Thermal conductivity of micro/nano-porous polymers: Prediction models and applications

Haiyan Yu, Haochun Zhang, Jinchuan Zhao, Jing Liu, Xinlin Xia, Xiaohu Wu

PDF(9394 KB)
PDF(9394 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (2) : 23202. DOI: 10.1007/s11467-021-1107-4
TOPICAL REVIEW
TOPICAL REVIEW

Thermal conductivity of micro/nano-porous polymers: Prediction models and applications

Author information +
History +

Abstract

Micro/nano-porous polymeric material is considered a unique industrial material due to its extremely low thermal conductivity, low density, and high surface area. Therefore, it is necessary to establish an accurate thermal conductivity prediction model suiting their applicable conditions and provide a theoretical basis for expanding their applications. In this work, the development of the calculation model of equivalent thermal conductivity of micro/nano-porous polymeric materials in recent years is summarized. Firstly, it reviews the process of establishing the overall equivalent thermal conductivity calculation model for micro/nanoporous polymers. Then, the predicted calculation models of thermal conductivity are introduced separately according to the conductive and radiative thermal conductivity models. In addition, the thermal conduction part is divided into the gaseous thermal conductivity model, solid thermal conductivity model and gas–solid coupling model. Finally, it is concluded that, compared with other porous materials, there are few studies on heat transfer of micro/ nanoporous polymers, especially on the particular heat transfer mechanisms such as scale effects at the micro/nanoscale. In particular, the following aspects of porous polymers still need to be further studied: micro scaled thermal radiation, heat transfer characteristics of particular morphologies at the nanoscales, heat transfer mechanism and impact factors of micro/nanoporous polymers. Such studies would provide a more accurate prediction of thermal conductivity and a broader application in energy conversion and storage systems.

Graphical abstract

Keywords

thermal conductivity / micro/nanoscale thermal radiation / micro/nanoscale thermal conduction / porous polymers / heat transfer properties

Cite this article

Download citation ▾
Haiyan Yu, Haochun Zhang, Jinchuan Zhao, Jing Liu, Xinlin Xia, Xiaohu Wu. Thermal conductivity of micro/nano-porous polymers: Prediction models and applications. Front. Phys., 2022, 17(2): 23202 https://doi.org/10.1007/s11467-021-1107-4

