Optimized nonadiabatic holonomic quantum computation based on Förster resonance in Rydberg atoms

Shuai Liu, Jun-Hui Shen, Ri-Hua Zheng, Yi-Hao Kang, Zhi-Cheng Shi, Jie Song, Yan Xia

PDF(1583 KB)
PDF(1583 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (2) : 21502. DOI: 10.1007/s11467-021-1108-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Optimized nonadiabatic holonomic quantum computation based on Förster resonance in Rydberg atoms

Author information +
History +

Abstract

In this paper, we propose a scheme for implementing the nonadiabatic holonomic quantum computation (NHQC+) of two Rydberg atoms by using invariant-based reverse engineering (IBRE). The scheme is based on Förster resonance induced by strong dipole–dipole interaction between two Rydberg atoms, which provides a selective coupling mechanism to simply the dynamics of system. Moreover, for improving the fidelity of the scheme, the optimal control method is introduced to enhance the gate robustness against systematic errors. Numerical simulations show the scheme is robust against the random noise in control fields, the deviation of dipole–dipole interaction, the Förster defect, and the spontaneous emission of atoms. Therefore, the scheme may provide some useful perspectives for the realization of quantum computation with Rydberg atoms.

Graphical abstract

Keywords

nonadiabatic holonomic quantum computation / reverse engineering / Förster resonance

Cite this article

Download citation ▾
Shuai Liu, Jun-Hui Shen, Ri-Hua Zheng, Yi-Hao Kang, Zhi-Cheng Shi, Jie Song, Yan Xia. Optimized nonadiabatic holonomic quantum computation based on Förster resonance in Rydberg atoms. Front. Phys., 2022, 17(2): 21502 https://doi.org/10.1007/s11467-021-1108-3

References

[1]
L. K. Grover, Quantum mechanics helps in searching for a needle in a haystack, Phys. Rev. Lett. 79(2), 325 (1997)
CrossRef ADS Google scholar
[2]
G. L. Long, Grover algorithm with zero theoretical failure rate, Phys. Rev. A 64(2), 022307 (2001)
CrossRef ADS Google scholar
[3]
B. Paredes, F. Verstraete, and J. I. Cirac, Exploiting quantum parallelism to simulate quantum random many-body systems, Phys. Rev. Lett.95(14), 140501 (2005)
CrossRef ADS Google scholar
[4]
Y. J. Fan, Z. F. Zheng, Y. Zhang, D. M. Lu, and C. P. Yang, One-step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED, Front. Phys. 14(2), 21602 (2019)
CrossRef ADS Google scholar
[5]
H. Fan and X. Zhu, 12 superconducting qubits for quantum walks, Front. Phys. 14(6), 61201 (2019)
CrossRef ADS Google scholar
[6]
E. Sjöqvist, D. M. Tong, L. Mauritz Andersson, B. Hessmo, M. Johansson, and K. Singh, Non-adiabatic holonomic quantum computation, New J. Phys.14(10), 103035 (2012)
CrossRef ADS Google scholar
[7]
G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, and L. C. Kwek, Nonadiabatic holonomic quantum computation in decoherence-free subspaces, Phys. Rev. Lett. 109(17), 170501 (2012)
CrossRef ADS Google scholar
[8]
P. Z. Zhao, G. F. Xu, and D. M. Tong, Nonadiabatic holonomic multiqubit controlled gates, Phys. Rev. A 99(5), 052309 (2019)
CrossRef ADS Google scholar
[9]
P. Z. Zhao, K. Z. Li, G. F. Xu, and D. M. Tong, General approach for constructing Hamiltonians for nonadiabatic holonomic quantum computation, Phys. Rev. A 101(6), 062306 (2020)
CrossRef ADS Google scholar
[10]
T. H. Xing, X. Wu, and G. F. Xu, Nonadiabatic holonomic three-qubit controlled gates realized by one-shot implementation, Phys. Rev. A 101(1), 012306 (2020)
CrossRef ADS Google scholar
[11]
P. Z. Zhao, X. Wu, T. H. Xing, G. F. Xu, and D. M. Tong, Nonadiabatic holonomic quantum computation with Rydberg superatoms, Phys. Rev. A 98(3), 032313 (2018)
CrossRef ADS Google scholar
[12]
G. F. Xu, P. Z. Zhao, T. H. Xing, E. Sjöqvist, and D. M. Tong, Composite nonadiabatic holonomic quantum computation, Phys. Rev. A 95(3), 032311 (2017)
CrossRef ADS Google scholar
[13]
T. Chen, J. Zhang, and Z. Y. Xue, Nonadiabatic holonomic quantum computation on coupled transmons with ancillaries, Phys. Rev. A 98(5), 052314 (2018)
CrossRef ADS Google scholar
[14]
Y. Xu, Z. Hua, T. Chen, X. Pan, X. Li, J. Han, W. Cai, Y. Ma, H. Wang, Y. P. Song, Z. Y. Xue, and L. Sun, Experimental implementation of universal nonadiabatic geometric quantum gates in a superconducting circuit, Phys.Rev. Lett. 124(23), 230503 (2020)
CrossRef ADS Google scholar
[15]
S. Li, P. Shen, T. Chen, and Z. Y. Xue, Noncyclic nonadiabatic holonomic quantum gates via shortcuts to adiabaticity, Front. Phys. 16(5), 51502 (2021)
CrossRef ADS Google scholar
[16]
B. J. Liu, X. K. Song, Z. Y. Xue, X. Wang, and M. H. Yung, Plug-and-play approach to nonadiabatic geometric quantum gates, Phys. Rev. Lett. 123(10), 100501 (2019)
CrossRef ADS Google scholar
[17]
M. V. Berry, Transitionless quantum driving, J. Phys. A42(36), 365303 (2009)
CrossRef ADS Google scholar
[18]
X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga, Shortcut to adiabatic passage in two- and three-level atoms, Phys. Rev. Lett. 105(12), 123003 (2010)
CrossRef ADS Google scholar
[19]
A. del Campo, Shortcuts to adiabaticity by counterdiabatic driving, Phys. Rev. Lett. 111(10), 100502 (2013)
CrossRef ADS Google scholar
[20]
S. Qi and J. Jing, Berry-phase-based quantum gates assisted by transitionless quantum driving, J. Opt. Soc. Am. B 37(3), 682 (2020)
CrossRef ADS Google scholar
[21]
K. Khodjasteh and D. A. Lidar, Fault-tolerant quantum dynamical decoupling, Phys. Rev. Lett. 95(18), 180501 (2005)
CrossRef ADS Google scholar
[22]
A. M. Souza, G. A.Álvarez, and D. Suter, Robust dynamical decoupling for quantum computing and quantum memory, Phys. Rev. Lett. 106(24), 240501 (2011)
CrossRef ADS Google scholar
[23]
G. T. Genov, D. Schraft, N. V. Vitanov, and T. Halfmann, Arbitrarily accurate pulse sequences for robust dynamical decoupling, Phys. Rev. Lett. 118(13), 133202 (2017)
CrossRef ADS Google scholar
[24]
D. Daems, A. Ruschhaupt, D. Sugny, and S. Guérin, Robust quantum control by a single-shot shaped pulse, Phys. Rev. Lett. 111(5), 050404 (2013)
CrossRef ADS Google scholar
[25]
X. T. Yu, Q. Zhang, Y. Ban, and X. Chen, Fast and robust control of two interacting spins, Phys. Rev. A 97(6), 062317 (2018)
CrossRef ADS Google scholar
[26]
H. R. Jr Lewis and W. B. Riesenfeld, An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time‐dependent electromagnetic field, J. Math. Phys. 10(8), 1458 (1969)
CrossRef ADS Google scholar
[27]
X. Chen, E. Torrontegui, and J. G. Muga, Lewis– Riesenfeld invariants and transitionless quantum driving, Phys. Rev. A 83(6), 062116 (2011)
CrossRef ADS Google scholar
[28]
S. Li, T. Chen, and Z. Y. Xue, Fast holonomic quantum computation on superconducting circuits with optimal control, Adv. Quantum Technol. 3(3), 2000001 (2020)
CrossRef ADS Google scholar
[29]
T. Yan, B. J. Liu, K. Xu, C. Song, S. Liu, Z. Zhang, H. Deng, Z. Yan, H. Rong, K. Huang, M. H. Yung, Y. Chen, and D. Yu, Experimental realization of nonadiabatic shortcut to non-Abelian geometric gates, Phys. Rev. Lett. 122(8), 080501 (2019)
CrossRef ADS Google scholar
[30]
J. Xu, S. Li, T. Chen, and Z. Y. Xue, Nonadiabatic geometric quantum computation with optimal control on superconducting circuits, Front. Phys. 15(4), 41503 (2020)
CrossRef ADS Google scholar
[31]
Y. H. Kang, Z. C. Shi, B. H. Huang, J. Song, and Y. Xia, Flexible scheme for the implementation of nonadiabatic geometric quantum computation, Phys. Rev. A 101(3), 032322 (2020)
CrossRef ADS Google scholar
[32]
C. Zhang, T. Chen, S. Li, X. Wang, and Z. Y. Xue, Highfidelity geometric gate for silicon-based spin qubits, Phys. Rev. A 101(5), 052302 (2020)
CrossRef ADS Google scholar
[33]
C. Y. Guo, L. L. Yan, S. Zhang, S. L. Su, and W. Li, Optimized geometric quantum computation with a mesoscopic ensemble of Rydberg atoms, Phys. Rev. A 102(4), 042607 (2020)
CrossRef ADS Google scholar
[34]
Y. H. Kang, Z. C. Shi, J. Song, and Y. Xia, Heralded atomic nonadiabatic holonomic quantum computation with Rydberg blockade, Phys. Rev. A 102(2), 022617 (2020)
CrossRef ADS Google scholar
[35]
B. J. Liu, S. L. Su, and M. H. Yung, Nonadiabatic noncyclic geometric quantum computation in Rydberg atoms, Phys. Rev. Research 2(4), 043130 (2020)
CrossRef ADS Google scholar
[36]
T. Chen, P. Shen, and Z. Y. Xue, Robust and fast holonomic quantum gates with encoding on superconducting circuits, Phys. Rev. Appl. 14(3), 034038 (2020)
CrossRef ADS Google scholar
[37]
M. Saffman, T. G. Walker, and K. Mølmer, Quantum information with Rydberg atoms, Rev. Mod. Phys. 82, 2313 (2010)
CrossRef ADS Google scholar
[38]
E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, Observation of Rydberg blockade between two atoms, Nat. Phys. 5(2), 110 (2009)
CrossRef ADS Google scholar
[39]
A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, Observation of collective excitation of two individual atoms in the Rydberg blockade regime, Nat. Phys. 5(2), 115 (2009)
CrossRef ADS Google scholar
[40]
D. Barredo, H. Labuhn, S. Ravets, T. Lahaye, A. Browaeys, and C. S. Adams, Coherent excitation transfer in a spin chain of three Rydberg atoms, Phys. Rev. Lett. 114(11), 113002 (2015)
CrossRef ADS Google scholar
[41]
S. L. Su, Y. Gao, E. Liang, and S. Zhang, Fast Rydberg antiblockade regime and its applications in quantum logic gates, Phys. Rev. A 95(2), 022319 (2017)
CrossRef ADS Google scholar
[42]
Y. H. Kang, Y. H. Chen, Z. C. Shi, B. H. Huang, J. Song, and Y. Xia, Nonadiabatic holonomic quantum computation using Rydberg blockade, Phys. Rev. A 97(4), 042336 (2018)
CrossRef ADS Google scholar
[43]
S. L. Su, H. Z. Shen, E. Liang, and S. Zhang, One-step construction of the multiple-qubit Rydberg controlled-phase gate, Phys. Rev. A 98(3), 032306 (2018)
CrossRef ADS Google scholar
[44]
D. X. Li and X. Q. Shao, Directional quantum state transfer in a dissipative Rydberg-atom-cavity system, Phys. Rev. A 99(3), 032348 (2019)
CrossRef ADS Google scholar
[45]
Y. H. Chen, Z. C. Shi, J. Song, Y.Xia, and S. B. Zheng, Accelerated and noise-resistant generation of highfidelity steady-state entanglement with Rydberg atoms, Phys. Rev. A 97(3), 032328 (2018)
CrossRef ADS Google scholar
[46]
R. H. Zheng, Y. H. Kang, D. Ran, Z. C. Shi, and Y. Xia, Deterministic interconversions between the Greenberger– Horne–Zeilinger states and the W states by invariant-based pulse design, Phys. Rev. A 101(1), 012345 (2020)
CrossRef ADS Google scholar
[47]
R. H. Zheng, Y. H. Kang, S. L. Su, J. Song, and Y. Xia, Robust and high-fidelity nondestructive Rydberg parity meter, Phys. Rev. A 102(1), 012609 (2020)
CrossRef ADS Google scholar
[48]
S. L. Su, F. Q. Guo, L. Tian, X. Y. Zhu, L. L. Yan, E. J. Liang, and M. Feng, Nondestructive Rydberg parity meter and its applications, Phys. Rev. A 101(1), 012347 (2020)
CrossRef ADS Google scholar
[49]
X. F. Shi, Rydberg quantum computation with nuclear spins in two-electron neutral atoms, Front. Phys. 16(5), 52501 (2021)
CrossRef ADS Google scholar
[50]
R. H. Zheng, Y. Xiao, S. L. Su, Y. H. Chen, Z. C. Shi, J. Song, Y. Xia, and S. B. Zheng, Fast and dephasing-tolerant preparation of steady Knill–Laflamme–Milburn states via dissipative Rydberg pumping, Phys. Rev. A 103(5), 052402 (2021)
CrossRef ADS Google scholar
[51]
H. D. Yin, X. X. Li, G. C. Wang, and X. Q. Shao, Onestep implementation of Toffoli gate for neutral atoms based on unconventional Rydberg pumping, Opt. Express 28(24), 35576 (2020)
CrossRef ADS Google scholar
[52]
D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, Fast quantum gates for neutral atoms, Phys. Rev. Lett. 85(10), 2208 (2000)
CrossRef ADS Google scholar
[53]
M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, Dipole blockade and quantum information processing in mesoscopic atomic ensembles, Phys. Rev. Lett. 87(3), 037901 (2001)
CrossRef ADS Google scholar
[54]
C. Ates, T. Pohl, T. Pattard, and J. M. Rost, Antiblockade in Rydberg excitation of an ultracold lattice gas, Phys. Rev. Lett. 98(2), 023002 (2007)
CrossRef ADS Google scholar
[55]
T. Amthor, C. Giese, C. S. Hofmann, and M. Weidemüller, Evidence of antiblockade in an ultracold Rydberg gas, Phys. Rev. Lett. 104(1), 013001 (2010)
CrossRef ADS Google scholar
[56]
S. L. Su, Y. Tian, H. Z. Shen, H. Zang, E. Liang, and S. Zhang, Applications of the modified Rydberg antiblockade regime with simultaneous driving, Phys. Rev. A 96(4), 042335 (2017)
CrossRef ADS Google scholar
[57]
M. M. Müller, M. Murphy, S. Montangero, T. Calarco, P. Grangier, and A. Browaeys, Implementation of an experimentally feasible controlled-phase gate on two blockaded Rydberg atoms, Phys. Rev. A 89(3), 032334 (2014)
CrossRef ADS Google scholar
[58]
T. Keating, R. L. Cook, A. M. Hankin, Y. Y. Jau, G. W. Biedermann, and I. H. Deutsch, Robust quantum logic in neutral atoms via adiabatic Rydberg dressing, Phys. Rev. A 91(1), 012337 (2015)
CrossRef ADS Google scholar
[59]
A. Mitra, M. J. Martin, G. W. Biedermann, A. M. Marino, P. M. Poggi, and I. H. Deutsch, Robust Mølmer–Sørensen gate for neutral atoms using rapid adiabatic Rydberg dressing, Phys. Rev. A 101(3), 030301 (2020)
CrossRef ADS Google scholar
[60]
X. R. Huang, Z. X. Ding, C. S. Hu, L. T. Shen, W. Li, H. Wu, and S. B. Zheng, Robust Rydberg gate via Landau– Zener control of Förster resonance, Phys. Rev. A 98(5), 052324 (2018)
CrossRef ADS Google scholar
[61]
I. I. Beterov, G. N. Hamzina, E. A. Yakshina, D. B. Tretyakov, V. M. Entin, and I. I. Ryabtsev, Adiabatic passage of radio-frequency-assisted Förster resonances in Rydberg atoms for two-qubit gates and the generation of Bell states, Phys. Rev. A 97(3), 032701 (2018)
CrossRef ADS Google scholar
[62]
T. Förster, Zwischenmolekulare energiewanderung und fluoreszenz, Ann. Phys. 437(1–2), 55 (1948)
CrossRef ADS Google scholar
[63]
I. I. Ryabtsev, D. B. Tretyakov, I. I. Beterov, and V. M. Entin, Observation of the stark-tuned Förster resonance between two Rydberg atoms, Phys. Rev. Lett. 104(7), 073003 (2010)
CrossRef ADS Google scholar
[64]
H. Gorniaczyk, C. Tresp, P. Bienias, A. Paris-Mandoki, W. Li, I. Mirgorodskiy, H. P. Büchler, I. Lesanovsky, and S. Hofferberth, Enhancement of Rydberg-mediated singlephoton nonlinearities by electrically tuned Förster Resonances, Nat. Commun. 7, 12480 (2016)
CrossRef ADS Google scholar
[65]
S. Ravets, H. Labuhn, D. Barredo, L. Béguin, T. Lahaye, and A. Browaeys, Coherent dipole–dipole coupling between two single Rydberg atoms at an electrically-tuned Förster resonance, Nat. Phys. 10(12), 914 (2014)
CrossRef ADS Google scholar
[66]
H. Z. Wu, Z. B. Yang, and S. B. Zheng, Implementation of a multiqubit quantum phase gate in a neutral atomic ensemble via the asymmetric Rydberg blockade, Phys. Rev. A 82(3), 034307 (2010)
CrossRef ADS Google scholar
[67]
X. Q. Shao, Selective Rydberg pumping via strong dipole blockade, Phys. Rev. A 102(5), 053118 (2020)
CrossRef ADS Google scholar
[68]
I. I. Beterov, M. Saffman, E. A. Yakshina, D. B. Tretyakov, V. M. Entin, S. Bergamini, E. A. Kuznetsova, and I. I. Ryabtsev, Two-qubit gates using adiabatic passage of the Stark-tuned Förster resonances in Rydberg atoms, Phys. Rev. A 94(6), 062307 (2016)
CrossRef ADS Google scholar
[69]
I. I. Beterov, I. N. Ashkarin, E. A. Yakshina, D. B. Tretyakov, V. M. Entin, I. I. Ryabtsev, P. Cheinet, P. Pillet, and M. Saffman, Fast three-qubit Toffoli quantum gate based on three-body Förster resonances in Rydberg atoms, Phys. Rev. A 98(4), 042704 (2018)
CrossRef ADS Google scholar
[70]
D. X. Li and X. Q. Shao, Unconventional Rydberg pumping and applications in quantum information processing, Phys. Rev. A 98(6), 062338 (2018)
CrossRef ADS Google scholar
[71]
W. Li, P. J. Tanner, and T. F. Gallagher, Dipole–dipole excitation and ionization in an ultracold gas of Rydberg atoms, Phys. Rev. Lett. 94(17), 173001 (2005)
CrossRef ADS Google scholar
[72]
T. Amthor, M. Reetz-Lamour, S. Westermann, J. Denskat, and M. Weidemüller, Mechanical effect of van der Waals interactions observed in real time in an ultracold Rydberg gas, Phys. Rev. Lett. 98(2), 023004 (2007)
CrossRef ADS Google scholar
[73]
T. Amthor, M. Reetz-Lamour, C. Giese, and M. Weidemüller, Modeling many-particle mechanical effects of an interacting Rydberg gas, Phys. Rev. A76(5), 054702 (2007)
CrossRef ADS Google scholar
[74]
A. Ruschhaupt, X. Chen, D. Alonso, and J. G. Muga, Optimally robust shortcuts to population inversion in two-level quantum systems, New J. Phys. 14(9), 093040 (2012)
CrossRef ADS Google scholar
[75]
T. G. Walker and M. Saffman, Zeros of Rydberg–Rydberg Föster interactions, J. Phys. B 38(2), S309 (2005)
CrossRef ADS Google scholar
[76]
T. G. Walker and M. Saffman, Consequences of Zeeman degeneracy for the van der Waals blockade between Rydberg atoms, Phys. Rev. A 77(3), 032723 (2008)
CrossRef ADS Google scholar
[77]
D. F. James and J. Jerke, Effective Hamiltonian theory and its applications in quantum information, Can. J. Phys.85(6), 625 (2007)
CrossRef ADS Google scholar
[78]
S. Ravets, H. Labuhn, D. Barredo, T. Lahaye, and A. Browaeys, Measurement of the angular dependence of the dipole–dipole interaction between two individual Rydberg atoms at a Förster resonance, Phys. Rev. A 92(2), 020701 (2015)
CrossRef ADS Google scholar
[79]
P. Zanardi and D. A. Lidar, Purity and state fidelity of quantum channels, Phys. Rev. A 70(1), 012315 (2004)
CrossRef ADS Google scholar
[80]
L. H. Pedersen, N. M. Møller, and K. Mølmer, Fidelity of quantum operations, Phys. Lett. A 367(1–2), 47 (2007)
CrossRef ADS Google scholar
[81]
Z. Y. Xue, J. Zhou, and Z. D. Wang, Universal holonomic quantum gates in decoherence-free subspace on superconducting circuits, Phys. Rev. A 92(2), 022320 (2015)
CrossRef ADS Google scholar
[82]
Z. Y. Xue, J. Zhou, Y. M. Chu, and Y. Hu, Nonadiabatic holonomic quantum computation with all-resonant control, Phys. Rev. A 94(2), 022331 (2016)
CrossRef ADS Google scholar
[83]
Z. Y. Xue, F. L. Gu, Z. P. Hong, Z. H. Yang, D. W. Zhang, Y. Hu, and J. Q. You, Nonadiabatic holonomic quantum computation with dressed-state qubits, Phys. Rev. Appl.7(5), 054022 (2017)
CrossRef ADS Google scholar
[84]
P. Z. Zhao, X. D. Cui, G. F. Xu, E. Sjöqvist, and D. M. Tong, Rydberg-atom-based scheme of nonadiabatic geometric quantum computation, Phys. Rev. A 96(5), 052316 (2017)
CrossRef ADS Google scholar
[85]
Y. Xu, W. Cai, Y. Ma, X. Mu, L. Hu, T. Chen, H. Wang, Y. P. Song, Z. Y. Xue, Z. Q. Yin, and L. Sun, Single-loop realization of arbitrary nonadiabatic holonomic singlequbit quantum gates in a superconducting circuit, Phys. Rev. Lett. 121(11), 110501 (2018)
CrossRef ADS Google scholar
[86]
M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Realization of three-qubit quantum error correction with superconducting circuits, Nature 482(7385), 382 (2012)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(1583 KB)

Accesses

Citations

Detail

Sections
Recommended

/