Single-photon-level light storage with distributed Rydberg excitations in cold atoms

Hanxiao Zhang, Jinhui Wu, M. Artoni, G. C. La Rocca

PDF(6683 KB)
PDF(6683 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (2) : 22502. DOI: 10.1007/s11467-021-1105-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Single-photon-level light storage with distributed Rydberg excitations in cold atoms

Author information +
History +

Abstract

We present an improved version of the superatom (SA) model to examine the slow-light dynamics of a few-photons signal field in cold Rydberg atoms with van der Waals (vdW) interactions. A main feature of this version is that it promises consistent estimations on total Rydberg excitations based on dynamic equations of SAs or atoms. We consider two specific cases in which the incident signal field contains more photons with a smaller detuning or less photons with a larger detuning so as to realize the single-photon-level light storage. It is found that vdW interactions play a significant role even for the slow-light dynamics of a single-photon signal field as distributed Rydberg excitations are inevitable in the picture of dark-state polariton. Moreover, the stored (retrieved) signal field exhibits a clearly asymmetric (more symmetric) profile because its leading and trailing edges undergo different (identical) traveling journeys, and higher storage/retrieval efficiencies with well preserved profiles apply only to weaker and well detuned signal fields. These findings are crucial to understand the nontrivial interplay of single-photon-level light storage and distributed Rydberg excitations.

Graphical abstract

Keywords

few-photons light storage / distributed Rydberg excitation / cold Rydberg atom / improved superatom model

Cite this article

Download citation ▾
Hanxiao Zhang, Jinhui Wu, M. Artoni, G. C. La Rocca. Single-photon-level light storage with distributed Rydberg excitations in cold atoms. Front. Phys., 2022, 17(2): 22502 https://doi.org/10.1007/s11467-021-1105-6

References

[1]
A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67(6), 661 (1991)
CrossRef ADS Google scholar
[2]
H. P. Zeng, G. Wu, E. Wu, H. F.Pan, C. Y. Zhou, F. Treussart, and J. F. Roch, Generation and detection of infrared single photons and their applications, Front. Phys. China 1(1), 1 (2006)
CrossRef ADS Google scholar
[3]
L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Long distance quantum communication with atomic ensembles and linear optics, Nature 414(6862), 413 (2001)
CrossRef ADS Google scholar
[4]
E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature 409(6816), 46 (2001)
CrossRef ADS Google scholar
[5]
K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, Photon blockade in an optical cavity with one trapped atom, Nature 436(7047), 87 (2005)
CrossRef ADS Google scholar
[6]
Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, Strong atom-field coupling for Bose–Einstein condensates in an optical cavity on a chip, Nature 450(7167), 272 (2007)
CrossRef ADS Google scholar
[7]
A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, Two-photon gateway in one-atom cavity quantum electrodynamics, Phys. Rev. Lett. 101(20), 203602 (2008)
CrossRef ADS Google scholar
[8]
M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Electromagnetically induced transparency: Optics in coherent media, Rev. Mod. Phys. 77(2), 633 (2005)
CrossRef ADS Google scholar
[9]
C. Möhl, N. L. R. Spong, Y. C. Jiao, C. So, T. Ilieva, M. Weidemüller, and C. S. Adams, Photon correlation transients in a weakly blockaded Rydberg ensemble, J. Phys. At. Mol. Opt. Phys. 53(8), 084005 (2020)
CrossRef ADS Google scholar
[10]
Z. Y.Shen, H. L. Yang, X. Liu, X. J. Huang, T. Y. Xiang, J. Wu, and W. Chen, Electromagnetically induced transparency in novel dual-band metamaterial excited by toroidal dipolar response, Front. Phys. 15(1), 12601 (2020)
CrossRef ADS Google scholar
[11]
C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, Polarization qubit phase gate in driven atomic media, Phys. Rev. Lett. 90(19), 197902 (2003)
CrossRef ADS Google scholar
[12]
Z. B. Wang, K. P. Marzlin, and B. C. Sanders, Large crossphase modulation between slow copropagating weak pulses in 87Rb, Phys. Rev. Lett. 97(6), 063901 (2006)
CrossRef ADS Google scholar
[13]
B. W. Shiau, M. C. Wu, C. C. Lin, and Y. C. Chen, Lowlight-level cross-phase modulation with double slow light pulses, Phys. Rev. Lett. 106(19), 193006 (2011)
CrossRef ADS Google scholar
[14]
M. Saffman, T. G. Walker, and K. Molmer, Quantum information with Rydberg atoms, Rev. Mod. Phys. 82(3), 2313 (2010)
CrossRef ADS Google scholar
[15]
J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V.Sandoghdar, A single-molecule optical transistor, Nature 460(7251), 76 (2009)
CrossRef ADS Google scholar
[16]
J. D. Pritchard, K. J. Weatherill, and C. S.Adams, Nonlinear optics using cold Rydberg atoms, Annu. Rev. Cold At. Mol. 1, 301 (2013)
CrossRef ADS Google scholar
[17]
O. Firstenberg, C. S. Adams, and S. Hofferberth, Nonlinear quantum optics mediated by Rydberg interactions, J. Phys. At. Mol. Opt. Phys.49(15), 152003 (2016)
CrossRef ADS Google scholar
[18]
Y. O. Dudin and A. Kuzmich, Strongly interacting Rydberg excitations of a cold atomic gas, Science 336(6083), 887 (2012)
CrossRef ADS Google scholar
[19]
H. Gorniaczyk, C. Tresp, J.Schmidt, H. Fedder, and S. Hofferberth, Single-photon transistor mediated by interstate Rydberg interactions, Phys. Rev. Lett.113(5), 053601 (2014)
CrossRef ADS Google scholar
[20]
D. Tiarks, S. Schmidt, G. Rempe, and S. Durr, Optical πphase shift created with a single-photon pulse, Sci. Adv.2(4), e1600036 (2016)
CrossRef ADS Google scholar
[21]
A. Padrón-Brito, R. Tricarico, P. Farrera, E. Distante, K. Theophilo, D. Chang, and H. de Riedmatten, Transient dynamics of the quantum light retrieved from Rydberg polaritons, New J. Phys. 23(6), 063009 (2021)
CrossRef ADS Google scholar
[22]
J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, Cooperative atom–light interaction in a blockade Rydberg ensemble, Phys. Rev. Lett. 105(19), 193603 (2010)
CrossRef ADS Google scholar
[23]
P. Bienias, S. Choi, O. Firstenberg, M. F. Maghrebi, M. Gullans, M. D. Lukin, A. V. Gorshkov, and H. P. Buchler, Scattering resonances and bound states for strongly interacting Rydberg polaritons, Phys. Rev. A 90(5), 053804 (2014)
CrossRef ADS Google scholar
[24]
M. F. Maghrebi, M. J. Gullans, P. Bienias, S. Choi, I. Martin, O. Firstenberg, M. D. Lukin, H. P. Buchler, and A. V. Gorshkov, Coulomb bound states of strongly interacing photons, Phys. Rev. Lett. 115(12), 123601 (2015)
CrossRef ADS Google scholar
[25]
M. Moos, R. Unanyan, and M. Fleischhauer, Creation and detection of photonic molecules in Rydberg gases, Phys. Rev. A 96(2), 023853 (2017)
CrossRef ADS Google scholar
[26]
M. D. Lukin, M. Fleischhauer, R. Côté, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, Dipole blockade and quantum information processing in mesoscopic atomic ensembles, Phys. Rev. Lett. 87(3), 037901 (2001)
CrossRef ADS Google scholar
[27]
D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Côté, E. E. Eyler, and P. L. Gould, Local blockade of Rydberg excitation in an ultracold gas, Phys. Rev. Lett. 93(6), 063001 (2004)
CrossRef ADS Google scholar
[28]
K. Singer, M. Reetz-Lamour, T. Amthor, L. G. Marcassa, and M. Weidemuller, Suppression of excitation and spectral broadening induced by interactions in a cold gas of Rydberg atoms, Phys. Rev. Lett. 93(16), 163001 (2004)
CrossRef ADS Google scholar
[29]
X. F. Shi, Rydberg quantum computation with nuclear spins in two-electron neutral atoms, Front. Phys. 16(5), 52501 (2021)
CrossRef ADS Google scholar
[30]
D. Petrosyan, J. Otterbach, and M. Fleischhauer, Electromagnetically induced transparency with Rydberg atoms, Phys. Rev. Lett. 107(21), 213601 (2011)
CrossRef ADS Google scholar
[31]
Y. M. Liu, D. Yan, X. D. Tian, C. L. Cui, and J. H. Wu, Electromagnetically induced transparency with cold Rydberg atoms: Superatom model beyond the weak-probe approximation, Phys. Rev. A 89(3), 033839 (2014)
CrossRef ADS Google scholar
[32]
X. D. Tian, Y. M. Liu, Q. Q. Bao, J. H. Wu, M. Artoni, and G. C. La Rocca, Nonclassical storage and retrieval of a multi-photon pulse in cold Rydberg atoms, Phys. Rev. A 97(4), 043811 (2018)
CrossRef ADS Google scholar
[33]
D. Maxwell, D. J. Szwer, D. Paredes-Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, Storage and control of optical photons using Rydberg polaritons, Phys. Rev. Lett. 110(10), 103001 (2013)
CrossRef ADS Google scholar
[34]
C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de-Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, Sub-Poissonian statistics of Rydberg interacting dark-state polaritons, Phys. Rev. Lett. 110(20), 203601 (2013)
CrossRef ADS Google scholar
[35]
E. Distante, A. Padron-Brito, M. Cristiani, D. Paredes-Barato, and H. de Riedmatten, Storage enhanced nonlinearities in a cold atomic Rydberg ensemble, Phys. Rev. Lett. 117(11), 113001 (2016)
CrossRef ADS Google scholar
[36]
F. Ripka, Y. H. Chen, R. Low, and T. Pfau, Rydberg polaritons in a thermal vapor, Phys. Rev. A 93(5), 053429 (2016)
CrossRef ADS Google scholar
[37]
L. Li and A. Kuzmich, Quantum memory with strong and contollable Rydberg-level interactions, Nat. Commun. 7(1), 13618 (2016)
CrossRef ADS Google scholar
[38]
E. Distante, P. Farrera, A. Padron-Brito, D. Paredes-Barato, G. Heinze, and H. de Riedmatten, Storing single photons emitted by a quantum memory on a highly excited Rydberg state, Nat. Commun. 8(1), 14072 (2017)
CrossRef ADS Google scholar
[39]
C. S. Hofmann, G. Günter, H. Schempp, N. L. M. Müller, A. Faber, H. Busche, M. Robert-de-Saint-Vincent, S. Whitlock, and M. Weidemüller, An experimental approach for investigating many-body phenomena in Rydberg interacting quantum systems, Front. Phys. 9(5), 571 (2014)
CrossRef ADS Google scholar
[40]
A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl, and M. D. Lukin, Photon–photon interactions via Rydberg blockade, Phys. Rev. Lett. 107(13), 133602 (2011)
CrossRef ADS Google scholar
[41]
B. He, A. V. Sharypov, J. T. Sheng, C. Simon, and M. Xiao, Two-photon dynamics in coherent Rydberg atomic ensemble, Phys. Rev. Lett.112(13), 133606 (2014)
CrossRef ADS Google scholar
[42]
T. Caneva, M. T. Manzoni, T. Shi, J. S. Douglas, J. I. Cirac, and D. E. Chang, Quantum dynamics of propagating photons with strong interactions: A generalized inputoutput formalism, New J. Phys. 17(11), 113001 (2015)
CrossRef ADS Google scholar
[43]
M. J.Gullans, J. D. Thompson, Y. Wang, Q. Y. Liang, V. Vuletic, M. D. Lukin, and A. V. Gorshkov, Effective field theory for Rydberg polaritons, Phys. Rev. Lett. 117(11), 113601 (2016)
CrossRef ADS Google scholar
[44]
W. B. Li, D. Viscor, S. Hofferberth, and I. Lesanovsky, Electromagnetically induced transparency in an entangled medium, Phys. Rev. Lett. 112(24), 243601 (2014)
CrossRef ADS Google scholar
[45]
R. Loudon, The Quantum Theory of Light, 3rd Ed., Oxford Science Publications, 2000
[46]
Here and in what follows we choose Oas the expectation value of operator O^ by removing its hat.
[47]
L. Yang, B. He, J. H. Wu, Z. Y. Zhang, and M. Xiao, Interacting photon pulses in a Rydberg medium, Optica 3(10), 1095 (2016)
CrossRef ADS Google scholar
[48]
This quantity is usually called blockade radius and will reduce to Rb=(C6γe/|Ωc|2)1/6 in the case of δ=0 while to Rb=(C6δ/|Ωc|2)1/6 inthe case of δ≫γe.
[49]
This conclusion holds also for the attractive vdW interactions denoted by a negative C6 and thus Δ¯→−∞ (instead of Δ¯→∞) for the ΣRR fraction of SAs.
[50]
In fact, we can make nbsufficiently large to yield a remarkably enhanced collective coupling (nbΩs).
[51]
O. Firstenberg, T. Peyronel, Q. Y. Liang, A. V. Gorshkov, M. D. Lukin, and V. Vuletić, Attractive photons in a quantum nonlinear medium, Nature 502(7469), 71 (2013)
CrossRef ADS Google scholar
[52]
This equality is equivalent after proper arrangement to Eq. (10) in [M. Garttner, S. Whitlock, D. W. Schonleber, and J. Evers, Phys. Rev. A 89(06), 063407 (2014)].
[53]
C. Shou and G. X. Huang, Slow-light soliton beam splitters, Phys. Rev. A 99(4), 043821 (2019)
CrossRef ADS Google scholar
[54]
J. Gea-Banacloche and N. Nemet, Conditional phase gate using an optomechanical resonator, Phys. Rev. A 89(5), 052327 (2014)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
PDF(6683 KB)

Accesses

Citations

Detail

Sections
Recommended

/