References

[1]
J. Wu, F. Xu, S. Li, P. Ma, X. Zhang, Q. Liu, R. Fu, and D. Wu, Porous polymers as multifunctional material platforms toward task-specific applications, Adv. Mater. 31, 4 (2019)
CrossRef ADS Google scholar
[2]
B. H. Kreps, Energy sprawl in the renewable-energy sector: moving to sufficiency in a post-growth era, Am. J. Econ. Sociol. 79, 3 (2020)
CrossRef ADS Google scholar
[3]
S. K. Mangla, S. Luthra, S. Jakhar, S. Gandhi, K. Muduli, and A. Kumar, A step to clean energy — Sustainability in energy system management in an emerging economy context, J. Clean. Prod. 242, 118462 (2020)
CrossRef ADS Google scholar
[4]
X. Chang, Y. Xue, J. Li, L. Zou, and M. Tang, Potential health impact of environmental micro- and nanoplastics pollution, J. Appl. Toxicol. 40(1), 4 (2020)
CrossRef ADS Google scholar
[5]
F. A. Faize and M. Akhtar, Addressing environmental knowledge and environmental attitude in undergraduate students through scientific argumentation, J. Clean. Prod. 252, 119928 (2020)
CrossRef ADS Google scholar
[6]
S. Chu and A. Majumdar, Opportunities and challenges for a sustainable energy future, Nature 488(7411), 294 (2012)
CrossRef ADS Google scholar
[7]
L. Song, C. Jiang, S. Liu, C. Jiao, X. Si, S. Wang, F. Li, J. Zhang, L. Sun, F. Xu, and F. Huang, Progress in improving thermodynamics and kinetics of new hydrogen storage materials, Front. Phys. 6(2), 151 (2011)
CrossRef ADS Google scholar
[8]
Z. C. Tu, Abstract models for heat engines, Front. Phys. 16(3), 33202 (2021)
CrossRef ADS Google scholar
[9]
X. He, A review of material development in the field of carbon capture and the application of membrane-based processes in power plants and energy-intensive industries, Energy Sustain. Soc. 8(1), 34 (2018)
CrossRef ADS Google scholar
[10]
Y. Huang and X. Feng, Polymer-enhanced ultrafiltration: Fundamentals, applications and recent developments, J. Membr. Sci. 586, 53 (2019)
CrossRef ADS Google scholar
[11]
S. Wang, Y. Huang, C. Zhao, E. Chang, A. Ameli, H. E. Naguib, and C. B. Park, Theoretical modeling and experimental verification of percolation threshold with MWCNTs’ rotation and translation around a growing bubble in conductive polymer composite foams, Compos. Sci. Technol. 199, 108345 (2020)
CrossRef ADS Google scholar
[12]
M. Hamidinejad, B. Zhao, R. K. M. Chu, N. Moghimian, H. E. Naguib, T. Filleter, and C. B. Park, Enhanced electrical and electromagnetic interference shielding properties of polymer–graphene nanoplatelet composites fabricated via supercritical-fluid treatment and physical foaming, ACS Appl. Mater. Interfaces 10, 36 (2018)
CrossRef ADS Google scholar
[13]
Y. Huang, T. Gancheva, B. D. Favis, A. Abidli, J. Wang, and C. B. Park, Hydrophobic porous polypropylene with hierarchical structures for ultrafast and highly selective oil/water separation, ACS Appl. Mater. Interfaces 13, 14 (2021)
CrossRef ADS Google scholar
[14]
J. Zhao, G. Wang, Z. Chen, Y. Huang, C. Wang, A. Zhang, and C. B. Park, Microcellular injection molded outstanding oleophilic and sound-insulating PP/PTFE nanocomposite foam, Compos. Part B Eng. 215, 108786 (2021)
CrossRef ADS Google scholar
[15]
B. Zhao, M. Hamidinejad, C. Zhao, R. Li, S. Wang, Y. Kazemi, and C. B. Park, A versatile foaming platform to fabricate polymer/carbon composites with high dielectric permittivity and ultra-low dielectric loss, J. Mater. Chem. A 7(1), 133 (2019)
CrossRef ADS Google scholar
[16]
J. Zhao, G. Wang, L. Zhang, B. Li, C. Wang, G. Zhao, and C. B. Park, Lightweight and strong fibrillary PTFE reinforced polypropylene composite foams fabricated by foam injection molding, Eur. Polym. J. 119, 22 (2019)
CrossRef ADS Google scholar
[17]
J. M. Eagan, J. Xu, R. Di Girolamo, C. M. Thurber, C. W. Macosko, A. M. La Pointe, F. S. Bates, and G. W. Coates, Combining polyethylene and polypropylene: Enhanced performance with PE/iPP multiblock polymers, Science 355(6327), 814 (2017)
CrossRef ADS Google scholar
[18]
Z. Zhang, W. Li, and J. Kan, Behavior of a thermoelectric power generation device based on solar irradiation and the earth’s surface-air temperature difference, Energy Convers. Manage. 97, 178 (2015)
CrossRef ADS Google scholar
[19]
S. A. Khan, N. Sezer, S. Ismail, and M. Koç, Design, synthesis and nucleate boiling performance assessment of hybrid micro-nano porous surfaces for thermal management of concentrated photovoltaics (CPV), Energy Convers. Manage. 195, 1056 (2019)
CrossRef ADS Google scholar
[20]
J. Zhao, Y. Huang, G. Wang, Y. Qiao, Z. Chen, A. Zhang, and C. B. Park, Fabrication of outstanding thermal-insulating, mechanical robust and superhydrophobic PP/CNT/sorbitol derivative nanocomposite foams for efficient oil/water separation, J. Hazard. Mater. 418, 126295 (2021)
CrossRef ADS Google scholar
[21]
J. Zhao, Q. Zhao, L. Wang, C. Wang, B. Guo, C. B. Park, and G. Wang, Development of high thermal insulation and compressive strength BPP foams using moldopening foam injection molding with in-situ fibrillated PTFE fibers, Eur. Polym. J. 98, 1 (2018)
CrossRef ADS Google scholar
[22]
P. Gong, G. Wang, M. P. Tran, P. Buahom, S. Zhai, G. Li, and C. B. Park, Advanced bimodal polystyrene/multiwalled carbon nanotube nanocomposite foams for thermal insulation, Carbon 120, 1 (2017)
CrossRef ADS Google scholar
[23]
G. Wang, J. Zhao, G. Wang, H. Zhao, J. Lin, G. Zhao, and C. B. Park, Strong and super thermally insulating insitu nanofibrillar PLA/PET composite foam fabricated by high-pressure microcellular injection molding, Chem. Eng. J. 390, 124520 (2020)
CrossRef ADS Google scholar
[24]
J. Zhao, G. Wang, C. Wang, and C. B. Park, Ultra-lightweight, super thermal-insulation and strong PP/CNT microcellular foams, Compos. Sci. Technol. 191, 108084 (2020)
CrossRef ADS Google scholar
[25]
P. Gong, P. Buahom, M. P. Tran, M. Saniei, C. B. Park, and P. Pötschke, Heat transfer in microcellular polystyrene/multi-walled carbon nanotube nanocomposite foams, Carbon 93, 819 (2015)
CrossRef ADS Google scholar
[26]
G. Wang, J. Zhao, L. H. Mark, G. Wang, K. Yu, C. Wang, C. B. Park, and G. Zhao, Ultra-tough and super thermalinsulation nanocellular PMMA/TPU, Chem. Eng. J.325, 632 (2017)
CrossRef ADS Google scholar
[27]
G. Wang, J. Zhao, K. Yu, L. H. Mark, G. Wang, P. Gong, C. B. Park, and G. Zhao, Role of elastic strain energy in cell nucleation of polymer foaming and its application for fabricating sub-microcellular TPU microfilms, Polymer (Guildf.) 119, 28 (2017)
CrossRef ADS Google scholar
[28]
L. Wang, R. E. Lee, G. Wang, R. K. M. Chu, J. Zhao, and C. B. Park, Use of stereocomplex crystallites for fully-biobased microcellular low-density poly(lactic acid) foams for green packaging, Chem. Eng. J. 327, 1151 (2017)
CrossRef ADS Google scholar
[29]
B. Krause, H. J. P. Sijbesma, P. Münüklü, N. F. A. Van Der Vegt, and M. Wessling, Bicontinuous nanoporous polymers by carbon dioxide foaming, Macromolecules 34, 25 (2001)
CrossRef ADS Google scholar
[30]
S. N. Leung, and J. E. Lee, Tunable microcellular and nanocellular morphologies of poly(vinylidene) fluoride foams via crystal polymorphism control, Polymer Crystallization2(1), 1 (2019)
CrossRef ADS Google scholar
[31]
S. Pérez-Tamarit, B. Notario, E. Solórzano, and M. A. Rodriguez-Perez, Light transmission in nanocellular polymers: Are semi-transparent cellular polymers possible? Mater. Lett. 210, 39 (2018)
CrossRef ADS Google scholar
[32]
S. Liu, R. Eijkelenkamp, J. Duvigneau, and G. J. Vancso, Silica-assisted nucleation of polymer foam cells with nanoscopic dimensions: impact of particle size, line tension, and surface functionality, ACS Appl. Mater. Interfaces 9, 43 (2017)
CrossRef ADS Google scholar
[33]
B. Notario, J. Pinto, and M. A. Rodriguez-Perez, Nanoporous polymeric materials: A new class of materials with enhanced properties, Prog. Mater. Sci. 78–79, 93 (2016)
CrossRef ADS Google scholar
[34]
B. Notario, J. Pinto, and M. A. Rodríguez-Pérez, Towards a new generation of polymeric foams: PMMA nanocellular foams with enhanced physical properties, Polymer (Guildf.) 63, 116 (2015)
CrossRef ADS Google scholar
[35]
Y. Zeng, R. Zou, and Y. Zhao, Carbon dioxide capture: Covalent organic frameworks for CO2 capture, Adv. Mater. 28, 3032 (2016)
CrossRef ADS Google scholar
[36]
L. Zou, Y. Sun, S. Che, X. Yang, X. Wang, M. Bosch, Q. Wang, H. Li, M. Smith, S. Yuan, Z. Perry, and H. C. Zhou, Porous organic polymers for post-combustion carbon capture, Adv. Mater. 29, 37 (2017)
CrossRef ADS Google scholar
[37]
X. Liu, G. J. H. Lim, Y. Wang, L. Zhang, D. Mullangi, Y. Wu, D. Zhao, J. Ding, A. K. Cheetham, and J. Wang, Binder-free 3D printing of covalent organic framework (COF) monoliths for CO2 adsorption, Chem. Eng. J. 403, 126333 (2021)
CrossRef ADS Google scholar
[38]
M. Wang, S. Zhou, S. Cao, Z. Wang, S. Liu, S. Wei, Y. Chen, and X. Lu, Stimulus-responsive adsorbent materials for CO2 capture and separation, J. Mater. Chem. A8, 10519 (2020)
CrossRef ADS Google scholar
[39]
P. Puthiaraj, Y. R. Lee, S. Zhang, and W. S. Ahn, Triazine-based covalent organic polymers: design, synthesis and applications in heterogeneous catalysis, J. Mater. Chem. A 4(42), 16288 (2016)
CrossRef ADS Google scholar
[40]
Y. Zhang and S. N. Riduan, Functional porous organic polymers for heterogeneous catalysis, Chem. Soc. Rev. 41, 6 (2012)
CrossRef ADS Google scholar
[41]
Z. Ma, J. Zhuang, X. Zhang, and Z. Zhou, SiP monolayers: New 2D structures of group IV–V compounds for visible-light photohydrolytic catalysts, Front. Phys. 13(3), 138104 (2018)
CrossRef ADS Google scholar
[42]
M. Kilpatrick, R. D. Eanes, and J. G. Morse, The dissociation constants of acids in salt solutions(IV): Cyclohexanecarboxylic acid, J. Am. Chem. Soc. 75(3), 588 (1953)
CrossRef ADS Google scholar
[43]
A. Chakrabarti and M. M. Sharma, Cationic ion exchange resins as catalyst, Reactive Polymers 20(1–2), 1 (1993)
CrossRef ADS Google scholar
[44]
R. Liu, Z. Yang, S. Chen, J. Yao, Q. Mu, D. Peng, and H. Zhao, Synthesis and facile functionalization of siloxane based hyper-cross-linked porous polymers and their applications in water treatment, Eur. Polym. J. 119, 94 (2019)
CrossRef ADS Google scholar
[45]
C. Gu, N. Huang, J. Gao, F. Xu, Y. Xu, and D. Jiang, Controlled synthesis of conjugated microporous polymer films: Versatile platforms for highly sensitive and label — free chemo — and biosensing, Angew. Chem. 126(19), 4950 (2014)
CrossRef ADS Google scholar
[46]
S. Luo, Z. Zeng, G. Zeng, Z. Liu, R. Xiao, P. Xu, H. Wang, D. Huang, Y. Liu, B. Shao, Q. Liang, D. Wang, Q. He, L. Qin, and Y. Fu, Recent advances in conjugated microporous polymers for photocatalysis: Designs, applications, and prospects, J. Mater. Chem. A 8(14), 6434 (2020)
CrossRef ADS Google scholar
[47]
Y. N. Jiang, J. H. Zeng, Y. Yang, Z. K. Liu, J. J. Chen, D. C. Li, L. Chen, and Z. P. Zhan, A conjugated microporous polymer as a recyclable heterogeneous ligand for highly efficient regioselective hydrosilylation of allenes, Chem. Commun. 56(10), 1597 (2020)
CrossRef ADS Google scholar
[48]
S. Kim and Y. M. Lee, Rigid and microporous polymers for gas separation membranes, Prog. Polym. Sci. 43, 1 (2015)
CrossRef ADS Google scholar
[49]
A. I. Cooper, Conjugated microporous polymers, Adv. Mater. 21(12), 1291 (2009)
CrossRef ADS Google scholar
[50]
F. Vilela, K. Zhang, and M. Antonietti, Conjugated porous polymers for energy applications, Energy Environ. Sci. 5(7), 7819 (2012)
CrossRef ADS Google scholar
[51]
J. Pinto, A. Athanassiou, and D. Fragouli, Surface modification of polymeric foams for oil spills remediation, J. Environ. Manage. 206, 872 (2018)
CrossRef ADS Google scholar
[52]
O. Oribayo, X. Feng, G. L. Rempel, and Q. Pan, Modification of formaldehyde-melamine-sodium bisulfite copolymer foam and its application as effective sorbents for clean up of oil spills, Chem. Eng. Sci. 160, 384 (2017)
CrossRef ADS Google scholar
[53]
M. R. El-Aassar, M. S. Masoud, M. F. Elkady, and A. A. Elzain, Synthesis, optimization, and characterization of poly (Styrene-co-Acrylonitrile) copolymer prepared via precipitation polymerization, Adv. Polym. Technol. 37(6), 2021 (2018)
CrossRef ADS Google scholar
[54]
A. Akelah, Functionalized Polymeric Materials in Agriculture and the Food Industry, Springer US, 2013
CrossRef ADS Google scholar
[55]
M. Noruzi, Electrospun nanofibres in agriculture and the food industry: A review, J. Sci. Food Agric. 96(14), 4663 (2016)
CrossRef ADS Google scholar
[56]
X. Meng, H. N. Wang, S. Y.Song, and H. J. Zhang, Proton-conducting crystalline porous materials, Chem. Soc. Rev. 46(2), 464 (2017)
CrossRef ADS Google scholar
[57]
S. Horike, D. Umeyama, and S. Kitagawa, Ion conductivity and transport by porous coordination polymers and metal–organic frameworks, Acc. Chem. Res. 46(11), 2376 (2013)
CrossRef ADS Google scholar
[58]
H. Xu, S. Tao, and D. Jiang, Proton conduction in crystalline and porous covalent organic frameworks, Nat. Mater. 15(7), 722 (2016)
CrossRef ADS Google scholar
[59]
P. M. Valetsky, M. G. Sulman, L. M. Bronstein, E. M. Sulman, A. I. Sidorov, and V. G. Matveeva, Nanosized catalysts in fine organic synthesis as a basis for developing innovative technologies in the pharmaceutical industry, Nanotechnol. Russ. 4(9–10), 647 (2009)
CrossRef ADS Google scholar
[60]
M. Sauceau, J. Fages, A. Common, C. Nikitine, and E. Rodier, New challenges in polymer foaming: A review of extrusion processes assisted by supercritical carbon dioxide, Prog. Polym. Sci. 36(6), 749 (2011)
CrossRef ADS Google scholar
[61]
J. Shokri and K. Adibki, in: Cellulose — Medical, Pharmaceutical and Electronic Applications, InTech, 2013
[62]
Q. Fang, J. Wang, S. Gu, R. B. Kaspar, Z. Zhuang, J. Zheng, H. Guo, S. Qiu, and Y. Yan, 3D porous crystalline polyimide covalent organic frameworks for drug delivery, J. Am. Chem. Soc. 137(26), 8352 (2015)
CrossRef ADS Google scholar
[63]
L. Feng, C. Qian, and Y. Zhao, Recent advances in covalent organic framework-based nanosystems for bioimaging and therapeutic applications, ACS Mater. Lett. 2, 1074 (2020)
CrossRef ADS Google scholar
[64]
M. C. Scicluna and L. Vella-Zarb, Evolution of nanocarrier drug-delivery systems and recent advancements in covalent organic framework–drug systems, ACS Appl. Nano Mater. 3(4), 3097 (2020)
CrossRef ADS Google scholar
[65]
N. Yadav, K. Mishra, and S. A. Hashmi, Optimization of porous polymer electrolyte for quasi-solid-state electrical double layer supercapacitor, Electrochim. Acta 235, 570 (2017)
CrossRef ADS Google scholar
[66]
R. C. Agrawal, and G. P. Pandey, Solid polymer electrolytes: Materials designing and all-solid-state battery applications: an overview, J. Phys. D Appl. Phys. 41(22), 223001 (2008)
CrossRef ADS Google scholar
[67]
D. T. Jr Hallinan and N. P. Balsara, Polymer electrolytes, Annu. Rev. Mater. Res. 43(1), 503 (2013)
CrossRef ADS Google scholar
[68]
S. Kramer, N. R. Bennedsen, and S. Kegnæs, Porous organic polymers containing active metal centers as catalysts for synthetic organic chemistry, ACS Catal. 8(8), 6961 (2018)
CrossRef ADS Google scholar
[69]
I. Ro, J. Resasco, and P. Christopher, Approaches for understanding and controlling interfacial effects in oxidesupported metal catalysts, ACS Catal. 8(8), 7368 (2018)
CrossRef ADS Google scholar
[70]
S. H. Xie, Y. Y. Liu, and J. Y. Li, Synthesis, microstructures, and magnetoelectric couplings of electrospun multiferroic nanofibers, Front. Phys. 7(4), 399 (2012)
CrossRef ADS Google scholar
[71]
S. Ghasemi and A. Nematollahzadeh, Molecularly imprinted polymer membrane for the removal of naphthalene from petrochemical wastewater streams, Adv. Polym. Technol. 37(6), 2288 (2018)
CrossRef ADS Google scholar
[72]
K. Sanctucci and B. Shah, Association of naphthalene with acute hemolytic anemia, Acad. Emerg. Med. 7, 42 (2000)
CrossRef ADS Google scholar
[73]
A. Modak, M. Nandi, J. Mondal, and A. Bhaumik, Porphyrin based porous organic polymers: Novel synthetic strategy and exceptionally high CO2 adsorption capacity, Chem. Commun. 48(2), 248 (2012)
CrossRef ADS Google scholar
[74]
X. He, Q. Shi, X. Zhou, C. Wan, and C. Jiang, In situ composite of nano SiO2–P(VDF-HFP) porous polymer electrolytes for Li-ion batteries, Electrochim. Acta 51(6), 1069 (2005)
CrossRef ADS Google scholar
[75]
J. Y. Sanchez, F. Alloin, and C. P. Lepmi, Polymeric materials in energy storage and conversion, Molecular Crystals and Liquid Crystals Science andTechnology A 324(1), 257 (1998)
CrossRef ADS Google scholar
[76]
M. Alamgir and K. M. Abraham, Li Ion Conductive Electrolytes Based on Poly(vinyl chloride), J. Electrochem. Soc. 140(6), L96 (1993)
CrossRef ADS Google scholar
[77]
Y. Wu, J. Wang, K. Jiang, and S. Fan, Applications of carbon nanotubes in high performance lithium ion batteries, Front. Phys. 9(3), 351 (2014)
CrossRef ADS Google scholar
[78]
Y. Huang, P. Liu, R. Hao, S. Kan, Y. Wu, H. Liu, and K. Liu, Engineering porous quasi-spherical Fe-N-C nanocatalysts with robust oxygen reduction performance for Zn-air battery application, ChemNanoMat 6(12), 1782 (2020)
CrossRef ADS Google scholar
[79]
J. Mandal, Y. Fu, A. C. Overvig, M. Jia, K. Sun, N. N. Shi, H. Zhou, X. Xiao, N. Yu, and Y. Yang, Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling, Science 362(6412), 315 (2018)
CrossRef ADS Google scholar
[80]
A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, Passive radiative cooling below ambient air temperature under direct sunlight, Nature 515(7528), 540 (2014)
CrossRef ADS Google scholar
[81]
G. Sharma, B. Thakur, M. Naushad, A. Kumar, F. J. Stadler, S. M. Alfadul, and G. T. Mola, Applications of nanocomposite hydrogels for biomedical engineering and environmental protection, Environ. Chem. Lett. 16(1), 113 (2018)
CrossRef ADS Google scholar
[82]
W. Chen, S. Liu, Y. Dong, X. Zhou, and F. Zhou, Poly (m-phenylene isophthalamide)/graphene composite aerogels with enhanced compressive shape stability for thermal insulation, J. Sol-Gel Sci. Technol. 96(2), 370 (2020)
CrossRef ADS Google scholar
[83]
X. Han, J. Zhang, J. Huang, X. Wu, D. Yuan, Y. Liu, and Y. Cui, Chiral induction in covalent organic frameworks, Nat. Commun. 9, 1 (2018)
CrossRef ADS Google scholar
[84]
Z. Wang, G. Chen, and K. Ding, Self-supported catalysts, Chem. Rev. 109(2), 322 (2009)
CrossRef ADS Google scholar
[85]
C. Train, R. Gheorghe, V. Krstic, L. M. Chamoreau, N. S. Ovanesyan, G. L. J. A. Rikken, M. Gruselle, and M. Verdaguer, Strong magneto-chiral dichroism in enantiopure chiral ferromagnets, Nat. Mater. 7(9), 729 (2008)
CrossRef ADS Google scholar
[86]
S. G. Mosanenzadeh, S. Karamikamkar, Z. Saadatnia, C. B. Park, and H. E. Naguib, PPDA-PMDA polyimide aerogels with tailored nanostructure assembly for air filtering applications, Separ. Purif. Tech. 250, 117279 (2020)
CrossRef ADS Google scholar
[87]
S. Karamikamkar, H. E. Naguib, and C. B. Park, Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality: A review, Adv. Colloid Interface Sci. 276, 102101 (2020)
CrossRef ADS Google scholar
[88]
Q. Qi, L. Ma, B. Zhao, S. Wang, X. Liu, Y. Lei, and C. B. Park, An effective design strategy for the sandwich structure of PVDF/GNP-Ni-CNT composites with remarkable electromagnetic interference shielding effectiveness, ACS Appl. Mater. Interfaces 12(32), 36568 (2020)
CrossRef ADS Google scholar
[89]
S. Liu, J. Gong, and B. Xu, Three-dimensionally conformal porous polymeric microstructures of fabrics for electrothermal textiles with enhanced thermal management, Polymers (Basel) 10(7), 748 (2018)
CrossRef ADS Google scholar
[90]
D. Reichenberg, Properties of ion-exchange resins in relation to their structure (III): Kinetics of exchange, J. Am. Chem. Soc. 75(3), 589 (1953)
CrossRef ADS Google scholar
[91]
B. Notario, J. Pinto, R. Verdejo, and M. A. Rodríguez-Pérez, Dielectric behavior of porous PMMA: From the micrometer to the nanometer scale, Polymer (Guildf.) 107, 302 (2016)
CrossRef ADS Google scholar
[92]
B. Zheng, X. Lin, X. Zhang, D. Wu, and K. Matyjaszewski, Emerging functional porous polymeric and carbonaceous materials for environmental treatment and energy storage, Adv. Funct. Mater. 30(41), 1907006 (2020)
CrossRef ADS Google scholar
[93]
H. Shin, S. Seo, C. Park, J. Na, M. Han, and E. Kim, Energy saving electrochromic windows from bistable low-HOMO level conjugated polymers, Energy Environ. Sci. 9(1), 117 (2016)
CrossRef ADS Google scholar
[94]
Y. Kim, M. Han, J. Kim, and E. Kim, Electrochromic capacitive windows based on all conjugated polymers for a dual function smart window, Energy Environ. Sci. 11(8), 2124 (2018)
CrossRef ADS Google scholar
[95]
S. Rashidi, J. A. Esfahani, and N. Karimi, Porous materials in building energy technologies — A review of the applications, modelling and experiments, Renew. Sustain. Energy Rev. 91, 229 (2018)
CrossRef ADS Google scholar
[96]
W. Chen and W. Liu, Thermal analysis on the cooling performance of a porous evaporative plate for building, Heat Transf. Asian Res. 39(2), 127 (2010)
CrossRef ADS Google scholar
[97]
N. Gupta and G. N. Tiwari, Review of passive heating/ cooling systems of buildings, Energy Sci. Eng. 4(5), 305 (2016)
CrossRef ADS Google scholar
[98]
M. Dogru, M. Handloser, F. Auras, T. Kunz, D. Medina, A. Hartschuh, P. Knochel, and T. Bein, A photoconductive thienothiophene-based covalent organic framework showing charge transfer towards included fullerene, Angew. Chem. 125(10), 2992 (2013)
CrossRef ADS Google scholar
[99]
S. W. Park, Z. Liao, B. Ibarlucea, H. Qi, H. H. Lin, D. Becker, J. Melidonie, T. Zhang, H. Sahabudeen, L. Baraban, C. K. Baek, Z. Zheng, E. Zschech, A. Fery, T.Heine, U. Kaiser, G. Cuniberti, R. Dong, and X. Feng, Two-dimensional boronate ester covalent organic framework thin films with large single crystalline domains for a neuromorphic memory device, Angew. Chem. Int. Ed.59(21), 8218 (2020)
CrossRef ADS Google scholar
[100]
Z. Lai, X. Guo, Z. Cheng, G. Ruan, and F. Du, Green synthesis of fluorescent carbon dots from cherry tomatoes for highly effective detection of trifluralin herbicide in soil samples, Chemistry Select5(6), 1956 (2020)
CrossRef ADS Google scholar
[101]
M. D. Allendorf, R. Dong, X. Feng, S. Kaskel, D. Matoga, and V. Stavila, Electronic devices using open framework materials, Chem. Rev. 120(16), 8581 (2020)
CrossRef ADS Google scholar
[102]
F. Q. Huang, C. Y. Yang, and D. Y. Wan, Advanced solar materials for thin-film photovoltaic cells, Front. Phys.6(2), 177 (2011)
CrossRef ADS Google scholar
[103]
S. B. Alahakoon, C. M. Thompson, G. Occhialini, and R. A. Smaldone, Design principles for covalent organic frameworks in energy storage applications, Chem- SusChem 10(10), 2116 (2017)
CrossRef ADS Google scholar
[104]
G. A. Leith, A. M. Rice, B. J. Yarbrough, A. A. Berseneva, R. T. Ly, C. N. III Buck, D. Chusov, A. J. Brandt, D. A. Chen, B. W. Lamm, M. Stefik, K. S. Stephenson, M. D. Smith, A. K. Vannucci, P. J. Pellechia, S. Garashchuk, and N. B. Shustova, A dual threat: Redoxactivity and electronic structures of welldefined donoracceptor fulleretic covalentorganic materials, Angew. Chem. Int. Ed. 59(15), 6000 (2020)
CrossRef ADS Google scholar
[105]
J. Li, X. Jing, Q. Li, S. Li, X. Gao, X. Feng, and B. Wang, Bulk COFs and COF nanosheets for electrochemical energy storage and conversion, Chem. Soc. Rev. 49(11), 3565 (2020)
CrossRef ADS Google scholar
[106]
S. Lee, I. Y. Cho, D. Kim, N. K. Park, J. Park, Y. Kim, S. J. Kang, Y. Kim, and S. Y. Hong, Redox-active functional electrolyte for high-performance seawater batteries, ChemSusChem 13(9), 2220 (2020)
CrossRef ADS Google scholar
[107]
N. Liu, W. Li, M. Pasta, and Y. Cui, Nanomaterials for electrochemical energy storage, Front. Phys. 9(3), 323 (2014)
CrossRef ADS Google scholar
[108]
P. P. Mukherjee and C. Y. Wang, Direct numerical simulation modeling of bilayer cathode catalyst layers in polymer electrolyte fuel cells, J. Electrochem. Soc. 154(11), B1121 (2007)
CrossRef ADS Google scholar
[109]
X. A. Zhang, S. Yu, B. Xu, M. Li, Z. Peng, Y. Wang, S. Deng, X. Wu, Z. Wu, M. Ouyang, and Y. H. Wang, Dynamic gating of infrared radiation in a textile, Science 363(6427), 619 (2019)
CrossRef ADS Google scholar
[110]
Q. Peng, J. E, J. Chen, W. Zuo, X. Zhao, and Z. Zhang, Investigation on the effects of wall thickness and porous media on the thermal performance of a non-premixed hydrogen fueled cylindrical micro combustor, Energy Convers. Manage. 155, 276 (2018)
CrossRef ADS Google scholar
[111]
Y. Cui, H. Gong, Y. Wang, D. Li, and H. Bai, A thermally insulating textile inspired by polar bear hair, Adv. Mater.30(14), 1706807 (2018)
CrossRef ADS Google scholar
[112]
Y. N. Song, Y. Li, D. X. Yan, J. Lei, and Z. M. Li, Novel passive cooling composite textile for both outdoor and indoor personal thermal management, Compos. Part A Appl. Sci. Manuf. 130, 105738 (2020)
CrossRef ADS Google scholar
[113]
R. Hu, Y. Liu, S. Shin, S. Huang, X. Ren, W. Shu, J. Cheng, G. Tao, W. Xu, R. Chen, and X. Luo, Emerging materials and strategies for personal thermal management, Adv. Energy Mater. 10(17), 1903921 (2020)
CrossRef ADS Google scholar
[114]
Y. Guo, C. Dun, J. Xu, J. Mu, P. Li, L. Gu, C. Hou, C. A. Hewitt, Q. Zhang, Y. Li, D. L. Carroll, and H. Wang, Ultrathin, washable, and large-area graphene papers for personal thermal management, Small 13(44), 1702645 (2017)
CrossRef ADS Google scholar
[115]
G. Dai, Designing nonlinear thermal devices and metamaterials under the Fourier law: A route to nonlinear thermotics, Front. Phys. 16, 1 (2021)
CrossRef ADS Google scholar
[116]
L. Qiu, N. Zhu, Y. Feng, E. E. Michaelides, G. Żyła, D. Jing, X. Zhang, P. M. Norris, C. N. Markides, and O. Mahian, A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids, Phys. Rep. 843, 1 (2020)
CrossRef ADS Google scholar
[117]
G. Xu, K. Dong, Y. Li, H. Li, K. Liu, L. Li, J. Wu, and C. Qiu, Tunable analog thermal material, Nat. Commun. 11, 1 (2020)
CrossRef ADS Google scholar
[118]
M. Chen, D. Pang, J. Mandal, X. Chen, H. Yan, Y. He, N. Yu, and Y. Yang, Designing mesoporous photonic structures for high-performance passive daytime radiative cooling, Nano Lett. 21(3), 1412 (2021)
CrossRef ADS Google scholar
[119]
T. Wang, M. C. Long, H. B. Zhao, B. W. Liu, H. G. Shi, W. L. An, S. L. Li, S. M. Xu, and Y. Z. Wang, An ultralow-temperature superelastic polymer aerogel with high strength as a great thermal insulator under extreme conditions, J. Mater. Chem. A Mater. Energy Sustain.8(36), 18698 (2020)
CrossRef ADS Google scholar
[120]
F. Hu, S. Wu, and Y. Sun, Hollow-structured materials for thermal insulation, Adv. Mater. 31(38), 1801001 (2019)
CrossRef ADS Google scholar
[121]
Y. Guo, Z. Zhang, M. Bescond, S. Xiong, M. Nomura, and S. Volz, Anharmonic phonon-phonon scattering at the interface between two solids by nonequilibrium Green’s function formalism, Phys. Rev. B 103(17), 174306 (2021)
CrossRef ADS Google scholar
[122]
G. Wang, C. Wang, J. Zhao, G. Wang, C. B. Park, and G. Zhao, Modelling of thermal transport through a nanocellular polymer foam: toward the generation of a new superinsulating material, Nanoscale 9(18), 5996 (2017)
CrossRef ADS Google scholar
[123]
G. Wang, C. Wang, J. Zhao, G. Wang, C. B. Park, G. Zhao, W. Van De Walle, and H. Janssen, Correction: Modelling of thermal transport through a nanocellular polymer foam: Toward the generation of a new superinsulating material, Nanoscale 10(43), 20469 (2018)
CrossRef ADS Google scholar
[124]
E. Cuce, C. H. Young, and S. B. Riffat, Performance investigation of heat insulation solar glass for low-carbon buildings, Energy Convers. Manage. 88, 834 (2014)
CrossRef ADS Google scholar
[125]
Y. Xu, L. Lin, M. Xiao, S. Wang, A. T. Smith, L. Sun, and Y. Meng, Synthesis and properties of CO2-based plastics: Environmentally-friendly, energy-saving and biomedical polymeric materials, Prog. Polym. Sci. 80, 163 (2018)
CrossRef ADS Google scholar
[126]
J. Weng, D. Ouyang, X. Yang, M. Chen, G. Zhang, and J. Wang, Alleviation of thermal runaway propagation in thermal management modules using aerogel felt coupled with flame-retarded phase change material, Energy Convers. Manage. 200, 112071 (2019)
CrossRef ADS Google scholar
[127]
I. Oropeza-Perez and P. A. Østergaard, Active and passive cooling methods for dwellings: A review, Renew. Sustain. Energy Rev.82, 531 (2018)
CrossRef ADS Google scholar
[128]
S. Kashyap, S. Kabra, and B. Kandasubramanian, Graphene aerogel-based phase changing composites for thermal energy storage systems, J. Mater. Sci. 55(10), 4127 (2020)
CrossRef ADS Google scholar
[129]
https://spinoff.nasa.gov/spinoff2001/ch5.html
[130]
P. R. Ferrer, A. Mace, S. N. Thomas, and J. W. Jeon, Nanostructured porous graphene and its composites for energy storage applications, Nano Converg. 4, 1 (2017)
CrossRef ADS Google scholar
[131]
E. Pakdel, M. Naebe, L. Sun, and X. Wang, Advanced functional fibrous materials for enhanced thermoregulating performance, ACS Appl. Mater. Interfaces 11(14), 13039 (2019)
CrossRef ADS Google scholar
[132]
A. Yang, L. Cai, R. Zhang, J. Wang, P. C. Hsu, H. Wang, G. Zhou, J. Xu, and Y. Cui, Thermal management in nanofiber-based face mask, Nano Lett. 17(6), 3506 (2017)
CrossRef ADS Google scholar
[133]
Y. Yang and Y. Zhang, Passive daytime radiative cooling: Principle, application, and economic analysis, MRS Energy Sustain. 7, 18 (2020)
CrossRef ADS Google scholar
[134]
M. Alvarez-Lainez, M. A. Rodriguez-Perez, and J. A. DE Saja, Thermal conductivity of open-cell polyolefin foams, J. Polym. Sci. B Polym. Phys. 46(2), 212 (2008)
CrossRef ADS Google scholar
[135]
L. R. Glicksman, in: Low Density Cellular Plastics, Springer Netherlands, 1994, pp 104–152
CrossRef ADS Google scholar
[136]
P. Buahom, C. Wang, M. Alshrah, G. Wang, P. Gong, M. P. Tran, and C. B. Park, Wrong expectation of superinsulation behavior from largely-expanded nanocellular foams, Nanoscale 12(24), 13064 (2020)
CrossRef ADS Google scholar
[137]
L. R. Glicksman, M. Torpey, and A. Marge, Means to improve the thermal conductivity of foam insulation, J. Cell. Plast. 28(6), 571 (1992)
CrossRef ADS Google scholar
[138]
A. G. Leach, The thermal conductivity of foams (I): Models for heat conduction, J. Phys. D Appl. Phys. 26(5), 733 (1993)
CrossRef ADS Google scholar
[139]
M. A. Schuetz and L. R. Glicksman, A basic study of heat transfer through foam insulation, J. Cell. Plast. 20(2), 114 (1984)
CrossRef ADS Google scholar
[140]
Z. M. Zhang, Nano/Microscale Heat Transfer, New York: McGraw-Hill, 2007
[141]
Y. L. He and T. Xie, Advances of thermal conductivity models of nanoscale silica aerogel insulation material, Appl. Therm. Eng. 81, 28 (2015)
CrossRef ADS Google scholar
[142]
T. Xie, Y. L. He, and Z. J. Hu, Theoretical study on thermal conductivities of silica aerogel composite insulating material, Int. J. Heat Mass Transf. 58(1–2), 540 (2013)
CrossRef ADS Google scholar
[143]
B. Notario, J. Pinto, E. Solorzano, J. A. De Saja, M. Dumon, and M. A. Rodríguez-Pérez, Experimental validation of the Knudsen effect in nanocellular polymeric foams, Polymer (Guildf.) 56, 57 (2015)
CrossRef ADS Google scholar
[144]
V. Bernardo, J. Martin-de Leon, J. Pinto, R. Verdejo, and M. A. Rodriguez-Perez, Modeling the heat transfer by conduction of nanocellular polymers with bimodal cellular structures, Polymer (Guildf.) 160, 126 (2019)
CrossRef ADS Google scholar
[145]
L. Wu, A slip model for rarefied gas flows at arbitrary Knudsen number, Appl. Phys. Lett. 93(25), 253103 (2008)
CrossRef ADS Google scholar
[146]
T. Inamuro, M. Yoshino, and F. Ogino, Accuracy of the lattice Boltzmann method for small Knudsen number with finite Reynolds number, Phys. Fluids 9(11), 3535 (1997)
CrossRef ADS Google scholar
[147]
S. Fukui and R. Kaneko, A database for interpolation of Poiseuille flow rates for high Knudsen number Lubrication problems, J. Tribol. 112(1), 78 (1990)
CrossRef ADS Google scholar
[148]
F. Tao and L. Nguyen, Interactions of gaseous molecules with X-ray photons and photoelectrons in AP-XPS study of solid surface in gas phase, Phys. Chem. Chem. Phys. 20(15), 9812 (2018)
CrossRef ADS Google scholar
[149]
D. R. Snelling, F. Liu, G. J. Smallwood, and Ö. L. Gülder, Determination of the soot absorption function and thermal accommodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame, Combust. Flame 136(1–2), 180 (2004)
CrossRef ADS Google scholar
[150]
K. J. Daun, Thermal accommodation coefficients between polyatomic gas molecules and soot in laser-induced incandescence experiments, Int. J. Heat Mass Transf. 52(21–22), 5081 (2009)
CrossRef ADS Google scholar
[151]
G. Torzo, G. Delfitto, B. Pecori, and P. Scatturin, A new microcomputer-based laboratory version of the Rüchardt experiment for measuring the ratio γ = Cp/Cv in air, Am. J. Phys. 69(11), 1205 (2001)
CrossRef ADS Google scholar
[152]
M. Pyda and B. Wunderlich, Computation of heat capacities of liquid polymers, Macromolecules 32(6), 2044 (1999)
CrossRef ADS Google scholar
[153]
G. Reichenauer, U. Heinemann, and H. P. Ebert, Relationship between pore size and the gas pressure dependence of the gaseous thermal conductivity, Colloids Surf. A Physicochem. Eng. Asp. 300(1–2), 204 (2007)
CrossRef ADS Google scholar
[154]
S. Q. Zeng, A. Hunt, and R. Greif, Mean free path and apparent thermal conductivity of a gas in a porous medium, J. Heat Transfer 117(3), 758 (1995)
CrossRef ADS Google scholar
[155]
G. Lu, X. D. Wang, Y. Y. Duan, and X. W. Li, Effects of non-ideal structures and high temperatures on the insulation properties of aerogel-based composite materials, J. Non-Cryst. Solids 357(22–23), 3822 (2011)
CrossRef ADS Google scholar
[156]
S. Q. Zeng, A. J. Hunt, W. Cao, and R. Greif, Pore size distribution and apparent gas thermal conductivity of silica aerogel, J. Heat Transfer 116(3), 756 (1994)
CrossRef ADS Google scholar
[157]
C. Bi, G. H. Tang, and W. Q. Tao, Prediction of the gaseous thermal conductivity in aerogels with nonuniform pore-size distribution, J. Non-Cryst. Solids 358(23), 3124 (2012)
CrossRef ADS Google scholar
[158]
J. Fricke, X. Lu, P. Wang, D. Büttner, and U. Heinemann, Optimization of monolithic silica aerogel insulants, Int. J. Heat Mass Transf. 35(9), 2305 (1992)
CrossRef ADS Google scholar
[159]
J. Lee, J. Lim, and P. Yang, Ballistic phonon transport in holey silicon, Nano Lett. 15(5), 3273 (2015)
CrossRef ADS Google scholar
[160]
G. Chen, Nonlocal and nonequilibrium heat conduction in the vicinity of nanoparticles, J. Heat Transfer 118(3), 539 (1996)
CrossRef ADS Google scholar
[161]
M. Alshrah, L. H. Mark, C. Zhao, H. E. Naguib, and C. B. Park, Nanostructure to thermal property relationship of resorcinol formaldehyde aerogels using the fractal technique, Nanoscale 10(22), 10564 (2018)
CrossRef ADS Google scholar
[162]
O. J. Lee, K. H. Lee, T. Jin Yim, S. Young Kim, and K. P. Yoo, Determination of mesopore size of aerogels from thermal conductivity measurements, J. Non-Cryst. Solids 298(2–3), 287 (2002)
CrossRef ADS Google scholar
[163]
Z. Deng, J. Wang, A. Wu, J. Shen, and B. Zhou, High strength SiO2 aerogel insulation, J. Non-Cryst. Solids 225, 101 (1998)
CrossRef ADS Google scholar
[164]
S. Spagnol, B. Lartigue, A. Trombe, and V. Gibiat, Thermal modeling of two-dimensional periodic fractal patterns, an application to nanoporous media, Europhysics Letters (EPL) 78(4), 46005(2007)
CrossRef ADS Google scholar
[165]
K. Swimm, G. Reichenauer, S. Vidi, and H. P. Ebert, Gas pressure dependence of the heat transport in porous solids with pores smaller than 10 μm, Int. J. Thermophys.30(4), 1329 (2009)
CrossRef ADS Google scholar
[166]
S. Yang, J. Wang, G. Dai, F. Yang, and J. Huang, Controlling macroscopic heat transfer with thermal metamaterials: Theory, experiment and application, Phys. Rep. 908, 1 (2021)
CrossRef ADS Google scholar
[167]
J. Huang, Theoretical Thermotics: Transformation Thermotics and Extended Theories for Thermal Metamaterials, Springer, 2021
CrossRef ADS Google scholar
[168]
G. Wei, Y. Liu, X. Zhang, F. Yu, and X. Du, Thermal conductivities study on silica aerogel and its composite insulation materials, Int. J. Heat Mass Transf. 54(11–12), 2355 (2011)
CrossRef ADS Google scholar
[169]
J. J. Zhao, Y. Y. Duan, X. D. Wang, and B. X. Wang, An analytical model for combined radiative and conductive heat transfer in fiber-loaded silica aerogels, J. Non-Cryst. Solids 358(10), 1303 (2012)
CrossRef ADS Google scholar
[170]
. W. L. Power and T. E. Tullis, Euclidean and fractal models for the description of rock surface roughness, J. Geophys. Res. 96(B1), 415 (1991)
CrossRef ADS Google scholar
[171]
R. Vacher, T. Woignier, J. Pelous, and E. Courtens, Structure and self-similarity of silica aerogels, Phys. Rev. B 37(11), 6500 (1988)
CrossRef ADS Google scholar
[172]
G. Edgar, Measure, Topology, and Fractal Geometry, Springer New York, 2008
CrossRef ADS Google scholar
[173]
B. B. Mandelbrot, The Fractal Geometry of Nature, New York: WH Freeman, 1982
[174]
G. Pia and U. Sanna, Intermingled fractal units model and electrical equivalence fractal approach for prediction of thermal conductivity of porous materials, Appl. Therm. Eng. 61(2), 186 (2013)
CrossRef ADS Google scholar
[175]
G. Pia and U. Sanna, An intermingled fractal units model to evaluate pore size distribution influence on thermal conductivity values in porous materials, Appl. Therm. Eng. 65(1–2), 330 (2014)
CrossRef ADS Google scholar
[176]
X. Huai, W. Wang, and Z. Li, Analysis of the effective thermal conductivity of fractal porous media, Appl. Therm. Eng. 27(17–18), 2815 (2007)
CrossRef ADS Google scholar
[177]
Y. Hayase and T. Ohta, Sierpinski gasket in a reactiondiffusion system, Phys. Rev. Lett. 81(8), 1726 (1998)
CrossRef ADS Google scholar
[178]
Y. Ma, B. Yu, D. Zhang, and M. Zou, A self-similarity model for effective thermal conductivity of porous media, J. Phys. D Appl. Phys. 36(17), 2157 (2003)
CrossRef ADS Google scholar
[179]
C. Jiang, K. Davey, and R. Prosser, A tessellated continuum approach to thermal analysis: Discontinuity networks., Contin. Mech. Thermodyn.29(1), 145 (2017)
CrossRef ADS Google scholar
[180]
G. P. Saracco, G. Gonnella, D. Marenduzzo, and E. Orlandini, Equilibrium and dynamical behavior in the Vicsek model for self-propelled particles under shear, Cent. Eur. J. Phys. 10, 1109 (2012)
CrossRef ADS Google scholar
[181]
M. van den Berg, Heat equation on the arithmetic von Koch snowflake, Probab. Theory Relat. Fields 118(1), 17 (2000)
CrossRef ADS Google scholar
[182]
B. Yu and P. Cheng, Fractal models for the effective thermal conductivity of bidispersed porous media, J. Thermophys. Heat Trans. 16(1), 22 (2002)
CrossRef ADS Google scholar
[183]
T. Xie, Y. L. He, and Z. J. Hu, Theoretical study on thermal conductivities of silica aerogel composite insulating material, Int. J. Heat Mass Transf. 58(1–2), 540 (2013)
CrossRef ADS Google scholar
[184]
S. S. Sundarram and W. Li, On thermal conductivity of micro- and nanocellular polymer foams, Polym. Eng. Sci.53(9), 1901 (2013)
CrossRef ADS Google scholar
[185]
Y. Amani, A. Takahashi, P. Chantrenne, S. Maruyama, S. Dancette, and E. Maire, Thermal conductivity of highly porous metal foams: Experimental and image based finite element analysis, Int. J. Heat Mass Transf. 122, 1 (2018)
CrossRef ADS Google scholar
[186]
Y. Amani and A. Öchsner, Finite element simulation of arrays of hollow sphere structures, Materialwiss. Werkstofftech. 46(4–5), 462 (2015)
CrossRef ADS Google scholar
[187]
H. Zhong and J. R. Lukes, Interfacial thermal resistance between carbon nanotubes: Molecular dynamics simulations and analytical thermal modeling, Phys. Rev. B 74(12), 125403 (2006)
CrossRef ADS Google scholar
[188]
S. G. Volz and G. Chen, Molecular dynamics simulation of thermal conductivity of silicon nanowires, Appl. Phys. Lett. 75(14), 2056 (1999)
CrossRef ADS Google scholar
[189]
W. Zhu, G. Zheng, S. Cao, and H. He, Thermal conductivity of amorphous SiO2 thin film: A molecular dynamics study, Sci. Rep. 8, 1 (2018)
CrossRef ADS Google scholar
[190]
A. Henry and G. Chen, High thermal conductivity of single polyethylene chains using molecular dynamics simulations, Phys. Rev. Lett. 101(23), 235502 (2008)
CrossRef ADS Google scholar
[191]
Z. Y. Ong and E. Pop, Molecular dynamics simulation of thermal boundary conductance between carbon nanotubes and SiO2, Phys. Rev. B 81(15), 155408 (2010)
CrossRef ADS Google scholar
[192]
P. K. Schelling, S. R. Phillpot, and P. Keblinski, Comparison of atomic-level simulation methods for computing thermal conductivity, Phys. Rev. B 65(14), 144306 (2002)
CrossRef ADS Google scholar
[193]
J. Che, T. Çagin, and W. A. III Goddard, Thermal conductivity of carbon nanotubes, Nanotechnology 11(2), 65 (2000)
CrossRef ADS Google scholar
[194]
A. J. H. McGaughey, and M. Kaviany, Thermal conductivity decomposition and analysis using molecular dynamics simulations, Int. J. Heat Mass Transf. 47(8–9), 1799 (2004)
CrossRef ADS Google scholar
[195]
Y. G. Yoon, R. Car, D. J. Srolovitz, and S. Scandolo, Thermal conductivity of crystalline quartz from classical simulations, Phys. Rev. B 70(1), 012302 (2004)
CrossRef ADS Google scholar
[196]
D. P. Sellan, E. S. Landry, J. E. Turney, A. J. H. Mc-Gaughey, and C. H. Amon, Size effects in molecular dynamics thermal conductivity predictions, Phys. Rev. B81(21), 214305 (2010)
CrossRef ADS Google scholar
[197]
Y. F. Han, X. L. Xia, H. P. Tan, and H. D. Liu, Modeling of phonon heat transfer in spherical segment of silica aerogel grains, Physica B 420, 58 (2013)
CrossRef ADS Google scholar
[198]
T. Zeng and W. Liu, Phonon heat conduction in microand nano-core-shell structures with cylindrical and spherical geometries, J. Appl. Phys. 93(7), 4163 (2003)
CrossRef ADS Google scholar
[199]
A. Fakhari and T. Lee, Numerics of the lattice boltzmann method on nonuniform grids: Standard LBM and finitedifference LBM, Comput. Fluids 107, 205 (2015)
CrossRef ADS Google scholar
[200]
S. Chen and G. D. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech. 30(1), 329 (1998)
CrossRef ADS Google scholar
[201]
G. H. Tang, W. Q. Tao, and Y. L. He, Gas slippage effect on microscale porous flow using the lattice Boltzmann method, Phys. Rev. E 97, 104918 (2005)
[202]
Y. Peng, Y. T. Chew, and C. Shu, Numerical simulation of natural convection in a concentric annulus between a square outer cylinder and a circular inner cylinder using the Taylor-series-expansion and least-squares-based lattice Boltzmann method, Phys. Rev. E 67(2), 026701 (2003)
CrossRef ADS Google scholar
[203]
C. Y. Zhao, L. N. Dai, G. H. Tang, Z. G. Qu, and Z. Y. Li, Numerical study of natural convection in porous media (metals) using lattice Boltzmann method (LBM), Int. J. Heat Fluid Flow 31(5), 925 (2010)
CrossRef ADS Google scholar
[204]
H. Yu, H. Zhang, P. Buahom, J. Liu, X. Xia, and C. B. Park, Prediction of thermal conductivity of micro/nano porous dielectric materials: Theoretical model and impact factors, Energy 233, 121140 (2021)
CrossRef ADS Google scholar
[205]
S. Wang, Y. Huang, E. Chang, C. Zhao, A. Ameli, H. E. Naguib, and C. B. Park, Evaluation and modeling of electrical conductivity in conductive polymer nanocomposite foams with multiwalled carbon nanotube networks, Chem. Eng. J. 411, 128382 (2021)
CrossRef ADS Google scholar
[206]
A. Rizvi, R. K. M. Chu, and C. B. Park, Scalable fabrication of thermally insulating mechanically resilient hierarchically porous polymer foams, ACS Appl. Mater. Interfaces 10(44), 38410 (2018)
CrossRef ADS Google scholar
[207]
P. Gong, S. Zhai, R. Lee, C. Zhao, P. Buahom, G. Li, and C. B. Park, Environmentally Friendly Polylactic Acid-Based Thermal Insulation Foams Blown with Supercritical CO2, Ind. Eng. Chem. Res. 57(15), 5464 (2018)
CrossRef ADS Google scholar
[208]
G. Wang, J. Zhao, G. Wang, L. H. Mark, C. B. Park, and G. Zhao, Low-density and structure-tunable microcellular PMMA foams with improved thermal-insulation and compressive mechanical properties, Eur. Polym. J.95, 382 (2017)
CrossRef ADS Google scholar
[209]
J. R. Howell, R. Siegel, and M. P. Mengüç, Thermal Radiation Heat Transfer, 5th Ed., CRC Press, Taylor & Francis Group, 2010
CrossRef ADS Google scholar
[210]
Y. Feng and C. Wang, Discontinuous finite element method applied to transient pure and coupled radiative heat transfer, Int. Commun. Heat Mass Transf. 122, 105156 (2021)
CrossRef ADS Google scholar
[211]
. T. Xie and Y. L. He, Heat transfer characteristics of silica aerogel composite materials: Structure reconstruction and numerical modeling, Int. J. Heat Mass Transf. 95, 621 (2016)
CrossRef ADS Google scholar
[212]
A. V. Gusarov, E. Poloni, V. Shklover, A. Sologubenko, J. Leuthold, S. White, and J. Lawson, Radiative transfer in porous carbon-fiber materials for thermal protection systems, Int. J. Heat Mass Transf. 144, 118582 (2019)
CrossRef ADS Google scholar
[213]
T. J. Hendricks and J. R. Howell, Absorption/scattering coefficients and scattering phase functions in reticulated porous ceramics, J. Heat Transfer 118(1), 79 (1996)
CrossRef ADS Google scholar
[214]
B. Quistián-Vázquez, B. Morales-Cruzado, E. Sarmiento-Gómez, and F. G. Pérez-Gutiérrez, Retrieval of absorption or scattering coefficient spectrum (RASCS) program: A tool to monitor optical properties in real time, Lasers Surg. Med. 52(6), 552 (2020)
CrossRef ADS Google scholar
[215]
F. Vaudelle, J. P. L’Huillier, and M. L. Askoura, Light source distribution and scattering phase function influence light transport in diffuse multi-layered media, Opt. Commun. 392, 268 (2017)
CrossRef ADS Google scholar
[216]
J. E. Sipe, New Green-function formalism for surface optics, J. Opt. Soc. Am. B 4(4), 481 (1987)
CrossRef ADS Google scholar
[217]
L. Dombrovsky, J. Randrianalisoa, and D. Baillis, Modified two-flux approximation for identification of radiative properties of absorbing and scattering media from directional-hemispherical measurements, J. Opt. Soc. Am. A 23(1), 91 (2006)
CrossRef ADS Google scholar
[218]
L. Dombrovsky, A. Leonid, G. Krithiga, and L. Wojciech, Combined two-flux approximation and Monte Carlo model for identification of radiative properties of highly scattering dispersed materials, Comput. Therm. Sci.: Int. J. 4, 4 (2012)
CrossRef ADS Google scholar
[219]
S. Chandrasekhar, The stability of non-dissipative Couette flow in hydromagnetics, Proc. Natl. Acad. Sci. USA 46(2), 253 (1960)
CrossRef ADS Google scholar
[220]
T. K. Kim, J. A. Menart, and H. S. Lee, Nongray radiative gas analyses using the S-N discrete ordinates method, J. Heat Transfer 113(4), 946 (1991)
CrossRef ADS Google scholar
[221]
R. Eymard, T. Gallouët, and R. Herbin, Finite volume methods, Handbook Numer. Anal. 7, 713 (2000)
CrossRef ADS Google scholar
[222]
A. Cohen, Wavelet methods in numerical analysis, Handbook Numer. Anal. 7, 417 (2000)
CrossRef ADS Google scholar
[223]
H. Yu, H. Zhang, Y. Guo, H. Tan, Y. Li, and G. Xie, Thermodynamic analysis of shark skin texture surfaces for microchannel flow, Contin. Mech. Thermodyn. 28(5), 1361 (2016)
CrossRef ADS Google scholar
[224]
H. Yu, H. Zhang, and X. Xia, A fractal-skeleton model of high porosity macroporous aluminum and its heat transfer characterizes, J. Therm. Anal. Calorim. 1, 1 (2020)
[225]
H. Yu, H. Zhang, C. Su, K. Wang, and L. Jin, The spectral radiative effect of Si/SiO2 substrate on monolayer aluminum porous microstructure, Therm. Sci. 22(Suppl. 2), 629 (2018)
CrossRef ADS Google scholar
[226]
P. S. Cumber, Improvements to the discrete transfer method of calculating radiative heat transfer, Int. J. Heat Mass Transf. 38(12), 2251 (1995)
CrossRef ADS Google scholar
[227]
M. Fairweather, W. P. Jones, and R. P. Lindstedt, Predictions of radiative transfer from a turbulent reacting jet in a cross-wind, Combust. Flame 89(1), 45 (1992)
CrossRef ADS Google scholar
[228]
E. Solórzano, M. A. Rodriguez-Perez, J. Lázaro, and J. A. de Saja, Influence of solid phase conductivity and cellular structure on the heat transfer mechanisms of cellular materials: Diverse case studies, Adv. Eng. Mater. 11(10), 818 (2009)
CrossRef ADS Google scholar
[229]
L. R. Glicksman, T. Yule, and A. Dyrness, Prediction of the expansion of fluidized beds containing tubes, Chem. Eng. Sci. 46(7), 1561 (1991)
CrossRef ADS Google scholar
[230]
H. P. Tan, L. H. Liu, H. L. Yi, J. M. Zhao, H. Qi, and J. Y. Tan, Recent progress in computational thermal radiative transfer, Chin. Sci. Bull.54(22), 4135 (2009)
CrossRef ADS Google scholar
[231]
S. Basu and Z. M. Zhang, Maximum energy transfer in near-field thermal radiation at nanometer distances, J. Appl. Phys. 105(9), 093535 (2009)
CrossRef ADS Google scholar
[232]
V. Bernardo, J. Martin-de Leon, J. Pinto, U. Schade, and M. A. Rodriguez-Perez, On the interaction of infrared radiation and nanocellular polymers: First experimental determination of the extinction coefficient, Colloids Surf. A 600, 124937 (2020)
CrossRef ADS Google scholar
[233]
J. Martín-de León, J. L. Pura, V. Bernardo, and M. Á. Rodríguez-Pérez, Transparent nanocellular PMMA: Characterization and modeling of the optical properties, Polymer (Guildf.) 170, 16 (2019)
CrossRef ADS Google scholar
[234]
C. F.Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, Hoboken, 2004
[235]
M. Nieto-Vesperinas, Fundamentals of Mie scattering, Woodhead Publishing, 2020
CrossRef ADS Google scholar
[236]
S. Shen, A. Narayanaswamy, and G. Chen, Surface phonon polaritons mediated energy transfer between nanoscale gaps, Nano Lett. 9(8), 2909 (2009)
CrossRef ADS Google scholar
[237]
S. Shen, A. Henry, J. Tong, R. Zheng, and G. Chen, Polyethylene nanofibres with very high thermal conductivities, Nat. Nanotechnol. 5(4), 251 (2010)
CrossRef ADS Google scholar
[238]
X. Liu, L. Wang, and Z. M. Zhang, Near-field thermal radiation: Recent progress and outlook, Nanoscale Microscale Thermophys. Eng. 19(2), 98 (2015)
CrossRef ADS Google scholar
[239]
H. Yu, H. Zhang, H. Wang, and D. Zhang, The equivalent thermal conductivity of the micro/nano scaled periodic cubic frame silver and its thermal radiation mechanism analysis, Energies 14, 1 (2021)
CrossRef ADS Google scholar
[240]
B. Liu, F. Sun, X. Chen, and X. Xia, Prediction of radiation spectra of composite with periodic micron porous structure, Numer. Heat Transf. B 78(1), 54 (2020)
CrossRef ADS Google scholar
[241]
S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarski, Principles of Statistical Radiophysics, Springer-Verlag, 1987
CrossRef ADS Google scholar
[242]
H. Yu, H. Zhang, Z. Dai, and X. Xia, Design and analysis of low emissivity radiative cooling multilayer films based on effective medium theory, ES Energy & Environment 6, 69 (2019)
[243]
L. X. Ma, C. C. Wang, and J. Y. Tan, Light scattering by densely packed optically soft particle systems, with consideration of the particle agglomeration and dependent scattering, Appl. Opt. 58(27), 7336 (2019)
CrossRef ADS Google scholar
[244]
S. Basu, Z. Zhang, and C. Fu, Review of near-field thermal radiation and its application to energy conversion, Int. J. Energy Res. 33(13), 1203 (2009)
CrossRef ADS Google scholar
[245]
X. Wu, C. Fu, and Z. M. Zhang, Effect of orientation on the directional and hemispherical emissivity of hyperbolic metamaterials, Int. J. Heat Mass Transf. 135, 1207 (2019)
CrossRef ADS Google scholar
[246]
M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Elsevier, 2013

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(9394 KB)

Accesses

Citations

Detail

Sections
Recommended

/