Unselective ground-state blockade of Rydberg atoms for implementing quantum gates
Jin-Lei Wu, Yan Wang, Jin-Xuan Han, Shi-Lei Su, Yan Xia, Yongyuan Jiang, Jie Song
Unselective ground-state blockade of Rydberg atoms for implementing quantum gates
A dynamics regime of Rydberg atoms, unselective ground-state blockade (UGSB), is proposed in the context of Rydberg antiblockade (RAB), where the evolution of two atoms is suppressed when they populate in an identical ground state. UGSB is used to implement a SWAP gate in one step without individual addressing of atoms. Aiming at circumventing common issues in RAB-based gates including atomic decay, Doppler dephasing, and fluctuations in the interatomic coupling strength, we modify the RAB condition to achieve a dynamical SWAP gate whose robustness is much greater than that of the nonadiabatic holonomic one in the conventional RAB regime. In addition, on the basis of the proposed SWAP gates, we further investigate the implementation of a three-atom Fredkin gate by combining Rydberg blockade and RAB. The present work may facilitate to implement the RAB-based gates of strongly coupled atoms in experiment.
Rydberg atoms / unselective ground-state blockade / SWAP gate / Fredkin gate
[1] |
D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, Fast quantum gates for neutral atoms, Phys. Rev. Lett. 85(10), 2208 (2000)
CrossRef
ADS
Google scholar
|
[2] |
T. F. Gallagher, Rydberg Atoms, Cambridge University Press, 2005
CrossRef
ADS
Google scholar
|
[3] |
M. Saffman, T. G. Walker, and K. Mølmer, Quantum information with Rydberg atoms, Rev. Mod. Phys. 82(3), 2313 (2010)
CrossRef
ADS
Google scholar
|
[4] |
M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, Dipole blockade and quantum information processing in mesoscopic atomic ensembles, Phys. Rev. Lett. 87(3), 037901 (2001)
CrossRef
ADS
Google scholar
|
[5] |
E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, Observation of Rydberg blockade between two-atoms, Nat. Phys. 5(2), 110 (2009)
CrossRef
ADS
Google scholar
|
[6] |
A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, Observation of collective excitation of two individual atoms in the Rydberg blockade regime, Nat. Phys. 5(2), 115 (2009)
CrossRef
ADS
Google scholar
|
[7] |
D. Møller, L. B. Madsen, and K. Mølmer, Quantum gates and multiparticle entanglement by Rydberg excitation blockade and adiabatic passage, Phys. Rev. Lett. 100(17), 170504 (2008)
CrossRef
ADS
Google scholar
|
[8] |
H. Z. Wu, Z. B. Yang, and S. B. Zheng, Implementation of a multiqubit quantum phase gate in a neutral atomic ensemble via the asymmetric Rydberg blockade, Phys. Rev. A 82(3), 034307 (2010)
CrossRef
ADS
Google scholar
|
[9] |
H. Wu, X. R. Huang, C. S. Hu, Z. B. Yang, and S. B. Zheng, Rydberg-interaction gates via adiabatic passage and phase control of driving fields, Phys. Rev. A96(2), 022321 (2017)
CrossRef
ADS
Google scholar
|
[10] |
P. Z. Zhao, X. D. Cui, G. F. Xu, E. Sjöqvist, and D. M. Tong, Rydberg-atom-based scheme of nonadiabatic geometric quantum computation, Phys. Rev. A96(5), 052316 (2017)
CrossRef
ADS
Google scholar
|
[11] |
Y. H. Kang, Y. H. Chen, Z. C. Shi, B. H. Huang, J. Song, and Y. Xia, Nonadiabatic holonomic quantum computation using Rydberg blockade, Phys. Rev. A97(4), 042336 (2018)
CrossRef
ADS
Google scholar
|
[12] |
D. Petrosyan, F. Motzoi, M. Saffman, and K. Mølmer, High-fidelity Rydberg quantum gate via a two-atom dark state, Phys. Rev. A96(4), 042306 (2017)
CrossRef
ADS
Google scholar
|
[13] |
I. I. Beterov, G. N. Hamzina, E. A. Yakshina, D. B. Tretyakov, V. M. Entin, and I. I. Ryabtsev, Adiabatic passage of radio-frequency-assisted Förster resonances in Rydberg atoms for two-qubit gates and the generation of bell states, Phys. Rev. A 97(3), 032701 (2018)
CrossRef
ADS
Google scholar
|
[14] |
X. F. Shi, Deutsch, Toffoli, and CNOT gates via Rydberg blockade of neutral atoms, Phys. Rev. Appl. 9(5), 051001 (2018)
CrossRef
ADS
Google scholar
|
[15] |
C. P. Shen, J. L. Wu, S. L. Su, and E. Liang, Construction of robust Rydberg controlled-phase gates, Opt. Lett. 44(8), 2036 (2019)
CrossRef
ADS
Google scholar
|
[16] |
K. Y. Liao, X. H. Liu, Z. Li, and Y. X. Du, Geometric Rydberg quantum gate with shortcuts to adiabaticity, Opt. Lett. 44(19), 4801 (2019)
CrossRef
ADS
Google scholar
|
[17] |
B. J. Liu, S. L. Su, and M. H. Yung, Nonadiabatic noncyclic geometric quantum computation in Rydberg atoms, Phys. Rev. Research 2(4), 043130 (2020)
CrossRef
ADS
Google scholar
|
[18] |
M. Khazali and K. Mølmer, Fast multiqubit gates by adiabatic evolution in interacting excited-state manifolds of Rydberg atoms and superconducting circuits, Phys. Rev. X 10(2), 021054 (2020)
CrossRef
ADS
Google scholar
|
[19] |
M. Saffman, I. I. Beterov, A. Dalal, E. J. Páez, and B. C. Sanders, Symmetric Rydberg controlled-Z gates with adiabatic pulses, Phys. Rev. A 101(6), 062309 (2020)
CrossRef
ADS
Google scholar
|
[20] |
A. Mitra, M. J. Martin, G. W. Biedermann, A. M. Marino, P. M. Poggi, and I. H. Deutsch, Robust Mølmer–Sørensen gate for neutral atoms using rapid adiabatic Rydberg dressing, Phys. Rev. A 101(3), 030301 (2020)
CrossRef
ADS
Google scholar
|
[21] |
C. Y. Guo, L. L. Yan, S. Zhang, S. L. Su, and W. Li, Optimized geometric quantum computation with a mesoscopic ensemble of Rydberg atoms, Phys. Rev. A102(4), 042607 (2020)
CrossRef
ADS
Google scholar
|
[22] |
X. F. Shi, Transition slow-down by Rydberg interaction of neutral atoms and a fast controlled-NOT quantum gate, Phys. Rev. Appl. 14(5), 054058 (2020)
CrossRef
ADS
Google scholar
|
[23] |
X. F. Shi, Rydberg quantum computation with nuclear spins in two-electron neutral atoms, Front. Phys. 16(5), 52501 (2021)
CrossRef
ADS
Google scholar
|
[24] |
C. Ates, T. Pohl, T. Pattard, and J. M. Rost, Antiblockade in Rydberg excitation of an ultracold lattice gas, Phys. Rev. Lett. 98(2), 023002 (2007)
CrossRef
ADS
Google scholar
|
[25] |
T. Pohl and P. R. Berman, Breaking the dipole blockade: Nearly resonant dipole interactions in few-atom systems, Phys. Rev. Lett. 102(1), 013004 (2009)
CrossRef
ADS
Google scholar
|
[26] |
J. Qian, Y. Qian, M. Ke, X. L. Feng, C. H. Oh, and Y. Wang, Breakdown of the dipole blockade with a zero area phase-jump pulse, Phys. Rev. A 80(5), 053413 (2009)
CrossRef
ADS
Google scholar
|
[27] |
T. Amthor, C. Giese, C. S. Hofmann, and M. Weidemüller, Evidence of antiblockade in an ultracold Rydberg gas, Phys. Rev. Lett. 104(1), 013001 (2010)
CrossRef
ADS
Google scholar
|
[28] |
W. Li, C. Ates, and I. Lesanovsky, Nonadiabatic motional effects and dissipative blockade for Rydberg atoms excited from optical lattices or microtraps, Phys. Rev. Lett. 110(21), 213005 (2013)
CrossRef
ADS
Google scholar
|
[29] |
S. L. Su, F. Q. Guo, J. L. Wu, Z. Jin, X. Q. Shao, and S. Zhang, Rydberg antiblockade regimes: Dynamics and applications, EPL 131(5), 53001 (2020)
CrossRef
ADS
Google scholar
|
[30] |
S. L. Su, E. Liang, S. Zhang, J. J. Wen, L. L. Sun, Z. Jin, and A. D. Zhu, One-step implementation of the Rydberg–Rydberg-interaction gate, Phys. Rev. A 93(1), 012306 (2016)
CrossRef
ADS
Google scholar
|
[31] |
S. L. Su, Y. Gao, E. Liang, and S. Zhang, Fast Rydberg antiblockade regime and its applications in quantum logic gates, Phys. Rev. A 95(2), 022319 (2017)
CrossRef
ADS
Google scholar
|
[32] |
S. L. Su, Y. Tian, H. Z. Shen, H. Zang, E. Liang, and S. Zhang, Applications of the modified Rydberg antiblockade regime with simultaneous driving, Phys. Rev. A 96(4), 042335 (2017)
CrossRef
ADS
Google scholar
|
[33] |
S. L. Su, H. Z. Shen, E. Liang, and S. Zhang, One-step construction of the multiple-qubit Rydberg controlled phase gate, Phys. Rev. A 98(3), 032306 (2018)
CrossRef
ADS
Google scholar
|
[34] |
J. L. Wu, J. Song, and S. L. Su, Resonant-interaction induced Rydberg antiblockade and its applications, Phys. Lett. A 384(1), 126039 (2020)
CrossRef
ADS
Google scholar
|
[35] |
T. H. Xing, X. Wu, and G. F. Xu, Nonadiabatic holonomic three-qubit controlled gates realized by one-shot implementation, Phys. Rev. A 101(1), 012306 (2020)
CrossRef
ADS
Google scholar
|
[36] |
F. Q. Guo, J. L. Wu, X. Y. Zhu, Z. Jin, Y. Zeng, S. Zhang, L. L. Yan, M. Feng, and S. L. Su, Complete and nondestructive distinguishment of many-body Rydberg entanglement via robust geometric quantum operations, Phys. Rev. A 102(6), 062410 (2020)
CrossRef
ADS
Google scholar
|
[37] |
D. D. B. Rao, and K. Mølmer, Dark entangled steady states of interacting Rydberg atoms, Phys. Rev. Lett. 111(3), 033606 (2013)
CrossRef
ADS
Google scholar
|
[38] |
A. W. Carr, and M. Saffman, Preparation of entangled and antiferromagnetic states by dissipative Rydberg pumping, Phys. Rev. Lett. 111(3), 033607 (2013)
CrossRef
ADS
Google scholar
|
[39] |
X. Q. Shao, J. B. You, T. Y. Zheng, C. H. Oh, and S. Zhang, Stationary three-dimensional entanglement via dissipative Rydberg pumping, Phys. Rev. A 89(5), 052313 (2014)
CrossRef
ADS
Google scholar
|
[40] |
S. L. Su, Q. Guo, H. F. Wang, and S. Zhang, Simplified scheme for entanglement preparation with Rydberg pumping via dissipation, Phys. Rev. A 92(2), 022328 (2015)
CrossRef
ADS
Google scholar
|
[41] |
J. Song, C. Li, Z. J. Zhang, Y. Y. Jiang, and Y. Xia, Implementing stabilizer codes in noisy environments, Phys. Rev. A 96(3), 032336 (2017)
CrossRef
ADS
Google scholar
|
[42] |
X. Q. Shao, D. X. Li, Y. Q. Ji, J. H. Wu, and X. X. Yi, Ground-state blockade of Rydberg atoms and application in entanglement generation, Phys. Rev. A 96(1), 012328 (2017)
CrossRef
ADS
Google scholar
|
[43] |
X. Y. Zhu, Z. Jin, E. Liang, S. Zhang, and S. L. Su, Preparation of steady 3D dark state entanglement in dissipative Rydberg atoms via electromagnetic induced transparency, Ann. Phys. (Berlin) 532(6), 2000059 (2020)
CrossRef
ADS
Google scholar
|
[44] |
T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, Entanglement of two individual neutral atoms using Rydberg blockade, Phys. Rev. Lett. 104(1), 010502 (2010)
CrossRef
ADS
Google scholar
|
[45] |
L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, Demonstration of a neutral atom controlled-NOT quantum gate, Phys. Rev. Lett. 104(1), 010503 (2010)
CrossRef
ADS
Google scholar
|
[46] |
X. L. Zhang, L. Isenhower, A. T. Gill, T. G. Walker, and M. Saffman, Deterministic entanglement of two neutral atoms via Rydberg blockade, Phys. Rev. A 82(3), 030306 (2010)
CrossRef
ADS
Google scholar
|
[47] |
H. Levine, A. Keesling, A. Omran, H. Bernien, S. Schwartz, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, High-fidelity control and entanglement of Rydberg-atom qubits, Phys. Rev. Lett. 121(12), 123603 (2018)
CrossRef
ADS
Google scholar
|
[48] |
H. Levine, A. Keesling, G. Semeghini, A. Omran, T. T. Wang, S. Ebadi, H. Bernien, M. Greiner, V. Vuletić, H. Pichler, and M. D. Lukin, Parallel implementation of highfidelity multiqubit gates with neutral atoms, Phys. Rev. Lett. 123(17), 170503 (2019)
CrossRef
ADS
Google scholar
|
[49] |
I. S. Madjarov, J. P. Covey, A. L. Shaw, J. Choi, A. Kale, A. Cooper, H. Pichler, V. Schkolnik, J. R. Williams, and M. Endres, High-fidelity entanglement and detection of alkaline-earth Rydberg atoms, Nat. Phys. 16(8), 857 (2020)
CrossRef
ADS
Google scholar
|
[50] |
H. Jo, Y. Song, M. Kim, and J. Ahn, Rydberg atom entanglements in the weak coupling regime, Phys. Rev. Lett. 124(3), 033603 (2020)
CrossRef
ADS
Google scholar
|
[51] |
J. B. Balewski, A. T. Krupp, A. Gaj, S. Hofferberth, R. Löw, and T. Pfau, Rydberg dressing: Understanding of collective many-body effects and implications for experiments, New J. Phys. 16(6), 063012 (2014)
CrossRef
ADS
Google scholar
|
[52] |
Y. Y. Jau, A. M. Hankin, T. Keating, I. H. Deutsch, and G. W. Biedermann, Entangling atomic spins with a Rydbergdressed spin-flip blockade, Nat. Phys. 12(1), 71 (2016)
CrossRef
ADS
Google scholar
|
[53] |
D. X. Li and X. Q. Shao, Unconventional Rydberg pumping and applications in quantum information processing, Phys. Rev. A 98(6), 062338 (2018)
CrossRef
ADS
Google scholar
|
[54] |
X. Q. Shao, D. X. Li, Y. Q. Ji, J. H. Wu, and X. X. Yi, Ground-state blockade of Rydberg atoms and application in entanglement generation, Phys. Rev. A 96(1), 012328 (2017)
CrossRef
ADS
Google scholar
|
[55] |
Y. J. Zhao, B. Liu, Y. Q. Ji, S. Q. Tang, and X. Q. Shao, Robust generation of entangled state via ground state antiblockade of Rydberg atoms, Sci. Rep. 7(1), 16489 (2017)
CrossRef
ADS
Google scholar
|
[56] |
Y. H. Chen, Z. C. Shi, J. Song, Y. Xia, and S. B. Zheng, Accelerated and noise-resistant generation of highfidelity steady-state entanglement with Rydberg atoms, Phys. Rev. A 97(3), 032328 (2018)
CrossRef
ADS
Google scholar
|
[57] |
D. X. Li, T. Y. Zheng, and X. Q. Shao, Adiabatic preparation of multipartite GHZ states via Rydberg ground-state blockade, Opt. Express 27(15), 20874 (2019)
CrossRef
ADS
Google scholar
|
[58] |
X. Q. Shao, Selective Rydberg pumping via strong dipole blockade, Phys. Rev. A 102(5), 053118 (2020)
CrossRef
ADS
Google scholar
|
[59] |
H. Z. Wu, Z. B. Yang, and S. B. Zheng, Quantum state swap for two trapped Rydberg atoms, Chin. Phys. B21(4), 040305 (2012)
CrossRef
ADS
Google scholar
|
[60] |
X. F. Shi, F. Bariani, and T. A. B. Kennedy, Entanglement of neutral-atom chains by spin-exchange Rydberg interaction, Phys. Rev. A 90(6), 062327 (2014)
CrossRef
ADS
Google scholar
|
[61] |
A. W. Glaetzle, M. Dalmonte, R. Nath, C. Gross, I. Bloch, and P. Zoller, Designing frustrated quantum magnets with laser-dressed Rydberg atoms, Phys. Rev. Lett. 114(17), 173002 (2015)
CrossRef
ADS
Google scholar
|
[62] |
J. L. Wu, Y. Wang, J. X. Han, Y. K. Feng, S. L. Su, Y. Xia, Y. Jiang, and J. Song, One-step implementation of Rydberg-antiblockade SWAP and controlled-SWAP gates with modified robustness, Photon. Res. 9(5), 814 (2021)
CrossRef
ADS
Google scholar
|
[63] |
E. Sjöqvist, D. M. Tong, L. Mauritz Andersson, B. Hessmo, M. Johansson, and K. Singh, Non-adiabatic holonomic quantum computation, New J. Phys. 14(10), 103035 (2012)
CrossRef
ADS
Google scholar
|
[64] |
G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, and L. C. Kwek, Nonadiabatic holonomic quantum computation in decoherence-free subspaces, Phys. Rev. Lett. 109(17), 170501 (2012)
CrossRef
ADS
Google scholar
|
[65] |
G. Feng, G. Xu, and G. Long, Experimental realization of nonadiabatic holonomic quantum computation, Phys. Rev. Lett. 110(19), 190501 (2013)
CrossRef
ADS
Google scholar
|
[66] |
H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, Probing many body dynamics on a 51-atom quantum simulator, Nature551(7682), 579 (2017)
CrossRef
ADS
Google scholar
|
[67] |
A. Omran, H. Levine, A. Keesling, G. Semeghini, T. T. Wang, S. Ebadi, H. Bernien, A. S. Zibrov, H. Pichler, S. Choi, J. Cui, M. Rossignolo, P. Rembold, S. Montangero, T. Calarco, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, Generation and manipulation of Schrödinger cat states in Rydberg atom arrays, Science365(6453), 570 (2019)
CrossRef
ADS
Google scholar
|
[68] |
D. F. V. James and J. Jerke, Effective Hamiltonian theory and its applications in quantum information, Can. J. Phys. 85(6), 625 (2007)
CrossRef
ADS
Google scholar
|
[69] |
B. J. Liu, X. K. Song, Z. Y. Xue, X. Wang, and M. H. Yung, Plug-and-play approach to nonadiabatic geometric quantum gates, Phys. Rev. Lett. 123(10), 100501 (2019)
CrossRef
ADS
Google scholar
|
[70] |
P. Z. Zhao, K. Z. Li, G. F. Xu, and D. M. Tong, General approach for constructing Hamiltonians for nonadiabatic holonomic quantum computation, Phys. Rev. A 101(6), 062306 (2020)
CrossRef
ADS
Google scholar
|
[71] |
E. Brion, L. H. Pedersen, and K. Mølmer, Implementing a neutral atom Rydberg gate without populating the Rydberg state, J. Phys. B40(9), S159 (2007)
CrossRef
ADS
Google scholar
|
[72] |
J. L. Wu, S. L. Su, Y. Wang, J. Song, Y. Xia, and Y. Jiang, Effective Rabi dynamics of Rydberg atoms and robust high-fidelity quantum gates with a resonant amplitudemodulation field, Opt. Lett. 45(5), 1200 (2020)
CrossRef
ADS
Google scholar
|
[73] |
H. D. Yin, X. X. Li, G. C. Wang, and X. Q. Shao, One step implementation of Toffoli gate for neutral atoms based on unconventional Rydberg pumping, Opt. Express28(24), 35576 (2020)
CrossRef
ADS
Google scholar
|
[74] |
H. D. Yin and X. Q. Shao, Gaussian soft control-based quantum fan-out gate in ground-state manifolds of neutral atoms, Opt. Lett. 46(10), 2541 (2021)
CrossRef
ADS
Google scholar
|
[75] |
I. I. Beterov, I. I. Ryabtsev, D. B. Tretyakov, and V. M. Entin, Quasiclassical calculations of black body radiationinduced depopulation rates and effective lifetimes of Rydberg ns, np, and nd alkali-metal atoms with n≤80, Phys. Rev. A79(5), 052504 (2009)
CrossRef
ADS
Google scholar
|
[76] |
M. Saffman, Quantum computing with atomic qubits and Rydberg interactions: Progress and challenges, J. Phys. B49(20), 202001 (2016)
CrossRef
ADS
Google scholar
|
[77] |
I. I. Ryabtsev, I. I. Beterov, D. B. Tretyakov, V. M. Entin, and E. A. Yakshina, Doppler- and recoil-free laser excitation of Rydberg states via three-photon transitions, Phys. Rev. A84(5), 053409 (2011)
CrossRef
ADS
Google scholar
|
[78] |
X. F. Shi, Fast, accurate, and realizable two-qubit entangling gates by quantum interference in detuned Rabi cycles of Rydberg atoms, Phys. Rev. Appl. 11(4), 044035 (2019)
CrossRef
ADS
Google scholar
|
[79] |
X. F. Shi, Suppressing motional dephasing of ground-Rydberg transition for high-fidelity quantum control with neutral atoms, Phys. Rev. Appl. 13(2), 024008 (2020)
CrossRef
ADS
Google scholar
|
[80] |
J. L. Wu, Y. Wang, J. X. Han, S. L. Su, Y. Xia, Y. Jiang, and J. Song, Resilient quantum gates on periodically driven Rydberg atoms, Phys. Rev. A103(1), 012601 (2021)
CrossRef
ADS
Google scholar
|
[81] |
S. de Léséleuc, D. Barredo, V. Lienhard, A. Browaeys, and T. Lahaye, Analysis of imperfections in the coherent optical excitation of single atoms to Rydberg states, Phys. Rev. A97(5), 053803 (2018)
CrossRef
ADS
Google scholar
|
[82] |
T. M. Graham, M. Kwon, B. Grinkemeyer, Z. Marra, X. Jiang, M. T. Lichtman, Y. Sun, M. Ebert, and M. Saffman, Rydberg-mediated entanglement in a twodimensional neutral atom qubit array, Phys. Rev. Lett. 123(23), 230501 (2019)
CrossRef
ADS
Google scholar
|
[83] |
D. S. Weiss and M. Saffman, Quantum computing with neutral atoms, Phys. Today70(7), 44 (2017)
CrossRef
ADS
Google scholar
|
[84] |
A. Browaeys and T. Lahaye, Many-body physics with individually controlled Rydberg atoms, Nat. Phys. 16(2), 132 (2020)
CrossRef
ADS
Google scholar
|
[85] |
L. Henriet, L. Beguin, A. Signoles, T. Lahaye, A. Browaeys, G. O. Reymond, and C. Jurczak, Quantum computing with neutral atoms, Quantum4, 327 (2020)
CrossRef
ADS
Google scholar
|
[86] |
S. L. Su, F. Q. Guo, L. Tian, X. Y. Zhu, L. L. Yan, E. J. Liang, and M. Feng, Nondestructive Rydberg parity meter and its applications, Phys. Rev. A 101(1), 012347 (2020)
CrossRef
ADS
Google scholar
|
[87] |
E. Fredkin and T. Toffoli, Conservative logic, Int. J. Theor. Phys. 21(3–4), 219 (1982)
CrossRef
ADS
Google scholar
|
[88] |
I. L. Chuang and Y. Yamamoto, Quantum bit regeneration, Phys. Rev. Lett. 76(22), 4281 (1996)
CrossRef
ADS
Google scholar
|
[89] |
H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, Quantum fingerprinting, Phys. Rev. Lett. 87(16), 167902 (2001)
CrossRef
ADS
Google scholar
|
[90] |
B. K. Behera, T. Reza, A. Gupta, and P. K. Panigrahi, Designing quantum router in IBM quantum computer, Quantum Inform. Process. 18(11), 328 (2019)
CrossRef
ADS
Google scholar
|
[91] |
W. Feng and D. Wang, Quantum Fredkin gate based on synthetic three-body interactions in superconducting circuits, Phys. Rev. A 101(6), 062312 (2020)
CrossRef
ADS
Google scholar
|
[92] |
M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Realization of threequbit quantum error correction with superconducting circuits, Nature 482(7385), 382 (2012)
CrossRef
ADS
Google scholar
|
[93] |
A. M. Souza, G. A. Álvarez, and D. Suter, Robust dynamical decoupling, Phil. Trans. R. Soc. A370(1976), 4748 (2012)
CrossRef
ADS
Google scholar
|
[94] |
G. T. Genov, D. Schraft, N. V. Vitanov, and T. Halfmann, Arbitrarily accurate pulse sequences for robust dynamical decoupling, Phys. Rev. Lett. 118(13), 133202 (2017)
CrossRef
ADS
Google scholar
|
[95] |
B. J. Liu, Y. S. Wang, and M. H. Yung, Global property condition-based non-adiabatic geometric quantum control, arXiv: 2008.02176 (2020)
|
[96] |
A. Vepsäläinen, S. Danilin, and G. S. Paraoanu, Optimal superadiabatic population transfer and gates by dynamical phase corrections, Quantum Sci. Technol. 3(2), 024006 (2018)
CrossRef
ADS
Google scholar
|
[97] |
A. Vepsäläinen, S. Danilin, and G. S. Paraoanu, Superadiabatic population transfer in a three-level superconducting circuit, Sci. Adv. 5(2), eaau5999 (2019)
CrossRef
ADS
Google scholar
|
[98] |
C. Wang, J. X. Han, J. L. Wu, Y. Wang, Y. Jiang, Y. Xia, and J. Song, Generation of three-dimensional entanglement between two antiblockade Rydberg atoms with detuning-compensation-induced effective resonance, Laser Phys. 30(4), 045201 (2020)
CrossRef
ADS
Google scholar
|
[99] |
J. X. Han, J. L. Wu, Y. Wang, Y. Y. Jiang, Y. Xia, and J. Song, Multi-qubit phase gate on multiple resonators mediated by a superconducting bus, Opt. Express 28(2), 1954 (2020)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |