Unselective ground-state blockade of Rydberg atoms for implementing quantum gates

Jin-Lei Wu, Yan Wang, Jin-Xuan Han, Shi-Lei Su, Yan Xia, Yongyuan Jiang, Jie Song

PDF(1733 KB)
PDF(1733 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (2) : 22501. DOI: 10.1007/s11467-021-1104-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Unselective ground-state blockade of Rydberg atoms for implementing quantum gates

Author information +
History +

Abstract

A dynamics regime of Rydberg atoms, unselective ground-state blockade (UGSB), is proposed in the context of Rydberg antiblockade (RAB), where the evolution of two atoms is suppressed when they populate in an identical ground state. UGSB is used to implement a SWAP gate in one step without individual addressing of atoms. Aiming at circumventing common issues in RAB-based gates including atomic decay, Doppler dephasing, and fluctuations in the interatomic coupling strength, we modify the RAB condition to achieve a dynamical SWAP gate whose robustness is much greater than that of the nonadiabatic holonomic one in the conventional RAB regime. In addition, on the basis of the proposed SWAP gates, we further investigate the implementation of a three-atom Fredkin gate by combining Rydberg blockade and RAB. The present work may facilitate to implement the RAB-based gates of strongly coupled atoms in experiment.

Graphical abstract

Keywords

Rydberg atoms / unselective ground-state blockade / SWAP gate / Fredkin gate

Cite this article

Download citation ▾
Jin-Lei Wu, Yan Wang, Jin-Xuan Han, Shi-Lei Su, Yan Xia, Yongyuan Jiang, Jie Song. Unselective ground-state blockade of Rydberg atoms for implementing quantum gates. Front. Phys., 2022, 17(2): 22501 https://doi.org/10.1007/s11467-021-1104-7

References

[1]
D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, Fast quantum gates for neutral atoms, Phys. Rev. Lett. 85(10), 2208 (2000)
CrossRef ADS Google scholar
[2]
T. F. Gallagher, Rydberg Atoms, Cambridge University Press, 2005
CrossRef ADS Google scholar
[3]
M. Saffman, T. G. Walker, and K. Mølmer, Quantum information with Rydberg atoms, Rev. Mod. Phys. 82(3), 2313 (2010)
CrossRef ADS Google scholar
[4]
M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, Dipole blockade and quantum information processing in mesoscopic atomic ensembles, Phys. Rev. Lett. 87(3), 037901 (2001)
CrossRef ADS Google scholar
[5]
E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, Observation of Rydberg blockade between two-atoms, Nat. Phys. 5(2), 110 (2009)
CrossRef ADS Google scholar
[6]
A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, Observation of collective excitation of two individual atoms in the Rydberg blockade regime, Nat. Phys. 5(2), 115 (2009)
CrossRef ADS Google scholar
[7]
D. Møller, L. B. Madsen, and K. Mølmer, Quantum gates and multiparticle entanglement by Rydberg excitation blockade and adiabatic passage, Phys. Rev. Lett. 100(17), 170504 (2008)
CrossRef ADS Google scholar
[8]
H. Z. Wu, Z. B. Yang, and S. B. Zheng, Implementation of a multiqubit quantum phase gate in a neutral atomic ensemble via the asymmetric Rydberg blockade, Phys. Rev. A 82(3), 034307 (2010)
CrossRef ADS Google scholar
[9]
H. Wu, X. R. Huang, C. S. Hu, Z. B. Yang, and S. B. Zheng, Rydberg-interaction gates via adiabatic passage and phase control of driving fields, Phys. Rev. A96(2), 022321 (2017)
CrossRef ADS Google scholar
[10]
P. Z. Zhao, X. D. Cui, G. F. Xu, E. Sjöqvist, and D. M. Tong, Rydberg-atom-based scheme of nonadiabatic geometric quantum computation, Phys. Rev. A96(5), 052316 (2017)
CrossRef ADS Google scholar
[11]
Y. H. Kang, Y. H. Chen, Z. C. Shi, B. H. Huang, J. Song, and Y. Xia, Nonadiabatic holonomic quantum computation using Rydberg blockade, Phys. Rev. A97(4), 042336 (2018)
CrossRef ADS Google scholar
[12]
D. Petrosyan, F. Motzoi, M. Saffman, and K. Mølmer, High-fidelity Rydberg quantum gate via a two-atom dark state, Phys. Rev. A96(4), 042306 (2017)
CrossRef ADS Google scholar
[13]
I. I. Beterov, G. N. Hamzina, E. A. Yakshina, D. B. Tretyakov, V. M. Entin, and I. I. Ryabtsev, Adiabatic passage of radio-frequency-assisted Förster resonances in Rydberg atoms for two-qubit gates and the generation of bell states, Phys. Rev. A 97(3), 032701 (2018)
CrossRef ADS Google scholar
[14]
X. F. Shi, Deutsch, Toffoli, and CNOT gates via Rydberg blockade of neutral atoms, Phys. Rev. Appl. 9(5), 051001 (2018)
CrossRef ADS Google scholar
[15]
C. P. Shen, J. L. Wu, S. L. Su, and E. Liang, Construction of robust Rydberg controlled-phase gates, Opt. Lett. 44(8), 2036 (2019)
CrossRef ADS Google scholar
[16]
K. Y. Liao, X. H. Liu, Z. Li, and Y. X. Du, Geometric Rydberg quantum gate with shortcuts to adiabaticity, Opt. Lett. 44(19), 4801 (2019)
CrossRef ADS Google scholar
[17]
B. J. Liu, S. L. Su, and M. H. Yung, Nonadiabatic noncyclic geometric quantum computation in Rydberg atoms, Phys. Rev. Research 2(4), 043130 (2020)
CrossRef ADS Google scholar
[18]
M. Khazali and K. Mølmer, Fast multiqubit gates by adiabatic evolution in interacting excited-state manifolds of Rydberg atoms and superconducting circuits, Phys. Rev. X 10(2), 021054 (2020)
CrossRef ADS Google scholar
[19]
M. Saffman, I. I. Beterov, A. Dalal, E. J. Páez, and B. C. Sanders, Symmetric Rydberg controlled-Z gates with adiabatic pulses, Phys. Rev. A 101(6), 062309 (2020)
CrossRef ADS Google scholar
[20]
A. Mitra, M. J. Martin, G. W. Biedermann, A. M. Marino, P. M. Poggi, and I. H. Deutsch, Robust Mølmer–Sørensen gate for neutral atoms using rapid adiabatic Rydberg dressing, Phys. Rev. A 101(3), 030301 (2020)
CrossRef ADS Google scholar
[21]
C. Y. Guo, L. L. Yan, S. Zhang, S. L. Su, and W. Li, Optimized geometric quantum computation with a mesoscopic ensemble of Rydberg atoms, Phys. Rev. A102(4), 042607 (2020)
CrossRef ADS Google scholar
[22]
X. F. Shi, Transition slow-down by Rydberg interaction of neutral atoms and a fast controlled-NOT quantum gate, Phys. Rev. Appl. 14(5), 054058 (2020)
CrossRef ADS Google scholar
[23]
X. F. Shi, Rydberg quantum computation with nuclear spins in two-electron neutral atoms, Front. Phys. 16(5), 52501 (2021)
CrossRef ADS Google scholar
[24]
C. Ates, T. Pohl, T. Pattard, and J. M. Rost, Antiblockade in Rydberg excitation of an ultracold lattice gas, Phys. Rev. Lett. 98(2), 023002 (2007)
CrossRef ADS Google scholar
[25]
T. Pohl and P. R. Berman, Breaking the dipole blockade: Nearly resonant dipole interactions in few-atom systems, Phys. Rev. Lett. 102(1), 013004 (2009)
CrossRef ADS Google scholar
[26]
J. Qian, Y. Qian, M. Ke, X. L. Feng, C. H. Oh, and Y. Wang, Breakdown of the dipole blockade with a zero area phase-jump pulse, Phys. Rev. A 80(5), 053413 (2009)
CrossRef ADS Google scholar
[27]
T. Amthor, C. Giese, C. S. Hofmann, and M. Weidemüller, Evidence of antiblockade in an ultracold Rydberg gas, Phys. Rev. Lett. 104(1), 013001 (2010)
CrossRef ADS Google scholar
[28]
W. Li, C. Ates, and I. Lesanovsky, Nonadiabatic motional effects and dissipative blockade for Rydberg atoms excited from optical lattices or microtraps, Phys. Rev. Lett. 110(21), 213005 (2013)
CrossRef ADS Google scholar
[29]
S. L. Su, F. Q. Guo, J. L. Wu, Z. Jin, X. Q. Shao, and S. Zhang, Rydberg antiblockade regimes: Dynamics and applications, EPL 131(5), 53001 (2020)
CrossRef ADS Google scholar
[30]
S. L. Su, E. Liang, S. Zhang, J. J. Wen, L. L. Sun, Z. Jin, and A. D. Zhu, One-step implementation of the Rydberg–Rydberg-interaction gate, Phys. Rev. A 93(1), 012306 (2016)
CrossRef ADS Google scholar
[31]
S. L. Su, Y. Gao, E. Liang, and S. Zhang, Fast Rydberg antiblockade regime and its applications in quantum logic gates, Phys. Rev. A 95(2), 022319 (2017)
CrossRef ADS Google scholar
[32]
S. L. Su, Y. Tian, H. Z. Shen, H. Zang, E. Liang, and S. Zhang, Applications of the modified Rydberg antiblockade regime with simultaneous driving, Phys. Rev. A 96(4), 042335 (2017)
CrossRef ADS Google scholar
[33]
S. L. Su, H. Z. Shen, E. Liang, and S. Zhang, One-step construction of the multiple-qubit Rydberg controlled phase gate, Phys. Rev. A 98(3), 032306 (2018)
CrossRef ADS Google scholar
[34]
J. L. Wu, J. Song, and S. L. Su, Resonant-interaction induced Rydberg antiblockade and its applications, Phys. Lett. A 384(1), 126039 (2020)
CrossRef ADS Google scholar
[35]
T. H. Xing, X. Wu, and G. F. Xu, Nonadiabatic holonomic three-qubit controlled gates realized by one-shot implementation, Phys. Rev. A 101(1), 012306 (2020)
CrossRef ADS Google scholar
[36]
F. Q. Guo, J. L. Wu, X. Y. Zhu, Z. Jin, Y. Zeng, S. Zhang, L. L. Yan, M. Feng, and S. L. Su, Complete and nondestructive distinguishment of many-body Rydberg entanglement via robust geometric quantum operations, Phys. Rev. A 102(6), 062410 (2020)
CrossRef ADS Google scholar
[37]
D. D. B. Rao, and K. Mølmer, Dark entangled steady states of interacting Rydberg atoms, Phys. Rev. Lett. 111(3), 033606 (2013)
CrossRef ADS Google scholar
[38]
A. W. Carr, and M. Saffman, Preparation of entangled and antiferromagnetic states by dissipative Rydberg pumping, Phys. Rev. Lett. 111(3), 033607 (2013)
CrossRef ADS Google scholar
[39]
X. Q. Shao, J. B. You, T. Y. Zheng, C. H. Oh, and S. Zhang, Stationary three-dimensional entanglement via dissipative Rydberg pumping, Phys. Rev. A 89(5), 052313 (2014)
CrossRef ADS Google scholar
[40]
S. L. Su, Q. Guo, H. F. Wang, and S. Zhang, Simplified scheme for entanglement preparation with Rydberg pumping via dissipation, Phys. Rev. A 92(2), 022328 (2015)
CrossRef ADS Google scholar
[41]
J. Song, C. Li, Z. J. Zhang, Y. Y. Jiang, and Y. Xia, Implementing stabilizer codes in noisy environments, Phys. Rev. A 96(3), 032336 (2017)
CrossRef ADS Google scholar
[42]
X. Q. Shao, D. X. Li, Y. Q. Ji, J. H. Wu, and X. X. Yi, Ground-state blockade of Rydberg atoms and application in entanglement generation, Phys. Rev. A 96(1), 012328 (2017)
CrossRef ADS Google scholar
[43]
X. Y. Zhu, Z. Jin, E. Liang, S. Zhang, and S. L. Su, Preparation of steady 3D dark state entanglement in dissipative Rydberg atoms via electromagnetic induced transparency, Ann. Phys. (Berlin) 532(6), 2000059 (2020)
CrossRef ADS Google scholar
[44]
T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, Entanglement of two individual neutral atoms using Rydberg blockade, Phys. Rev. Lett. 104(1), 010502 (2010)
CrossRef ADS Google scholar
[45]
L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, Demonstration of a neutral atom controlled-NOT quantum gate, Phys. Rev. Lett. 104(1), 010503 (2010)
CrossRef ADS Google scholar
[46]
X. L. Zhang, L. Isenhower, A. T. Gill, T. G. Walker, and M. Saffman, Deterministic entanglement of two neutral atoms via Rydberg blockade, Phys. Rev. A 82(3), 030306 (2010)
CrossRef ADS Google scholar
[47]
H. Levine, A. Keesling, A. Omran, H. Bernien, S. Schwartz, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, High-fidelity control and entanglement of Rydberg-atom qubits, Phys. Rev. Lett. 121(12), 123603 (2018)
CrossRef ADS Google scholar
[48]
H. Levine, A. Keesling, G. Semeghini, A. Omran, T. T. Wang, S. Ebadi, H. Bernien, M. Greiner, V. Vuletić, H. Pichler, and M. D. Lukin, Parallel implementation of highfidelity multiqubit gates with neutral atoms, Phys. Rev. Lett. 123(17), 170503 (2019)
CrossRef ADS Google scholar
[49]
I. S. Madjarov, J. P. Covey, A. L. Shaw, J. Choi, A. Kale, A. Cooper, H. Pichler, V. Schkolnik, J. R. Williams, and M. Endres, High-fidelity entanglement and detection of alkaline-earth Rydberg atoms, Nat. Phys. 16(8), 857 (2020)
CrossRef ADS Google scholar
[50]
H. Jo, Y. Song, M. Kim, and J. Ahn, Rydberg atom entanglements in the weak coupling regime, Phys. Rev. Lett. 124(3), 033603 (2020)
CrossRef ADS Google scholar
[51]
J. B. Balewski, A. T. Krupp, A. Gaj, S. Hofferberth, R. Löw, and T. Pfau, Rydberg dressing: Understanding of collective many-body effects and implications for experiments, New J. Phys. 16(6), 063012 (2014)
CrossRef ADS Google scholar
[52]
Y. Y. Jau, A. M. Hankin, T. Keating, I. H. Deutsch, and G. W. Biedermann, Entangling atomic spins with a Rydbergdressed spin-flip blockade, Nat. Phys. 12(1), 71 (2016)
CrossRef ADS Google scholar
[53]
D. X. Li and X. Q. Shao, Unconventional Rydberg pumping and applications in quantum information processing, Phys. Rev. A 98(6), 062338 (2018)
CrossRef ADS Google scholar
[54]
X. Q. Shao, D. X. Li, Y. Q. Ji, J. H. Wu, and X. X. Yi, Ground-state blockade of Rydberg atoms and application in entanglement generation, Phys. Rev. A 96(1), 012328 (2017)
CrossRef ADS Google scholar
[55]
Y. J. Zhao, B. Liu, Y. Q. Ji, S. Q. Tang, and X. Q. Shao, Robust generation of entangled state via ground state antiblockade of Rydberg atoms, Sci. Rep. 7(1), 16489 (2017)
CrossRef ADS Google scholar
[56]
Y. H. Chen, Z. C. Shi, J. Song, Y. Xia, and S. B. Zheng, Accelerated and noise-resistant generation of highfidelity steady-state entanglement with Rydberg atoms, Phys. Rev. A 97(3), 032328 (2018)
CrossRef ADS Google scholar
[57]
D. X. Li, T. Y. Zheng, and X. Q. Shao, Adiabatic preparation of multipartite GHZ states via Rydberg ground-state blockade, Opt. Express 27(15), 20874 (2019)
CrossRef ADS Google scholar
[58]
X. Q. Shao, Selective Rydberg pumping via strong dipole blockade, Phys. Rev. A 102(5), 053118 (2020)
CrossRef ADS Google scholar
[59]
H. Z. Wu, Z. B. Yang, and S. B. Zheng, Quantum state swap for two trapped Rydberg atoms, Chin. Phys. B21(4), 040305 (2012)
CrossRef ADS Google scholar
[60]
X. F. Shi, F. Bariani, and T. A. B. Kennedy, Entanglement of neutral-atom chains by spin-exchange Rydberg interaction, Phys. Rev. A 90(6), 062327 (2014)
CrossRef ADS Google scholar
[61]
A. W. Glaetzle, M. Dalmonte, R. Nath, C. Gross, I. Bloch, and P. Zoller, Designing frustrated quantum magnets with laser-dressed Rydberg atoms, Phys. Rev. Lett. 114(17), 173002 (2015)
CrossRef ADS Google scholar
[62]
J. L. Wu, Y. Wang, J. X. Han, Y. K. Feng, S. L. Su, Y. Xia, Y. Jiang, and J. Song, One-step implementation of Rydberg-antiblockade SWAP and controlled-SWAP gates with modified robustness, Photon. Res. 9(5), 814 (2021)
CrossRef ADS Google scholar
[63]
E. Sjöqvist, D. M. Tong, L. Mauritz Andersson, B. Hessmo, M. Johansson, and K. Singh, Non-adiabatic holonomic quantum computation, New J. Phys. 14(10), 103035 (2012)
CrossRef ADS Google scholar
[64]
G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, and L. C. Kwek, Nonadiabatic holonomic quantum computation in decoherence-free subspaces, Phys. Rev. Lett. 109(17), 170501 (2012)
CrossRef ADS Google scholar
[65]
G. Feng, G. Xu, and G. Long, Experimental realization of nonadiabatic holonomic quantum computation, Phys. Rev. Lett. 110(19), 190501 (2013)
CrossRef ADS Google scholar
[66]
H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, Probing many body dynamics on a 51-atom quantum simulator, Nature551(7682), 579 (2017)
CrossRef ADS Google scholar
[67]
A. Omran, H. Levine, A. Keesling, G. Semeghini, T. T. Wang, S. Ebadi, H. Bernien, A. S. Zibrov, H. Pichler, S. Choi, J. Cui, M. Rossignolo, P. Rembold, S. Montangero, T. Calarco, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, Generation and manipulation of Schrödinger cat states in Rydberg atom arrays, Science365(6453), 570 (2019)
CrossRef ADS Google scholar
[68]
D. F. V. James and J. Jerke, Effective Hamiltonian theory and its applications in quantum information, Can. J. Phys. 85(6), 625 (2007)
CrossRef ADS Google scholar
[69]
B. J. Liu, X. K. Song, Z. Y. Xue, X. Wang, and M. H. Yung, Plug-and-play approach to nonadiabatic geometric quantum gates, Phys. Rev. Lett. 123(10), 100501 (2019)
CrossRef ADS Google scholar
[70]
P. Z. Zhao, K. Z. Li, G. F. Xu, and D. M. Tong, General approach for constructing Hamiltonians for nonadiabatic holonomic quantum computation, Phys. Rev. A 101(6), 062306 (2020)
CrossRef ADS Google scholar
[71]
E. Brion, L. H. Pedersen, and K. Mølmer, Implementing a neutral atom Rydberg gate without populating the Rydberg state, J. Phys. B40(9), S159 (2007)
CrossRef ADS Google scholar
[72]
J. L. Wu, S. L. Su, Y. Wang, J. Song, Y. Xia, and Y. Jiang, Effective Rabi dynamics of Rydberg atoms and robust high-fidelity quantum gates with a resonant amplitudemodulation field, Opt. Lett. 45(5), 1200 (2020)
CrossRef ADS Google scholar
[73]
H. D. Yin, X. X. Li, G. C. Wang, and X. Q. Shao, One step implementation of Toffoli gate for neutral atoms based on unconventional Rydberg pumping, Opt. Express28(24), 35576 (2020)
CrossRef ADS Google scholar
[74]
H. D. Yin and X. Q. Shao, Gaussian soft control-based quantum fan-out gate in ground-state manifolds of neutral atoms, Opt. Lett. 46(10), 2541 (2021)
CrossRef ADS Google scholar
[75]
I. I. Beterov, I. I. Ryabtsev, D. B. Tretyakov, and V. M. Entin, Quasiclassical calculations of black body radiationinduced depopulation rates and effective lifetimes of Rydberg ns, np, and nd alkali-metal atoms with n≤80, Phys. Rev. A79(5), 052504 (2009)
CrossRef ADS Google scholar
[76]
M. Saffman, Quantum computing with atomic qubits and Rydberg interactions: Progress and challenges, J. Phys. B49(20), 202001 (2016)
CrossRef ADS Google scholar
[77]
I. I. Ryabtsev, I. I. Beterov, D. B. Tretyakov, V. M. Entin, and E. A. Yakshina, Doppler- and recoil-free laser excitation of Rydberg states via three-photon transitions, Phys. Rev. A84(5), 053409 (2011)
CrossRef ADS Google scholar
[78]
X. F. Shi, Fast, accurate, and realizable two-qubit entangling gates by quantum interference in detuned Rabi cycles of Rydberg atoms, Phys. Rev. Appl. 11(4), 044035 (2019)
CrossRef ADS Google scholar
[79]
X. F. Shi, Suppressing motional dephasing of ground-Rydberg transition for high-fidelity quantum control with neutral atoms, Phys. Rev. Appl. 13(2), 024008 (2020)
CrossRef ADS Google scholar
[80]
J. L. Wu, Y. Wang, J. X. Han, S. L. Su, Y. Xia, Y. Jiang, and J. Song, Resilient quantum gates on periodically driven Rydberg atoms, Phys. Rev. A103(1), 012601 (2021)
CrossRef ADS Google scholar
[81]
S. de Léséleuc, D. Barredo, V. Lienhard, A. Browaeys, and T. Lahaye, Analysis of imperfections in the coherent optical excitation of single atoms to Rydberg states, Phys. Rev. A97(5), 053803 (2018)
CrossRef ADS Google scholar
[82]
T. M. Graham, M. Kwon, B. Grinkemeyer, Z. Marra, X. Jiang, M. T. Lichtman, Y. Sun, M. Ebert, and M. Saffman, Rydberg-mediated entanglement in a twodimensional neutral atom qubit array, Phys. Rev. Lett. 123(23), 230501 (2019)
CrossRef ADS Google scholar
[83]
D. S. Weiss and M. Saffman, Quantum computing with neutral atoms, Phys. Today70(7), 44 (2017)
CrossRef ADS Google scholar
[84]
A. Browaeys and T. Lahaye, Many-body physics with individually controlled Rydberg atoms, Nat. Phys. 16(2), 132 (2020)
CrossRef ADS Google scholar
[85]
L. Henriet, L. Beguin, A. Signoles, T. Lahaye, A. Browaeys, G. O. Reymond, and C. Jurczak, Quantum computing with neutral atoms, Quantum4, 327 (2020)
CrossRef ADS Google scholar
[86]
S. L. Su, F. Q. Guo, L. Tian, X. Y. Zhu, L. L. Yan, E. J. Liang, and M. Feng, Nondestructive Rydberg parity meter and its applications, Phys. Rev. A 101(1), 012347 (2020)
CrossRef ADS Google scholar
[87]
E. Fredkin and T. Toffoli, Conservative logic, Int. J. Theor. Phys. 21(3–4), 219 (1982)
CrossRef ADS Google scholar
[88]
I. L. Chuang and Y. Yamamoto, Quantum bit regeneration, Phys. Rev. Lett. 76(22), 4281 (1996)
CrossRef ADS Google scholar
[89]
H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, Quantum fingerprinting, Phys. Rev. Lett. 87(16), 167902 (2001)
CrossRef ADS Google scholar
[90]
B. K. Behera, T. Reza, A. Gupta, and P. K. Panigrahi, Designing quantum router in IBM quantum computer, Quantum Inform. Process. 18(11), 328 (2019)
CrossRef ADS Google scholar
[91]
W. Feng and D. Wang, Quantum Fredkin gate based on synthetic three-body interactions in superconducting circuits, Phys. Rev. A 101(6), 062312 (2020)
CrossRef ADS Google scholar
[92]
M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Realization of threequbit quantum error correction with superconducting circuits, Nature 482(7385), 382 (2012)
CrossRef ADS Google scholar
[93]
A. M. Souza, G. A. Álvarez, and D. Suter, Robust dynamical decoupling, Phil. Trans. R. Soc. A370(1976), 4748 (2012)
CrossRef ADS Google scholar
[94]
G. T. Genov, D. Schraft, N. V. Vitanov, and T. Halfmann, Arbitrarily accurate pulse sequences for robust dynamical decoupling, Phys. Rev. Lett. 118(13), 133202 (2017)
CrossRef ADS Google scholar
[95]
B. J. Liu, Y. S. Wang, and M. H. Yung, Global property condition-based non-adiabatic geometric quantum control, arXiv: 2008.02176 (2020)
[96]
A. Vepsäläinen, S. Danilin, and G. S. Paraoanu, Optimal superadiabatic population transfer and gates by dynamical phase corrections, Quantum Sci. Technol. 3(2), 024006 (2018)
CrossRef ADS Google scholar
[97]
A. Vepsäläinen, S. Danilin, and G. S. Paraoanu, Superadiabatic population transfer in a three-level superconducting circuit, Sci. Adv. 5(2), eaau5999 (2019)
CrossRef ADS Google scholar
[98]
C. Wang, J. X. Han, J. L. Wu, Y. Wang, Y. Jiang, Y. Xia, and J. Song, Generation of three-dimensional entanglement between two antiblockade Rydberg atoms with detuning-compensation-induced effective resonance, Laser Phys. 30(4), 045201 (2020)
CrossRef ADS Google scholar
[99]
J. X. Han, J. L. Wu, Y. Wang, Y. Y. Jiang, Y. Xia, and J. Song, Multi-qubit phase gate on multiple resonators mediated by a superconducting bus, Opt. Express 28(2), 1954 (2020)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(1733 KB)

Accesses

Citations

Detail

Sections
Recommended

/