algorithm study based on density functional theory, Phys. Rev. B 82(3), 035416 (2010)
CrossRef ADS Google scholar
[191]
L. Zhou, Z. F. Hou, B. Gao, and T. Frauenheim, Doped graphenes as anodes with large capacity for lithium-ion batteries, J. Mater. Chem. A 4(35), 13407 (2016)
CrossRef ADS Google scholar
[192]
T. Hu, M. Hu, B. Gao, W. Li, and X. Wang, Screening surface structure of MXenes by high-throughput computation and vibrational spectroscopic confirmation, J. Phys. Chem. C 122(32), 18501 (2018)
CrossRef ADS Google scholar
[193]
J. Isberg, High carrier mobility in single-crystal plasmadeposited diamond, Science297(5587), 1670 (2002)
CrossRef ADS Google scholar
[194]
W. S. Verwoerd, A study of the dimer bond on the reconstructed (100) surfaces of diamond and silicon, Surf. Sci. 103(2–3), 404 (1981)
CrossRef ADS Google scholar
[195]
K. Bobrov, A. J. Mayne, and G. Dujardin, Atomic-scale imaging of insulating diamond through resonant electron injection, Nature413(6856), 616 (2001)
CrossRef ADS Google scholar
[196]
S. Lu, D. Fan, C. Chen, Y. Mei, Y. Ma, and X. Hu, Ground-state structure of oxidized diamond (100) surface: An electronically nearly surface-free reconstruction, Carbon159, 9 (2020)
CrossRef ADS Google scholar
[197]
T. Ando, K. Yamamoto, M. Ishii, M. Kamo, and Y. Sato, Vapour-phase oxidation of diamond surfaces in O2 studied by diffuse reflectance Fourier-transform infrared and temperature-programmed desorption spectroscopy, J. Chem. Soc. Faraday Trans.89(19), 3635 (1993)
CrossRef ADS Google scholar
[198]
P. John, N. Polwart, C. E. Troupe, and J. I. B. Wilson, The oxidation of diamond: The geometry and stretching frequency of carbonyl on the (100) surface, J. Am. Chem. Soc. 125(22), 6600 (2003)
CrossRef ADS Google scholar
[199]
H. Tamura, H. Zhou, K. Sugisako, Y. Yokoi, S. Takami, M. Kubo, K. Teraishi, A. Miyamoto, A. Imamura, M. N.-Gamo, and T. Ando, Periodic density-functional study on oxidation of diamond (100) surfaces., Phys. Rev. B61(16), 11025 (2000)
CrossRef ADS Google scholar
[200]
S. J. Sque, R. Jones, and P. R. Briddon, Structure, electronics, and interaction of hydrogen and oxygen on diamond surfaces, Phys. Rev. B 73(8), 085313 (2006)
CrossRef ADS Google scholar
[201]
H. Yang, L. Xu, C. Gu, and S. B. Zhang, First-principles study of oxygenated diamond (001) surfaces with and without hydrogen, Appl. Surf. Sci. 253(9), 4260 (2007)
CrossRef ADS Google scholar
[202]
F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, and P. Feng, Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light, J. Am. Chem. Soc. 132(34), 11856 (2010)
CrossRef ADS Google scholar
[203]
A. Manthiram, X. Yu, and S. Wang, Lithium battery chemistries enabled by solid-state electrolytes, Nat. Rev. Mater.2(4), 16103 (2017)
CrossRef ADS Google scholar
[204]
Z. Zhang, Y. Shao, B. Lotsch, Y. S. Hu, H. Li, J. Janek, L. F. Nazar, C. W. Nan, J. Maier, M. Armand, and L. Chen, New horizons for inorganic solid state ion conductors, Energy Environ. Sci. 11(8), 1945 (2018)
CrossRef ADS Google scholar
[205]
K. Takada, N. Ohta, L. Zhang, K. Fukuda, I. Sakaguchi, R. Ma, M. Osada, and T. Sasaki, Interfacial modification for high-power solid-state lithium batteries, Solid State Ion. 179(27–32), 1333 (2008)
CrossRef ADS Google scholar
[206]
B. Gao, R. Jalem, Y. Ma, and Y. Tateyama, Li+ transport mechanism at the heterogeneous cathode/solid electrolyte interface in an all-solid-state battery via the firstprinciples structure prediction scheme, Chem. Mater.32(1), 85 (2020)
CrossRef ADS Google scholar
[207]
C. Ma, Y. Cheng, K. Yin, J. Luo, A. Sharafi, J. Sakamoto, J. Li, K. L. More, N. J. Dudney, and M. Chi, Interfacial stability of Li metal–solid electrolyte elucidated via in situ electron microscopy, Nano Lett. 16(11), 7030 (2016)
CrossRef ADS Google scholar
[208]
Y. Zhu, J. G. Connell, S. Tepavcevic, P. Zapol, R. Garcia-Mendez, N. J. Taylor, J. Sakamoto, B. J. Ingram, L. A. Curtiss, J. W. Freeland, D. D. Fong, and N. M. Markovic, Dopant‐dependent stability of garnet solid electrolyte interfaces with lithium metal, Adv. Energy Mater.9(12), 1803440 (2019)
CrossRef ADS Google scholar
[209]
F. Han, A. S. Westover, J. Yue, X. Fan, F. Wang, M. Chi, D. N. Leonard, N. J. Dudney, H. Wang, and C. Wang, High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes, Nat. Energy4(3), 187 (2019)
CrossRef ADS Google scholar
[210]
B. Gao, R. Jalem, and Y. Tateyama, Surface-dependent stability of the interface between garnet Li7La3Zr2O12 and the Li metal in the all-solid-state battery from first-principles calculations, ACS Appl. Mater. Interfaces12(14), 16350 (2020)
CrossRef ADS Google scholar
[211]
Q. Tong, L. Xue, J. Lv, Y. Wang, and Y. Ma, Accelerating CALYPSO structure prediction by data-driven learning of a potential energy surface, Faraday Discuss. 211, 31 (2018)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(2671 KB)

Accesses

Citations

Detail

Sections
Recommended

/