Single-photon-level light storage with distributed Rydberg excitations in cold atoms

Hanxiao Zhang , Jinhui Wu , M. Artoni , G. C. La Rocca

Front. Phys. ›› 2022, Vol. 17 ›› Issue (2) : 22502

PDF (6683KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (2) : 22502 DOI: 10.1007/s11467-021-1105-6
RESEARCH ARTICLE

Single-photon-level light storage with distributed Rydberg excitations in cold atoms

Author information +
History +
PDF (6683KB)

Abstract

We present an improved version of the superatom (SA) model to examine the slow-light dynamics of a few-photons signal field in cold Rydberg atoms with van der Waals (vdW) interactions. A main feature of this version is that it promises consistent estimations on total Rydberg excitations based on dynamic equations of SAs or atoms. We consider two specific cases in which the incident signal field contains more photons with a smaller detuning or less photons with a larger detuning so as to realize the single-photon-level light storage. It is found that vdW interactions play a significant role even for the slow-light dynamics of a single-photon signal field as distributed Rydberg excitations are inevitable in the picture of dark-state polariton. Moreover, the stored (retrieved) signal field exhibits a clearly asymmetric (more symmetric) profile because its leading and trailing edges undergo different (identical) traveling journeys, and higher storage/retrieval efficiencies with well preserved profiles apply only to weaker and well detuned signal fields. These findings are crucial to understand the nontrivial interplay of single-photon-level light storage and distributed Rydberg excitations.

Graphical abstract

Keywords

few-photons light storage / distributed Rydberg excitation / cold Rydberg atom / improved superatom model

Cite this article

Download citation ▾
Hanxiao Zhang, Jinhui Wu, M. Artoni, G. C. La Rocca. Single-photon-level light storage with distributed Rydberg excitations in cold atoms. Front. Phys., 2022, 17(2): 22502 DOI:10.1007/s11467-021-1105-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67(6), 661 (1991)

[2]

H. P. Zeng, G. Wu, E. Wu, H. F.Pan, C. Y. Zhou, F. Treussart, and J. F. Roch, Generation and detection of infrared single photons and their applications, Front. Phys. China 1(1), 1 (2006)

[3]

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Long distance quantum communication with atomic ensembles and linear optics, Nature 414(6862), 413 (2001)

[4]

E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature 409(6816), 46 (2001)

[5]

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, Photon blockade in an optical cavity with one trapped atom, Nature 436(7047), 87 (2005)

[6]

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, Strong atom-field coupling for Bose–Einstein condensates in an optical cavity on a chip, Nature 450(7167), 272 (2007)

[7]

A. Kubanek, A. Ourjoumtsev, I. Schuster, M. Koch, P. W. H. Pinkse, K. Murr, and G. Rempe, Two-photon gateway in one-atom cavity quantum electrodynamics, Phys. Rev. Lett. 101(20), 203602 (2008)

[8]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Electromagnetically induced transparency: Optics in coherent media, Rev. Mod. Phys. 77(2), 633 (2005)

[9]

C. Möhl, N. L. R. Spong, Y. C. Jiao, C. So, T. Ilieva, M. Weidemüller, and C. S. Adams, Photon correlation transients in a weakly blockaded Rydberg ensemble, J. Phys. At. Mol. Opt. Phys. 53(8), 084005 (2020)

[10]

Z. Y.Shen, H. L. Yang, X. Liu, X. J. Huang, T. Y. Xiang, J. Wu, and W. Chen, Electromagnetically induced transparency in novel dual-band metamaterial excited by toroidal dipolar response, Front. Phys. 15(1), 12601 (2020)

[11]

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, Polarization qubit phase gate in driven atomic media, Phys. Rev. Lett. 90(19), 197902 (2003)

[12]

Z. B. Wang, K. P. Marzlin, and B. C. Sanders, Large crossphase modulation between slow copropagating weak pulses in 87Rb, Phys. Rev. Lett. 97(6), 063901 (2006)

[13]

B. W. Shiau, M. C. Wu, C. C. Lin, and Y. C. Chen, Lowlight-level cross-phase modulation with double slow light pulses, Phys. Rev. Lett. 106(19), 193006 (2011)

[14]

M. Saffman, T. G. Walker, and K. Molmer, Quantum information with Rydberg atoms, Rev. Mod. Phys. 82(3), 2313 (2010)

[15]

J. Hwang, M. Pototschnig, R. Lettow, G. Zumofen, A. Renn, S. Götzinger, and V.Sandoghdar, A single-molecule optical transistor, Nature 460(7251), 76 (2009)

[16]

J. D. Pritchard, K. J. Weatherill, and C. S.Adams, Nonlinear optics using cold Rydberg atoms, Annu. Rev. Cold At. Mol. 1, 301 (2013)

[17]

O. Firstenberg, C. S. Adams, and S. Hofferberth, Nonlinear quantum optics mediated by Rydberg interactions, J. Phys. At. Mol. Opt. Phys.49(15), 152003 (2016)

[18]

Y. O. Dudin and A. Kuzmich, Strongly interacting Rydberg excitations of a cold atomic gas, Science 336(6083), 887 (2012)

[19]

H. Gorniaczyk, C. Tresp, J.Schmidt, H. Fedder, and S. Hofferberth, Single-photon transistor mediated by interstate Rydberg interactions, Phys. Rev. Lett.113(5), 053601 (2014)

[20]

D. Tiarks, S. Schmidt, G. Rempe, and S. Durr, Optical πphase shift created with a single-photon pulse, Sci. Adv.2(4), e1600036 (2016)

[21]

A. Padrón-Brito, R. Tricarico, P. Farrera, E. Distante, K. Theophilo, D. Chang, and H. de Riedmatten, Transient dynamics of the quantum light retrieved from Rydberg polaritons, New J. Phys. 23(6), 063009 (2021)

[22]

J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, Cooperative atom–light interaction in a blockade Rydberg ensemble, Phys. Rev. Lett. 105(19), 193603 (2010)

[23]

P. Bienias, S. Choi, O. Firstenberg, M. F. Maghrebi, M. Gullans, M. D. Lukin, A. V. Gorshkov, and H. P. Buchler, Scattering resonances and bound states for strongly interacting Rydberg polaritons, Phys. Rev. A 90(5), 053804 (2014)

[24]

M. F. Maghrebi, M. J. Gullans, P. Bienias, S. Choi, I. Martin, O. Firstenberg, M. D. Lukin, H. P. Buchler, and A. V. Gorshkov, Coulomb bound states of strongly interacing photons, Phys. Rev. Lett. 115(12), 123601 (2015)

[25]

M. Moos, R. Unanyan, and M. Fleischhauer, Creation and detection of photonic molecules in Rydberg gases, Phys. Rev. A 96(2), 023853 (2017)

[26]

M. D. Lukin, M. Fleischhauer, R. Côté, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, Dipole blockade and quantum information processing in mesoscopic atomic ensembles, Phys. Rev. Lett. 87(3), 037901 (2001)

[27]

D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Côté, E. E. Eyler, and P. L. Gould, Local blockade of Rydberg excitation in an ultracold gas, Phys. Rev. Lett. 93(6), 063001 (2004)

[28]

K. Singer, M. Reetz-Lamour, T. Amthor, L. G. Marcassa, and M. Weidemuller, Suppression of excitation and spectral broadening induced by interactions in a cold gas of Rydberg atoms, Phys. Rev. Lett. 93(16), 163001 (2004)

[29]

X. F. Shi, Rydberg quantum computation with nuclear spins in two-electron neutral atoms, Front. Phys. 16(5), 52501 (2021)

[30]

D. Petrosyan, J. Otterbach, and M. Fleischhauer, Electromagnetically induced transparency with Rydberg atoms, Phys. Rev. Lett. 107(21), 213601 (2011)

[31]

Y. M. Liu, D. Yan, X. D. Tian, C. L. Cui, and J. H. Wu, Electromagnetically induced transparency with cold Rydberg atoms: Superatom model beyond the weak-probe approximation, Phys. Rev. A 89(3), 033839 (2014)

[32]

X. D. Tian, Y. M. Liu, Q. Q. Bao, J. H. Wu, M. Artoni, and G. C. La Rocca, Nonclassical storage and retrieval of a multi-photon pulse in cold Rydberg atoms, Phys. Rev. A 97(4), 043811 (2018)

[33]

D. Maxwell, D. J. Szwer, D. Paredes-Barato, H. Busche, J. D. Pritchard, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, Storage and control of optical photons using Rydberg polaritons, Phys. Rev. Lett. 110(10), 103001 (2013)

[34]

C. S. Hofmann, G. Günter, H. Schempp, M. Robert-de-Saint-Vincent, M. Gärttner, J. Evers, S. Whitlock, and M. Weidemüller, Sub-Poissonian statistics of Rydberg interacting dark-state polaritons, Phys. Rev. Lett. 110(20), 203601 (2013)

[35]

E. Distante, A. Padron-Brito, M. Cristiani, D. Paredes-Barato, and H. de Riedmatten, Storage enhanced nonlinearities in a cold atomic Rydberg ensemble, Phys. Rev. Lett. 117(11), 113001 (2016)

[36]

F. Ripka, Y. H. Chen, R. Low, and T. Pfau, Rydberg polaritons in a thermal vapor, Phys. Rev. A 93(5), 053429 (2016)

[37]

L. Li and A. Kuzmich, Quantum memory with strong and contollable Rydberg-level interactions, Nat. Commun. 7(1), 13618 (2016)

[38]

E. Distante, P. Farrera, A. Padron-Brito, D. Paredes-Barato, G. Heinze, and H. de Riedmatten, Storing single photons emitted by a quantum memory on a highly excited Rydberg state, Nat. Commun. 8(1), 14072 (2017)

[39]

C. S. Hofmann, G. Günter, H. Schempp, N. L. M. Müller, A. Faber, H. Busche, M. Robert-de-Saint-Vincent, S. Whitlock, and M. Weidemüller, An experimental approach for investigating many-body phenomena in Rydberg interacting quantum systems, Front. Phys. 9(5), 571 (2014)

[40]

A. V. Gorshkov, J. Otterbach, M. Fleischhauer, T. Pohl, and M. D. Lukin, Photon–photon interactions via Rydberg blockade, Phys. Rev. Lett. 107(13), 133602 (2011)

[41]

B. He, A. V. Sharypov, J. T. Sheng, C. Simon, and M. Xiao, Two-photon dynamics in coherent Rydberg atomic ensemble, Phys. Rev. Lett.112(13), 133606 (2014)

[42]

T. Caneva, M. T. Manzoni, T. Shi, J. S. Douglas, J. I. Cirac, and D. E. Chang, Quantum dynamics of propagating photons with strong interactions: A generalized inputoutput formalism, New J. Phys. 17(11), 113001 (2015)

[43]

M. J.Gullans, J. D. Thompson, Y. Wang, Q. Y. Liang, V. Vuletic, M. D. Lukin, and A. V. Gorshkov, Effective field theory for Rydberg polaritons, Phys. Rev. Lett. 117(11), 113601 (2016)

[44]

W. B. Li, D. Viscor, S. Hofferberth, and I. Lesanovsky, Electromagnetically induced transparency in an entangled medium, Phys. Rev. Lett. 112(24), 243601 (2014)

[45]

R. Loudon, The Quantum Theory of Light, 3rd Ed., Oxford Science Publications, 2000

[46]

Here and in what follows we choose Oas the expectation value of operator O^ by removing its hat.

[47]

L. Yang, B. He, J. H. Wu, Z. Y. Zhang, and M. Xiao, Interacting photon pulses in a Rydberg medium, Optica 3(10), 1095 (2016)

[48]

This quantity is usually called blockade radius and will reduce to Rb=(C6γe/|Ωc|2)1/6 in the case of δ=0 while to Rb=(C6δ/|Ωc|2)1/6 inthe case of δγe.

[49]

This conclusion holds also for the attractive vdW interactions denoted by a negative C6 and thus Δ¯→−∞ (instead of Δ¯→∞) for the ΣRR fraction of SAs.

[50]

In fact, we can make nbsufficiently large to yield a remarkably enhanced collective coupling (nbΩs).

[51]

O. Firstenberg, T. Peyronel, Q. Y. Liang, A. V. Gorshkov, M. D. Lukin, and V. Vuletić, Attractive photons in a quantum nonlinear medium, Nature 502(7469), 71 (2013)

[52]

This equality is equivalent after proper arrangement to Eq. (10) in [M. Garttner, S. Whitlock, D. W. Schonleber, and J. Evers, Phys. Rev. A 89(06), 063407 (2014)].

[53]

C. Shou and G. X. Huang, Slow-light soliton beam splitters, Phys. Rev. A 99(4), 043821 (2019)

[54]

J. Gea-Banacloche and N. Nemet, Conditional phase gate using an optomechanical resonator, Phys. Rev. A 89(5), 052327 (2014)

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (6683KB)

887

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/