Single-photon-level light storage with distributed Rydberg excitations in cold atoms
Hanxiao Zhang, Jinhui Wu, M. Artoni, G. C. La Rocca
Single-photon-level light storage with distributed Rydberg excitations in cold atoms
We present an improved version of the superatom (SA) model to examine the slow-light dynamics of a few-photons signal field in cold Rydberg atoms with van der Waals (vdW) interactions. A main feature of this version is that it promises consistent estimations on total Rydberg excitations based on dynamic equations of SAs or atoms. We consider two specific cases in which the incident signal field contains more photons with a smaller detuning or less photons with a larger detuning so as to realize the single-photon-level light storage. It is found that vdW interactions play a significant role even for the slow-light dynamics of a single-photon signal field as distributed Rydberg excitations are inevitable in the picture of dark-state polariton. Moreover, the stored (retrieved) signal field exhibits a clearly asymmetric (more symmetric) profile because its leading and trailing edges undergo different (identical) traveling journeys, and higher storage/retrieval efficiencies with well preserved profiles apply only to weaker and well detuned signal fields. These findings are crucial to understand the nontrivial interplay of single-photon-level light storage and distributed Rydberg excitations.
few-photons light storage / distributed Rydberg excitation / cold Rydberg atom / improved superatom model
[1] |
A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67(6), 661 (1991)
CrossRef
ADS
Google scholar
|
[2] |
H. P. Zeng, G. Wu, E. Wu, H. F.Pan, C. Y. Zhou, F. Treussart, and J. F. Roch, Generation and detection of infrared single photons and their applications, Front. Phys. China 1(1), 1 (2006)
CrossRef
ADS
Google scholar
|
[3] |
L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Long distance quantum communication with atomic ensembles and linear optics, Nature 414(6862), 413 (2001)
CrossRef
ADS
Google scholar
|
[4] |
E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature 409(6816), 46 (2001)
CrossRef
ADS
Google scholar
|
[5] |
K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, Photon blockade in an optical cavity with one trapped atom, Nature 436(7047), 87 (2005)
CrossRef
ADS
Google scholar
|
[6] |
Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, Strong atom-field coupling for Bose–Einstein condensates in an optical cavity on a chip, Nature 450(7167), 272 (2007)
CrossRef
ADS
Google scholar
|
[7] |
A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, Two-photon gateway in one-atom cavity quantum electrodynamics, Phys. Rev. Lett. 101(20), 203602 (2008)
CrossRef
ADS
Google scholar
|
[8] |
M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Electromagnetically induced transparency: Optics in coherent media, Rev. Mod. Phys. 77(2), 633 (2005)
CrossRef
ADS
Google scholar
|
[9] |
C. Möhl, N. L. R. Spong, Y. C. Jiao, C. So, T. Ilieva, M. Weidemüller, and C. S. Adams, Photon correlation transients in a weakly blockaded Rydberg ensemble, J. Phys. At. Mol. Opt. Phys. 53(8), 084005 (2020)
CrossRef
ADS
Google scholar
|
[10] |
Z. Y.Shen, H. L. Yang, X. Liu, X. J. Huang, T. Y. Xiang, J. Wu, and W. Chen, Electromagnetically induced transparency in novel dual-band metamaterial excited by toroidal dipolar response, Front. Phys. 15(1), 12601 (2020)
CrossRef
ADS
Google scholar
|
[11] |
C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, Polarization qubit phase gate in driven atomic media, Phys. Rev. Lett. 90(19), 197902 (2003)
CrossRef
ADS
Google scholar
|
[12] |
Z. B. Wang, K. P. Marzlin, and B. C. Sanders, Large crossphase modulation between slow copropagating weak pulses in 87Rb, Phys. Rev. Lett. 97(6), 063901 (2006)
CrossRef
ADS
Google scholar
|
[13] |
B. W. Shiau, M. C. Wu, C. C. Lin, and Y. C. Chen, Lowlight-level cross-phase modulation with double slow light pulses, Phys. Rev. Lett. 106(19), 193006 (2011)
CrossRef
ADS
Google scholar
|
[14] |
M. Saffman, T. G. Walker, and K. Molmer, Quantum information with Rydberg atoms, Rev. Mod. Phys. 82(3), 2313 (2010)
CrossRef
ADS
Google scholar
|
[15] |
J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V.Sandoghdar, A single-molecule optical transistor, Nature 460(7251), 76 (2009)
CrossRef
ADS
Google scholar
|
[16] |
J. D. Pritchard, K. J. Weatherill, and C. S.Adams, Nonlinear optics using cold Rydberg atoms, Annu. Rev. Cold At. Mol. 1, 301 (2013)
CrossRef
ADS
Google scholar
|
[17] |
O. Firstenberg, C. S. Adams, and S. Hofferberth, Nonlinear quantum optics mediated by Rydberg interactions, J. Phys. At. Mol. Opt. Phys.49(15), 152003 (2016)
CrossRef
ADS
Google scholar
|
[18] |
Y. O. Dudin and A. Kuzmich, Strongly interacting Rydberg excitations of a cold atomic gas, Science 336(6083), 887 (2012)
CrossRef
ADS
Google scholar
|
[19] |
H. Gorniaczyk, C. Tresp, J.Schmidt, H. Fedder, and S. Hofferberth, Single-photon transistor mediated by interstate Rydberg interactions, Phys. Rev. Lett.113(5), 053601 (2014)
CrossRef
ADS
Google scholar
|
[20] |
D. Tiarks, S. Schmidt, G. Rempe, and S. Durr, Optical πphase shift created with a single-photon pulse, Sci. Adv.2(4), e1600036 (2016)
CrossRef
ADS
Google scholar
|
[21] |
A. Padrón-Brito, R. Tricarico, P. Farrera, E. Distante, K. Theophilo, D. Chang, and H. de Riedmatten, Transient dynamics of the quantum light retrieved from Rydberg polaritons, New J. Phys. 23(6), 063009 (2021)
CrossRef
ADS
Google scholar
|
[22] |
J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, Cooperative atom–light interaction in a blockade Rydberg ensemble, Phys. Rev. Lett. 105(19), 193603 (2010)
CrossRef
ADS
Google scholar
|
[23] |
P. Bienias, S. Choi, O. Firstenberg, M. F. Maghrebi, M. Gullans, M. D. Lukin, A. V. Gorshkov, and H. P. Buchler, Scattering resonances and bound states for strongly interacting Rydberg polaritons, Phys. Rev. A 90(5), 053804 (2014)
CrossRef
ADS
Google scholar
|
[24] |
M. F. Maghrebi, M. J. Gullans, P. Bienias, S. Choi, I. Martin, O. Firstenberg, M. D. Lukin, H. P. Buchler, and A. V. Gorshkov, Coulomb bound states of strongly interacing photons, Phys. Rev. Lett. 115(12), 123601 (2015)
CrossRef
ADS
Google scholar
|
[25] |
M. Moos, R. Unanyan, and M. Fleischhauer, Creation and detection of photonic molecules in Rydberg gases, Phys. Rev. A 96(2), 023853 (2017)
CrossRef
ADS
Google scholar
|
[26] |
M. D. Lukin, M. Fleischhauer, R. Côté, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, Dipole blockade and quantum information processing in mesoscopic atomic ensembles, Phys. Rev. Lett. 87(3), 037901 (2001)
CrossRef
ADS
Google scholar
|
[27] |
D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Côté, E. E. Eyler, and P. L. Gould, Local blockade of Rydberg excitation in an ultracold gas, Phys. Rev. Lett. 93(6), 063001 (2004)
CrossRef
ADS
Google scholar
|
[28] |
K. Singer, M. Reetz-Lamour, T. Amthor, L. G. Marcassa, and M. Weidemuller, Suppression of excitation and spectral broadening induced by interactions in a cold gas of Rydberg atoms, Phys. Rev. Lett. 93(16), 163001 (2004)
CrossRef
ADS
Google scholar
|
[29] |
X. F. Shi, Rydberg quantum computation with nuclear spins in two-electron neutral atoms, Front. Phys. 16(5), 52501 (2021)
CrossRef
ADS
Google scholar
|
[30] |
D. Petrosyan, J. Otterbach, and M. Fleischhauer, Electromagnetically induced transparency with Rydberg atoms, Phys. Rev. Lett. 107(21), 213601 (2011)
CrossRef
ADS
Google scholar
|
[31] |
Y. M. Liu, D. Yan, X. D. Tian, C. L. Cui, and J. H. Wu, Electromagnetically induced transparency with cold Rydberg atoms: Superatom model beyond the weak-probe approximation, Phys. Rev. A 89(3), 033839 (2014)
CrossRef
ADS
Google scholar
|
[32] |
X. D. Tian, Y. M. Liu, Q. Q. Bao, J. H. Wu, M. Artoni, and G. C. La Rocca, Nonclassical storage and retrieval of a multi-photon pulse in cold Rydberg atoms, Phys. Rev. A 97(4), 043811 (2018)
CrossRef
ADS
Google scholar
|
[33] |
D. Maxwell, D. J. Szwer, D. Paredes-Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, Storage and control of optical photons using Rydberg polaritons, Phys. Rev. Lett. 110(10), 103001 (2013)
CrossRef
ADS
Google scholar
|
[34] |
C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de-Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, Sub-Poissonian statistics of Rydberg interacting dark-state polaritons, Phys. Rev. Lett. 110(20), 203601 (2013)
CrossRef
ADS
Google scholar
|
[35] |
E. Distante, A. Padron-Brito, M. Cristiani, D. Paredes-Barato, and H. de Riedmatten, Storage enhanced nonlinearities in a cold atomic Rydberg ensemble, Phys. Rev. Lett. 117(11), 113001 (2016)
CrossRef
ADS
Google scholar
|
[36] |
F. Ripka, Y. H. Chen, R. Low, and T. Pfau, Rydberg polaritons in a thermal vapor, Phys. Rev. A 93(5), 053429 (2016)
CrossRef
ADS
Google scholar
|
[37] |
L. Li and A. Kuzmich, Quantum memory with strong and contollable Rydberg-level interactions, Nat. Commun. 7(1), 13618 (2016)
CrossRef
ADS
Google scholar
|
[38] |
E. Distante, P. Farrera, A. Padron-Brito, D. Paredes-Barato, G. Heinze, and H. de Riedmatten, Storing single photons emitted by a quantum memory on a highly excited Rydberg state, Nat. Commun. 8(1), 14072 (2017)
CrossRef
ADS
Google scholar
|
[39] |
C. S. Hofmann, G. Günter, H. Schempp, N. L. M. Müller, A. Faber, H. Busche, M. Robert-de-Saint-Vincent, S. Whitlock, and M. Weidemüller, An experimental approach for investigating many-body phenomena in Rydberg interacting quantum systems, Front. Phys. 9(5), 571 (2014)
CrossRef
ADS
Google scholar
|
[40] |
A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl, and M. D. Lukin, Photon–photon interactions via Rydberg blockade, Phys. Rev. Lett. 107(13), 133602 (2011)
CrossRef
ADS
Google scholar
|
[41] |
B. He, A. V. Sharypov, J. T. Sheng, C. Simon, and M. Xiao, Two-photon dynamics in coherent Rydberg atomic ensemble, Phys. Rev. Lett.112(13), 133606 (2014)
CrossRef
ADS
Google scholar
|
[42] |
T. Caneva, M. T. Manzoni, T. Shi, J. S. Douglas, J. I. Cirac, and D. E. Chang, Quantum dynamics of propagating photons with strong interactions: A generalized inputoutput formalism, New J. Phys. 17(11), 113001 (2015)
CrossRef
ADS
Google scholar
|
[43] |
M. J.Gullans, J. D. Thompson, Y. Wang, Q. Y. Liang, V. Vuletic, M. D. Lukin, and A. V. Gorshkov, Effective field theory for Rydberg polaritons, Phys. Rev. Lett. 117(11), 113601 (2016)
CrossRef
ADS
Google scholar
|
[44] |
W. B. Li, D. Viscor, S. Hofferberth, and I. Lesanovsky, Electromagnetically induced transparency in an entangled medium, Phys. Rev. Lett. 112(24), 243601 (2014)
CrossRef
ADS
Google scholar
|
[45] |
R. Loudon, The Quantum Theory of Light, 3rd Ed., Oxford Science Publications, 2000
|
[46] |
Here and in what follows we choose Oas the expectation value of operator O^ by removing its hat.
|
[47] |
L. Yang, B. He, J. H. Wu, Z. Y. Zhang, and M. Xiao, Interacting photon pulses in a Rydberg medium, Optica 3(10), 1095 (2016)
CrossRef
ADS
Google scholar
|
[48] |
This quantity is usually called blockade radius and will reduce to Rb=(C6γe/|Ωc|2)1/6 in the case of δ=0 while to Rb=(C6δ/|Ωc|2)1/6 inthe case of δ≫γe.
|
[49] |
This conclusion holds also for the attractive vdW interactions denoted by a negative C6 and thus Δ¯→−∞ (instead of Δ¯→∞) for the ΣRR fraction of SAs.
|
[50] |
In fact, we can make nbsufficiently large to yield a remarkably enhanced collective coupling (nbΩs).
|
[51] |
O. Firstenberg, T. Peyronel, Q. Y. Liang, A. V. Gorshkov, M. D. Lukin, and V. Vuletić, Attractive photons in a quantum nonlinear medium, Nature 502(7469), 71 (2013)
CrossRef
ADS
Google scholar
|
[52] |
This equality is equivalent after proper arrangement to Eq. (10) in [M. Garttner, S. Whitlock, D. W. Schonleber, and J. Evers, Phys. Rev. A 89(06), 063407 (2014)].
|
[53] |
C. Shou and G. X. Huang, Slow-light soliton beam splitters, Phys. Rev. A 99(4), 043821 (2019)
CrossRef
ADS
Google scholar
|
[54] |
J. Gea-Banacloche and N. Nemet, Conditional phase gate using an optomechanical resonator, Phys. Rev. A 89(5), 052327 (2014)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |