The geometric phase in nonlinear frequency conversion
Aviv Karnieli, Yongyao Li, Ady Arie
The geometric phase in nonlinear frequency conversion
The geometric phase of light has been demonstrated in various platforms of the linear optical regime, raising interest both for fundamental science as well as applications, such as flat optical elements. Recently, the concept of geometric phases has been extended to nonlinear optics, following advances in engineering both bulk nonlinear photonic crystals and nonlinear metasurfaces. These new technologies offer a great promise of applications for nonlinear manipulation of light. In this review, we cover the recent theoretical and experimental advances in the field of geometric phases accompanying nonlinear frequency conversion. We first consider the case of bulk nonlinear photonic crystals, in which the interaction between propagating waves is quasi-phase-matched, with an engineerable geometric phase accumulated by the light. Nonlinear photonic crystals can offer efficient and robust frequency conversion in both the linearized and fully-nonlinear regimes of interaction, and allow for several applications including adiabatic mode conversion, electromagnetic nonreciprocity and novel topological effects for light. We then cover the rapidly-growing field of nonlinear Pancharatnam-Berry metasurfaces, which allow the simultaneous nonlinear generation and shaping of light by using ultrathin optical elements with subwavelength phase and amplitude resolution. We discuss the macroscopic selection rules that depend on the rotational symmetry of the constituent meta-atoms, the order of the harmonic generations, and the change in circular polarization. Continuous geometric phase gradients allow the steering of light beams and shaping of their spatial modes. More complex designs perform nonlinear imaging and multiplex nonlinear holograms, where the functionality is varied according to the generated harmonic order and polarization. Recent advancements in the fabrication of three dimensional nonlinear photonic crystals, as well as the pursuit of quantum light sources based on nonlinear metasurfaces, offer exciting new possibilities for novel nonlinear optical applications based on geometric phases.
nonlinear optics / quasi phase matching / holography / geometric phase / nonlinear metasurfaces / Pancharatnam-Berry phase / frequency conversion
[1] |
M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. A 392(1802), 45 (1984)
CrossRef
ADS
Google scholar
|
[2] |
M. V. Berry, The adiabatic phase and Pancharatnam’s phase for polarized light, J. Mod. Opt. 34(11), 1401 (1987)
CrossRef
ADS
Google scholar
|
[3] |
S. M. Rytov, On transition from wave to geometrical optics, Dokl. Akad. Nauk. USSR 18, 263 (1938)
|
[4] |
V. V. Vladimirsky, The rotation of a polarization plane for curved light ray, Dokl. Akad. Nauk SSSR 31, 222 (1941)
|
[5] |
S. Pancharatnam, Generalized theory of interference, and its applications, Proc. Indian Acad. Sci. Sect. A 44(5), 247 (1956)
CrossRef
ADS
Google scholar
|
[6] |
M. Berry, Anticipations of the geometric phase, Phys. Today 43(12), 34 (1990)
CrossRef
ADS
Google scholar
|
[7] |
R. Y. Chiao and Y.-S. Wu, Manifestations of Berry’s topological phase for the photon, Phys. Rev. Lett. 57(8), 933 (1986)
CrossRef
ADS
Google scholar
|
[8] |
A. Tomita and R. Y. Chiao, Observation of Berry’s topological phase by use of an optical fiber, Phys. Rev. Lett. 57(8), 937 (1986)
CrossRef
ADS
Google scholar
|
[9] |
N. Yu and F. Capasso, Flat optics with designer metasurfaces, Nat. Mater. 13, 139 (2014)
CrossRef
ADS
Google scholar
|
[10] |
H. Suchowski, G. Porat, and A. Arie, Adiabatic processes in frequency conversion, Laser Photon. Rev. 8(3), 333 (2014)
CrossRef
ADS
Google scholar
|
[11] |
G. Li, S. Zhang, and T. Zentgraf, Nonlinear photonic metasurfaces, Nat. Rev. Mater. 2(5), 17010 (2017)
CrossRef
ADS
Google scholar
|
[12] |
J. Zak, Berry’s phase for energy bands in solids, Phys. Rev. Lett. 62(23), 2747 (1989)
CrossRef
ADS
Google scholar
|
[13] |
J. von Bergmann and H. C. von Bergmann, Foucault pendulum through basic geometry, Am. J. Phys. 75(10), 888 (2007)
CrossRef
ADS
Google scholar
|
[14] |
Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)
CrossRef
ADS
Google scholar
|
[15] |
F. D. M. Haldane, Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”, Phys. Rev. Lett. 61(18), 2015 (1988)
CrossRef
ADS
Google scholar
|
[16] |
B. A. Bernevig, Topological Insulators and Topological Superconductors, Princeton University Press, 2013
CrossRef
ADS
Google scholar
|
[17] |
E. Cohen, H. Larocque, F. Bouchard, F. Nejadsattari, Y. Gefen, and E. Karimi, Geometric phase from Aharonov-Bohm to Pancharatnam-Berry and beyond, Nat. Rev. Phys. 1, 437 (2019)
CrossRef
ADS
Google scholar
|
[18] |
J. Anandan, The geometric phase, Nature 360(6402), 307 (1992)
CrossRef
ADS
Google scholar
|
[19] |
B. Simon, Holonomy, the quantum adiabatic theorem, and Berry’s phase, Phys. Rev. Lett. 51(24), 2167 (1983)
CrossRef
ADS
Google scholar
|
[20] |
J. J. Sakurai and J. Napolitano, Modern Quantum Mechanics, Addison-Wesley, 2011
|
[21] |
Y. Aharonov and J. Anandan, Phase change during a cyclic quantum evolution, Phys. Rev. Lett. 58(16), 1593 (1987)
CrossRef
ADS
Google scholar
|
[22] |
J. Samuel and R. Bhandari, General setting for Berry’s phase, Phys. Rev. Lett. 60(23), 2339 (1988)
CrossRef
ADS
Google scholar
|
[23] |
Z. Zhou, Y. Margalit, S. Moukouri, Y. Meir, and R. Folman, An experimental test of the geodesic rule proposition for the noncyclic geometric phase, Sci. Adv. 6(9), eaay8345 (2020)
CrossRef
ADS
Google scholar
|
[24] |
R. Bhandari and J. Samuel, Observation of topological phase by use of a laser interferometer, Phys. Rev. Lett. 60(13), 1211 (1988)
CrossRef
ADS
Google scholar
|
[25] |
T. H. Chyba, R. Simon, L. J. Wang, and L. Mandel, Measurement of the Pancharatnam phase for a light beam, Opt. Lett. 13(7), 562 (1988)
CrossRef
ADS
Google scholar
|
[26] |
Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, Space-variant Pancharatnam-Berry phase optical elements with computergenerated subwavelength gratings, Optics Lett. 27(13), 1141 (2002)
CrossRef
ADS
Google scholar
|
[27] |
E. Hasman, V. Kleiner, G. Biener, and A. Niv, Polarization dependent focusing lens by use of quantized Pancharatnam-Berry phase diffractive optics, Appl. Phys. Lett. 82(3), 328 (2003)
CrossRef
ADS
Google scholar
|
[28] |
X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency, Adv. Mater. 27(7), 1195 (2015)
CrossRef
ADS
Google scholar
|
[29] |
S. Slussarenko, A. Alberucci, C. P. Jisha, B. Piccirillo, E. Santamato, G. Assanto, and L. Marrucci, Guiding light via geometric phases, Nat. Photon. 10(9), 571 (2016)
CrossRef
ADS
Google scholar
|
[30] |
K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, Spin-orbit interactions of light, Nat. Photon. 9,
CrossRef
ADS
Google scholar
|
[31] |
R. C. Devlin, A. Ambrosio, N. A. Rubin, J. P. B. Mueller, and F. Capasso, Arbitrary spin-to-orbital angular momentum conversion of light, Science 358(6365), 896 (2017)
CrossRef
ADS
Google scholar
|
[32] |
L. Marrucci, C. Manzo, and D. Paparo, Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation, Appl. Phys. Lett. 88(22), 221102 (2006)
CrossRef
ADS
Google scholar
|
[33] |
G. Biener, A. Niv, V. Kleiner, and E. Hasman, Formation of helical beams by use of Pancharatnam-Berry phase optical elements, Opt. Lett. 27(21), 1875 (2002)
CrossRef
ADS
Google scholar
|
[34] |
F. Cardano, F. Massa, H. Qassim, E. Karimi, S. Slussarenko, D. Paparo, C. De Lisio, F. Sciarrino, E. Santamato, R. W. Boyd, and L. Marrucci, Quantum walks and wavepacket dynamics on a lattice with twisted photons, Sci. Adv. 1(2), e1500087 (2015)
CrossRef
ADS
Google scholar
|
[35] |
J. R. Kurz, A. M. Schober, D. S. Hum, A. J. Saltzman, and M. M. Fejer, Nonlinear physical optics with transversely patterned quasi-phase-matching gratings, IEEE J. Sel. Top. Quantum Electron. 8(3), 660 (2002)
CrossRef
ADS
Google scholar
|
[36] |
A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, Twodimensional nonlinear beam shaping, Opt. Lett. 37(11), 2136 (2012)
CrossRef
ADS
Google scholar
|
[37] |
A. Shapira, I. Juwiler, and A. Arie, Tunable nonlinear beam shaping by non-collinear interactions, Laser Photon. Rev. 7(4), L25 (2013)
CrossRef
ADS
Google scholar
|
[38] |
B. Yang, X. H. Hong, R. E. Lu, Y. Y. Yue, C. Zhang, Y. Q. Qin, and Y. Y. Zhu, 2D wave-front shaping in optical superlattices using nonlinear volume holography, Opt. Lett. 41(13), 2927 (2016)
CrossRef
ADS
Google scholar
|
[39] |
N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, Twisting light by nonlinear photonic crystals, Phys. Rev. Lett. 108(23), 233902 (2012)
CrossRef
ADS
Google scholar
|
[40] |
S. Trajtenberg-Mills, I. Juwiler, and A. Arie, On-axis shaping of second-harmonic beams, Laser Photon. Rev. 9(6), L40 (2015)
CrossRef
ADS
Google scholar
|
[41] |
Y. Ming, J. Tang, Z.-X. Chen, F. Xu, L.-J. Zhang, and Y.-Q. Lu, Generation of N00N state with orbital angular momentum in a twisted nonlinear photonic crystal, IEEE J. Sel. Top. Quantum Electron. 21(3), 225 (2015)
CrossRef
ADS
Google scholar
|
[42] |
T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, Nonlinear generation and manipulation of airy beams, Nat. Photon. 3(7), 395 (2009)
CrossRef
ADS
Google scholar
|
[43] |
J. Imbrock, L. Wesemann, S. Kroesen, M. Ayoub, and C. Denz, Waveguide integrated three-dimensional quasiphase-matching structures, Optica 7(1), 28 (2020)
CrossRef
ADS
Google scholar
|
[44] |
S. Liu, K. Switkowski, C. Xu, J. Tian, B. Wang, P. Lu, W. Krolikowski, and Y. Sheng, Nonlinear wavefront shaping with optically induced three-dimensional nonlinear photonic crystals, Nat. Commun. 10(1), 3208 (2019)
CrossRef
ADS
Google scholar
|
[45] |
P. Mandel, P. Galatola, L. A. Lugiato, and K. G. Wang, Berry phase analogies in nonlinear optics, Opt. Commun. 80(3–4), 262 (1991)
CrossRef
ADS
Google scholar
|
[46] |
M. S. Alber, G. G. Luther, J. E. Marsden, and J. M. Robbins, Geometric phases, reduction and Lie-Poisson structure for the resonant three-wave interaction, Physica D 123(1–4), 271 (1998)
CrossRef
ADS
Google scholar
|
[47] |
V. Y. Toronov and V. L. Derbov, Geometric phases in lasers and liquid flows, Phys. Rev. A 49(2), 1392 (1994)
CrossRef
ADS
Google scholar
|
[48] |
J. C. Garrison and R. Y. Chiao, Geometrical phases from global gauge invariance of nonlinear classical field theories, Phys. Rev. Lett. 60(3), 165 (1988)
CrossRef
ADS
Google scholar
|
[49] |
J. Liu and L. B. Fu, Berry phase in nonlinear systems, Phys. Rev. A 81(5), 052112 (2010)
CrossRef
ADS
Google scholar
|
[50] |
L. D. Zhang, L. B. Fu, and J. Liu, Adiabatic geometric phase in the nonlinear coherent coupler, Eur. Phys. J. D 65(3), 557 (2011)
CrossRef
ADS
Google scholar
|
[51] |
J. Liu, S. C. Li, L. B. Fu, and D. F. Ye, Nonlinear Adiabatic Evolution of Quantum Systems, in:Nonlinear Adiabatic Evolution of Quantum Systems, pp 49–72, Springer Singapore, 2018
CrossRef
ADS
Google scholar
|
[52] |
G. G. Luther, M. S. Alber, J. E. Marsden, and J. M. Robbins, Geometric analysis of optical frequency conversion and its control in quadratic nonlinear media, J. Opt. Soc. Am. B 17(6), 932 (2000)
CrossRef
ADS
Google scholar
|
[53] |
H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, Geometrical representation of sum frequency generation and adiabatic frequency conversion, Phys. Rev. A 78(6), 063821 (2008)
CrossRef
ADS
Google scholar
|
[54] |
H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, Robust adiabatic sum frequency conversion, Opt. Express 17(15), 12731 (2009)
CrossRef
ADS
Google scholar
|
[55] |
P. Krogen, H. Suchowski, H. Liang, N. Flemens, K. H. Hong, F. X. Kärtner, and J. Moses, Generation and multioctave shaping of mid-infrared intense single-cycle pulses, Nat. Photon. 11(4), 222 (2017)
CrossRef
ADS
Google scholar
|
[56] |
X. Ding, D. Heberle, K. Harrington, N. Flemens, W. Z. Chang, T. A. Birks, and J. Moses, Observation of rapid adiabatic passage in optical four-wave mixing, Phys. Rev. Lett. 124, 153902 (2020)
CrossRef
ADS
Google scholar
|
[57] |
E. Bahar, X. Ding, A. Dahan, H. Suchowski, and J. Moses, Adiabatic four-wave mixing frequency conversion, Opt. Express 26(20), 25582 (2018)
CrossRef
ADS
Google scholar
|
[58] |
K. Wang, Y. Shi, A. S. Solntsev, S. Fan, A. A. Sukhorukov, and D. N. Neshev, Non-reciprocal geometric phase in nonlinear frequency conversion, Opt. Lett. 42(10), 1990 (2017)
CrossRef
ADS
Google scholar
|
[59] |
A. Karnieli and A. Arie, Fully controllable adiabatic geometric phase in nonlinear optics, Opt. Express 26(4), 4920 (2018)
CrossRef
ADS
Google scholar
|
[60] |
A. Karnieli, S. Trajtenberg-Mills, G. Di Domenico, and A. Arie, Experimental observation of the geometric phase in nonlinear frequency conversion, Optica 6(11), 1401 (2019)
CrossRef
ADS
Google scholar
|
[61] |
Y. Li, O. Yesharim, I. Hurvitz, A. Karnieli, S. Fu, G. Porat, and A. Arie, Adiabatic geometric phase in fully nonlinear three-wave mixing, Phys. Rev. A101(3), 033807 (2020)
CrossRef
ADS
Google scholar
|
[62] |
Y. Li, J. Lü, S. Fu, and A. Arie, Geometric representation and the adiabatic geometric phase in four-wave mixing processes, Opt. Express 29(5), 7288 (2021)
CrossRef
ADS
Google scholar
|
[63] |
N. Westerberg, C. Maitland, D. Faccio, K. Wilson, P. Öhberg, and E. M. Wright, Synthetic magnetism for photon fluids, Phys. Rev. A94(2), 023805 (2016)
CrossRef
ADS
Google scholar
|
[64] |
A. Karnieli, S. Tsesses, G. Bartal, and A. Arie, Emulating spin transport with nonlinear optics, from high-order skyrmions to the topological Hall effect, Nat. Commun. 12(1), 1092 (2021)
CrossRef
ADS
Google scholar
|
[65] |
A. Karnieli, S. Tsesses, G. Bartal, and A. Arie, Optical skyrmions and a topological Hall effect in artificial gauge fields, in:CLEO: QELS_Fundamental Science, p. FW4A.6, 2020
CrossRef
ADS
Google scholar
|
[66] |
D. Smirnova, D. Leykam, Y. Chong, and Y. Kivshar, Nonlinear topological photonics, Appl. Phys. Rev. 7(2), 021306 (2020)
CrossRef
ADS
Google scholar
|
[67] |
R. W. Boyd, Nonlinear Optics, Academic Press, 2008
|
[68] |
P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, Effects of dispersion and focusing on the production of optical harmonics, Phys. Rev. Lett. 8(1), 21 (1962)
CrossRef
ADS
Google scholar
|
[69] |
E. Rozenberg and A. Arie, Broadband and robust adiabatic second harmonic generation by temperature gradient in birefringently phase matched lithium triborate crystal, Opt. Lett. 44(13), 3358 (2019)
CrossRef
ADS
Google scholar
|
[70] |
M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation, Appl. Phys. Lett. 62(5), 435 (1993)
CrossRef
ADS
Google scholar
|
[71] |
T. Xu, K. Switkowski, X. Chen, S. Liu, K. Koynov, H. Yu, H. Zhang, J. Wang, Y. Sheng, and W. Krolikowski, Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate, Nat. Photon. 12(10), 591 (2018)
CrossRef
ADS
Google scholar
|
[72] |
D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, S. Zhu, and M. Xiao, Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal, Nat. Photon. 12(10), 596 (2018)
CrossRef
ADS
Google scholar
|
[73] |
S. Signorini, M. Mancinelli, M. Borghi, M. Bernard, M. Ghulinyan, G. Pucker, and L. Pavesi, Intermodal fourwave mixing in silicon waveguides, Photon. Res. 6(8), 805 (2018)
CrossRef
ADS
Google scholar
|
[74] |
X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, Ferroelectric domain engineering by focused infrared femtosecond pulses, Appl. Phys. Lett. 107(14), 141102 (2015)
CrossRef
ADS
Google scholar
|
[75] |
X. Chen, P. Karpinski, V. Shvedov, A. Boes, A. Mitchell, W. Krolikowski, and Y. Sheng, Quasi-phase matching via femtosecond laser-induced domain inversion in lithium niobate waveguides, Opt. Lett. 41(11), 2410 (2016)
CrossRef
ADS
Google scholar
|
[76] |
S. Keren-Zur and T. Ellenbogen, A new dimension for nonlinear photonic crystals, Nat. Photon. 12, 575 (2018)
CrossRef
ADS
Google scholar
|
[77] |
W. H. Lee, Binary computer-generated holograms, Appl. Opt. 18(21), 3661 (1979)
CrossRef
ADS
Google scholar
|
[78] |
A. Shapira, I. Juwiler, and A. Arie, Nonlinear computergenerated holograms, Opt. Lett. 36(15), 3015 (2011)
CrossRef
ADS
Google scholar
|
[79] |
A. Shapira, L. Naor, and A. Arie, Nonlinear optical holograms for spatial and spectral shaping of light waves, Sci. Bull. (Beijing) 60(16), 1403 (2015)
CrossRef
ADS
Google scholar
|
[80] |
S. Trajtenebrg-Mills and A. Arie, Shaping light beams in nonlinear processes using structured light and patterned crystals, Opt. Mater. Express 7(8), 2928 (2017)
CrossRef
ADS
Google scholar
|
[81] |
G. Imeshev, M. Proctor, and M. M. Fejer, Lateral patterning of nonlinear frequency conversion with radially varying quasi-phase-matching gratings, Opt. Lett. 23(9), 673 (1998)
CrossRef
ADS
Google scholar
|
[82] |
S. M. Saltiel, D. N. Neshev, W. Krolikowski, A. Arie, O. Bang, and Y. S. Kivshar, Multiorder nonlinear diffraction in frequency doubling processes, Opt. Lett. 34(6), 848 (2009)
CrossRef
ADS
Google scholar
|
[83] |
T. Ellenbogen, A. Ganany-Padowicz, and A. Arie, Nonlinear photonic structures for all-optical deflection, Opt. Express 16(5), 3077 (2008)
CrossRef
ADS
Google scholar
|
[84] |
K. Shemer, N. Voloch-Bloch, A. Shapira, A. Libster, I. Juwiler, and A. Arie, Azimuthal and radial shaping of vortex beams generated in twisted nonlinear photonic crystals, Opt. Lett. 38(24), 5470 (2013)
CrossRef
ADS
Google scholar
|
[85] |
B. Zhu, H. Liu, Y. Chen, and X. Chen, High conversion efficiency second-harmonic beam shaping via amplitudetype nonlinear photonic crystals, Opt. Lett. 45(1), 220 (2020)
CrossRef
ADS
Google scholar
|
[86] |
D. Liu, S. Liu, L. M. Mazur, B. Wang, P. Lu, W. Krolikowski, and Y. Sheng, Smart optically induced nonlinear photonic crystals for frequency conversion and control, Appl. Phys. Lett. 116(5), 051104 (2020)
CrossRef
ADS
Google scholar
|
[87] |
B. Zhu, H. Liu, Y. Liu, X. Yan, Y. Chen, and X. Chen, Secondharmonic computer-generated holographic imaging through monolithic lithium niobate crystal by femtosecond laser micromachining, Opt. Lett. 45(15), 4132 (2020)
CrossRef
ADS
Google scholar
|
[88] |
A. Libster-Hershko, S. Trajtenberg-Mills, and A. Arie, Dynamic control of light beams in second harmonic generation, Opt. Lett. 40(9), 1944 (2015)
CrossRef
ADS
Google scholar
|
[89] |
T. Ellenbogen, I. Dolev, and A. Arie, Mode conversion in quadratic nonlinear crystals, Opt. Lett. 33(11), 1207 (2008)
CrossRef
ADS
Google scholar
|
[90] |
Y. Z. Zhi, Y. Li, S. D. Dong, K. J. Yun, W. Zhang, S. Shi, S. S. Bao, and C. G. Guang, Generation of light with controllable spatial patterns via the sum frequency in quasi-phase matching crystals, Sci. Rep. 4(1), 1 (2014)
CrossRef
ADS
Google scholar
|
[91] |
Y. Qin, C. Zhang, Y. Zhu, X. Hu, and G. Zhao, Wavefront engineering by Huygens-Fresnel principle for nonlinear optical interactions in domain engineered structures, Phys. Rev. Lett. 100(6), 063902 (2008)
CrossRef
ADS
Google scholar
|
[92] |
H. H. Xu, B. Yang, C. Zhang, Q. Q. Yi, and Y. Z. Yong, Nonlinear volume holography for wave-front engineering, Phys. Rev. Lett. 113(16), 163902 (2014)
CrossRef
ADS
Google scholar
|
[93] |
I. Dolev, T. Ellenbogen, N. Voloch-Bloch, and A. Arie, Control of free space propagation of Airy beams generated by quadratic nonlinear photonic crystals, Appl. Phys. Lett. 95, 201112 (2009)
CrossRef
ADS
Google scholar
|
[94] |
I. Dolev, A. Libster, and A. Arie, Selfaccelerating parabolic beams in quadratic nonlinear media, Appl. Phys. Lett. 101(10), 101109 (2012)
CrossRef
ADS
Google scholar
|
[95] |
I. Dolev and A. Arie, Three wave mixing of airy beams in a quadratic nonlinear photonic crystals, Appl. Phys. Lett. 97(17), 171102 (2010)
CrossRef
ADS
Google scholar
|
[96] |
I. Dolev, T. Ellenbogen, and A. Arie, Switching the acceleration direction of Airy beams by a nonlinear optical process, Opt. Lett. 35(10), 1581 (2010)
CrossRef
ADS
Google scholar
|
[97] |
I. Dolev, I. Kaminer, A. Shapira, M. Segev, and A. Arie, Experimental observation of self-accelerating beams in quadratic nonlinear media, Phys. Rev. Lett. 108(11), 113903 (2012)
CrossRef
ADS
Google scholar
|
[98] |
S. Trajtenberg-Mills, I. Juwiler, and A. Arie, Generation of second-harmonic beams with switchable curved trajectories, Optica 4(1), 153 (2017)
CrossRef
ADS
Google scholar
|
[99] |
D. Liu, Y. Zhang, J. Wen, Z. Chen, D. Wei, X. Hu, G. Zhao, S. N. Zhu, and M. Xiao, Diffraction interference induced superfocusing in nonlinear Talbot effect, Sci. Rep. 4, 6134 (2014)
CrossRef
ADS
Google scholar
|
[100] |
G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, Ultrashortpulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: Pulse compression and shaping, J. Opt. Soc. Am. B 17(2), 304 (2000)
CrossRef
ADS
Google scholar
|
[101] |
C. R. Phillips, B. W. Mayer, L. Gallmann, and U. Keller, Frequency-domain nonlinear optics in two-dimensionally patterned quasi-phase-matching media, Opt. Express 24(14), 15940 (2016)
CrossRef
ADS
Google scholar
|
[102] |
R. Shiloh and A. Arie, Spectral and temporal holograms with nonlinear optics, Opt. Lett. 37(17), 3591 (2012)
CrossRef
ADS
Google scholar
|
[103] |
A. Leshem, R. Shiloh, and A. Arie, Experimental realization of spectral shaping using nonlinear optical holograms, Opt. Lett. 39(18), 5370 (2014)
CrossRef
ADS
Google scholar
|
[104] |
R. Remez and A. Arie, Super-narrow frequency conversion, Optica 2(5), 472 (2015)
CrossRef
ADS
Google scholar
|
[105] |
J. P. Torres, A. Alexandrescu, S. Carrasco, and L. Torner, Quasi-phase-matching engineering for spatial control of entangled twophoton states, Opt. Lett. 29(4), 376 (2004)
CrossRef
ADS
Google scholar
|
[106] |
S. Trajtenberg‐Mills, A. Karnieli, N. Voloch‐Bloch, E. Megidish, H. S. Eisenberg, and A. Arie, Simulating correlations of structured spontaneously down‐converted photon pairs, Laser Photon. Rev. 14(3), 1900321 (2020)
CrossRef
ADS
Google scholar
|
[107] |
H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, On-chip steering of entangled photons in nonlinear photonic crystals, Nat. Commun. 2(1), 429 (2011)
CrossRef
ADS
Google scholar
|
[108] |
E. Megidish, A. Halevy, H. S. Eisenberg, A. Ganany-Padowicz, N. Habshoosh, and A. Arie, Compact 2D nonlinear photonic crystal source of beamlike path entangled photons, Opt. Express 21(6), 6689 (2013)
CrossRef
ADS
Google scholar
|
[109] |
L. L. Lu, P. Xu, M. L. Zhong, Y. F. Bai, and S. N. Zhu, Orbital angular momentum entanglement via forkpoling nonlinear photonic crystals, Opt. Express 23(2), 1203 (2015)
CrossRef
ADS
Google scholar
|
[110] |
H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, and S. N. Zhu, Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal, Phys. Rev. Lett. 111(2), 023603 (2013)
CrossRef
ADS
Google scholar
|
[111] |
A. Bahabad and A. Arie, Generation of optical vortex beams by nonlinear wave mixing, Opt. Express 15(26), 17619 (2007)
CrossRef
ADS
Google scholar
|
[112] |
Y. Zhang, Y. Sheng, S. Zhu, M. Xiao, and W. Krolikowski, Nonlinear photonic crystals: From 2D to 3D, Optica 8(3), 372 (2021)
CrossRef
ADS
Google scholar
|
[113] |
S. Liu, L. M. Mazur, W. Krolikowski, and Y. Sheng, Nonlinear volume holography in 3D nonlinear photonic crystals, Laser Photon. Rev. 14(11), 2000224 (2020)
CrossRef
ADS
Google scholar
|
[114] |
D. Wei, C. Wang, X. Xu, H. Wang, Y. Hu, P. Chen, J. Li, Y. Zhu, C. Xin, X. Hu, Y. Zhang, D. Wu, J. Chu, S. Zhu, and M. Xiao, Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals, Nat. Commun. 10(1), 4193 (2019)
CrossRef
ADS
Google scholar
|
[115] |
A. Rangelov and S. Longhi, Nonlinear adiabatic optical isolator, Appl. Opt. 56(11), 2991 (2017)
CrossRef
ADS
Google scholar
|
[116] |
K. Abdelsalam, T. Li, J. B. Khurgin, and S. Fathpour, Linear isolators using wavelength conversion, Optica 7(3), 209 (2020)
CrossRef
ADS
Google scholar
|
[117] |
A. Markov, A. Mazhorova, H. Breitenborn, A. Bruhacs, M. Clerici, D. Modotto, O. Jedrkiewicz, P. di Trapani, A. Major, F. Vidal, and R. Morandotti, Broadband and efficient adiabatic threewave-mixing in a temperaturecontrolled bulk crystal, Opt. Express 26(4), 4448 (2018)
CrossRef
ADS
Google scholar
|
[118] |
T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, Topological photonics, Rev. Mod. Phys. 91(1), 015006 (2019)
CrossRef
ADS
Google scholar
|
[119] |
L. Lu, J. D. Joannopoulos, and M. Soljačić, Topological photonics, Nat. Photon. 8(11), 821 (2014)
CrossRef
ADS
Google scholar
|
[120] |
G. Harari, M. A. Bandres, Y. Lumer, M. C. Rechtsman, Y. D. Chong, M. Khajavikhan Demetrios, N. Christodoulides, and M. Sege, Topological insulator laser: Theory, Science 359(6381), eaar4003 (2018)
CrossRef
ADS
Google scholar
|
[121] |
B. Bahari, A. Ndao, F. Vallini, A. El Amili, Y. Fainman, and B. Kanté, Nonreciprocal lasing in topological cavities of arbitrary geometries, Science 358(6363), 636 (2017)
CrossRef
ADS
Google scholar
|
[122] |
S. Mukherjee and M. C. Rechtsman, Observation of Floquet solitons in a topological bandgap, Science 368(6493), 856 (2020)
CrossRef
ADS
Google scholar
|
[123] |
Y. Wang, L. J. Lang, H. L. Ching, B. Zhang, and Y. D. Chong, Topologically enhanced harmonic generation in a nonlinear transmission line metamaterial, Nat. Commun. 10(1), 1102 (2019)
CrossRef
ADS
Google scholar
|
[124] |
S. Kruk, A. Poddubny, D. Smirnova, L. Wang, A. Slobozhanyuk, A. Shorokhov, I. Kravchenko, B. Luther-Davies, and Y. Kivshar, Nonlinear light generation in topological nanostructures, Nat. Nanotechnol. 14(2), 126 (2019)
CrossRef
ADS
Google scholar
|
[125] |
X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, Realspace observation of a two-dimensional skyrmion crystal, Nature 465(7300), 901 (2010)
CrossRef
ADS
Google scholar
|
[126] |
A. Fert, N. Reyren, and V. Cros, Magnetic skyrmions: Advances in physics and potential applications, Nat. Rev. Mater. 2(7), 17031 (2017)
CrossRef
ADS
Google scholar
|
[127] |
A. Karnieli and A. Arie, All-optical Stern-Gerlach effect, Phys. Rev. Lett. 120(5), 053901 (2018)
CrossRef
ADS
Google scholar
|
[128] |
A. Karnieli and A. Arie, Frequency domain Stern-Gerlach effect for photonic qubits and qutrits, Optica 5(10), 1297 (2018)
CrossRef
ADS
Google scholar
|
[129] |
P. Bruno, V. K. Dugaev, and M. Taillefumier, Topological Hall effect and Berry phase in magnetic nanostructures, Phys. Rev. Lett. 93(9), 096806 (2004)
CrossRef
ADS
Google scholar
|
[130] |
A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. G. Niklowitz, and P. Böni, Topological Hall effect in the a phase of MnSi, Phys. Rev. Lett. 102(18), 186602 (2009)
CrossRef
ADS
Google scholar
|
[131] |
N. Kanazawa, Y. Onose, T. Arima, D. Okuyama, K. Ohoyama, S. Wakimoto, K. Kakurai, S. Ishiwata, and Y. Tokura, Large topological Hall effect in a short-period helimagnet MnGe, Phys. Rev. Lett. 106(15), 156603 (2011)
CrossRef
ADS
Google scholar
|
[132] |
K. Everschor-Sitte and M. Sitte, Realspace Berry phases: Skyrmion soccer, J. Appl. Phys. 115(17), 172602 (2014)
CrossRef
ADS
Google scholar
|
[133] |
J. Ping Liu, Z. Zhang, and G. Zhao, Skyrmions: Topological Structures, Properties, and Applications, CRC Press, 2016
|
[134] |
G. Porat and A. Arie, Efficient, broadband, and robust frequency conversion by fully nonlinear adiabatic threewave mixing, J. Opt. Soc. Am. B 30(5), 1342 (2013)
CrossRef
ADS
Google scholar
|
[135] |
C. R. Phillips, C. Langrock, D. Chang, Y. W. Lin, L. Gallmann, and M. M. Fejer, Apodization of chirped quasi-phasematching devices, J. Opt. Soc. Am. B 30(6), 1551 (2013)
CrossRef
ADS
Google scholar
|
[136] |
C. R. Phillips and M. M. Fejer, Adiabatic optical parametric oscillators: Steady-state and dynamical behavior, Opt. Express 20(3), 2466 (2012)
CrossRef
ADS
Google scholar
|
[137] |
C. R. Phillips and M. M. Fejer, Efficiency and phase of optical parametric amplification in chirped quasi-phasematched gratings, Opt. Lett. 35(18), 3093 (2010)
CrossRef
ADS
Google scholar
|
[138] |
C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on a periodically poled Mg:LiNbO3, Opt. Lett. 35(14), 2340 (2010)
CrossRef
ADS
Google scholar
|
[139] |
C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, Role of apodization in optical parametric amplifiers based on aperiodic quasi-phase matching gratings, Opt. Express 20(16), 18066 (2012)
CrossRef
ADS
Google scholar
|
[140] |
C. Heese, C. R. Phillips, B. W. Mayer, L. Gallmann, M. M. Fejer, and U. Keller, 75 MW few-cycle midinfrared pulses from a collinear apodized APPLN-based OPCPA, Opt. Express 20(24), 26888 (2012)
CrossRef
ADS
Google scholar
|
[141] |
O. Yaakobi, L. Caspani, M. Clerici, F. Vidal, and R. Morandotti, Complete energy conversion by autoresonant three-wave mixing in nonuniform media, Opt. Express 21(2), 1623 (2013)
CrossRef
ADS
Google scholar
|
[142] |
O. Yaakobi, M. Clerici, L. Caspani, F. Vidal, and R. Morandotti, Complete pump depletion by autoresonant second harmonic generation in a nonuniform medium, J. Opt. Soc. Am. B 30(6), 1637 (2013)
CrossRef
ADS
Google scholar
|
[143] |
J. T. Lü, F. Y. Zhao, W. Pang, and Y. Y. Li, Constant adiabatic geometric phase in three-wave mixing under different depletion levels, Phys. Lett. A 397, 127266 (2021)
CrossRef
ADS
Google scholar
|
[144] |
F. Y. Zhao, J. T. Lü, H. X. He, Y. G. Zhou, S. H. Fu, and Y. Y. Li, Geometric phase with full-wedge and half-wedge rotation in nonlinear frequency conversion, Opt. Express 29(14), 21820 (2021)
CrossRef
ADS
Google scholar
|
[145] |
J. Liu, B. Wu, and Q. Niu, Nonlinear evolution of quantum states in the adiabatic regime, Phys. Rev. Lett. 90(17), 170404 (2003)
CrossRef
ADS
Google scholar
|
[146] |
N. Segal, S. Keren-Zur, N. Hendler, and T. Ellenbogen, Controlling light with metamaterial-based nonlinear photonic crystals, Nat. Photon. 9(3), 180 (2015)
CrossRef
ADS
Google scholar
|
[147] |
S. Keren-Zur, O. Avayu, L. Michaeli, and T. Ellenbogen, Nonlinear beam shaping with plasmonic metasurfaces, ACS Photon. 3(1), 117 (2016)
CrossRef
ADS
Google scholar
|
[148] |
X. L. Gui, M. C. Shu, Y. Cai, S. Zhang, and K. W. Cheah, Third harmonic generation of optical vortices using holography-based Gold-Fork microstructure, Adv. Opt. Mater. 2(4), 389 (2014)
CrossRef
ADS
Google scholar
|
[149] |
E. Almeida, G. Shalem, and Y. Prior, Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces, Nat. Commun. 7(1), 10367 (2016)
CrossRef
ADS
Google scholar
|
[150] |
L. Wang, S. Kruk, K. Koshelev, I. Kravchenko, B. Luther-Davies, and Y. Kivshar, Nonlinear wavefront control with all-dielectric metasurfaces, Nano Lett. 18(6), 3978 (2018)
CrossRef
ADS
Google scholar
|
[151] |
E. Almeida, O. Bitton, and Y. Prior, Nonlinear metamaterials for holography, Nat. Commun. 7(1), 12533 (2016)
CrossRef
ADS
Google scholar
|
[152] |
C. Schlickriede, S. S. Kruk, L. Wang, B. Sain, Y. Kivshar, and T. Zentgraf, Nonlinear imaging with alldielectric metasurfaces, Nano Lett. 20(6), 4370 (2020)
CrossRef
ADS
Google scholar
|
[153] |
S. Keren-Zur, M. Tal, S. Fleischer, D. M. Mittleman, and T. Ellenbogen, Generation of spatiotemporally tailored terahertz wavepackets by nonlinear metasurfaces, Nat. Commun. 10(1), 1778 (2019)
CrossRef
ADS
Google scholar
|
[154] |
Y. Gao, Y. Fan, Y. Wang, W. Yang, Q. Song, and S. Xiao, Nonlinear holographic all-dielectric metasurfaces, Nano Lett. 18(12), 8054 (2018)
CrossRef
ADS
Google scholar
|
[155] |
A. Krasnok, M. Tymchenko, and A. Alù, Nonlinear metasurfaces: A paradigm shift in nonlinear optics, Mater. Today 21(1), 8 (2018)
CrossRef
ADS
Google scholar
|
[156] |
B. Sain, C. Meier, and T. Zentgraf, Nonlinear optics in all-dielectric nanoantennas and metasurfaces: A review, Adv. Photon. 1(02), 1 (2019)
CrossRef
ADS
Google scholar
|
[157] |
S. Keren-Zur, L. Michaeli, H. Suchowski, and T. Ellenbogen, Shaping light with nonlinear metasurfaces, Adv. Opt. Photon. 10(1), 309 (2018)
CrossRef
ADS
Google scholar
|
[158] |
T. Huang, X. Zhao, S. Zeng, A. Crunteanu, P. P. Shum, and N. Yu, Planar nonlinear metasurface optics and their applications, Rep. Prog. Phys. 83(12), 126101 (2020)
CrossRef
ADS
Google scholar
|
[159] |
C. Gigli, G. Marino, A. Artioli, D. Rocco, C. De Angelis, J. Claudon, J. M. Gérard, and G. Leo, Tensorial phase control in nonlinear meta-optics, Optica 8(2), 269 (2021)
CrossRef
ADS
Google scholar
|
[160] |
N. Nookala, J. Lee, M. Tymchenko, J. Sebastian Gomez-Diaz, F. Demmerle, G. Boehm, K. Lai, G. Shvets, M. C. Amann, A. Alù, and M. Belkin, Ultrathin gradient nonlinear metasurface with a giant nonlinear response, Optica 3(3), 283 (2016)
CrossRef
ADS
Google scholar
|
[161] |
N. Bloembergen and P. S. Pershan, Light waves at the boundary of nonlinear media, Phys. Rev. 128(2), 606 (1962)
CrossRef
ADS
Google scholar
|
[162] |
N. Bloembergen, Surface nonlinear optics: A historical overview, Appl. Phys. B 68(3), 289 (1999)
CrossRef
ADS
Google scholar
|
[163] |
M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, Second-harmonic generation from magnetic metamaterials, Science 313(5786), 502 (2006)
CrossRef
ADS
Google scholar
|
[164] |
S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, and W. Cai, Nonlinear imaging and spectroscopy of chiral metamaterials, Adv. Mater. 26(35), 6157 (2014)
CrossRef
ADS
Google scholar
|
[165] |
R. Hou, V. Shynkar, C. Lafargue, R. Kolkowski, J. Zyss, and F. Lagugné-Labarthet, Second harmonic generation from gold meta-molecules with three-fold symmetry, Phys. Chem. Chem. Phys. 18(11), 7956 (2016)
CrossRef
ADS
Google scholar
|
[166] |
A. Salomon, M. Zielinski, R. Kolkowski, J. Zyss, and Y. Prior, Size and shape resonances in second harmonic generation from silver nanocavities, J. Phys. Chem. C 117(43), 22377 (2013)
CrossRef
ADS
Google scholar
|
[167] |
V. K. Valev, Characterization of nanostructured plasmonic surfaces with second harmonic generation, Langmuir 28(44), 15454 (2012)
CrossRef
ADS
Google scholar
|
[168] |
J. Lee, M. Tymchenko, C. Argyropoulos, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alù, and M. A. Belkin, Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions, Nature 511(7507), 65 (2014)
CrossRef
ADS
Google scholar
|
[169] |
H. Husu, R. Siikanen, J. Mäkitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, and M. Kauranen, Metamaterials with tailored nonlinear optical response, Nano Lett. 12(2), 673 (2012)
CrossRef
ADS
Google scholar
|
[170] |
V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, Plasmonic ratchet wheels: Switching circular dichroism by arranging chiral nanostructures, Nano Lett. 9(11), 3945 (2009)
CrossRef
ADS
Google scholar
|
[171] |
K. O’Brien, H. Suchowski, J. Rho, A. Salandrino, B. Kante, X. Yin, and X. Zhang, Predicting nonlinear properties of metamaterials from the linear response, Nat. Mater. 14(4), 379 (2015)
CrossRef
ADS
Google scholar
|
[172] |
H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, Third-harmonic upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna, Nat. Nanotechnol. 9(4), 290 (2014)
CrossRef
ADS
Google scholar
|
[173] |
M. J. Huttunen, G. Bautista, M. Decker, S. Linden, M. Wegener, and M. Kauranen, Nonlinear chiral imaging of subwavelength-sized twisted-cross gold nanodimers, Opt. Mater. Express 1(1), 46 (2011) (Invited)
CrossRef
ADS
Google scholar
|
[174] |
S. Linden, F. B. P. Niesler, J. Förstner, Y. Grynko, T. Meier, and M. Wegener, Collective effects in secondharmonic generation from splitring-resonator arrays, Phys. Rev. Lett. 109(1), 015502 (2012)
CrossRef
ADS
Google scholar
|
[175] |
K. Konishi, T. Higuchi, J. Li, J. Larsson, S. Ishii, and M. Kuwata-Gonokami, Polarization-controlled circular second harmonic generation from metal hole arrays with threefold rotational symmetry, Phys. Rev. Lett. 112(13), 135502 (2014)
CrossRef
ADS
Google scholar
|
[176] |
S. Chen, G. Li, F. Zeuner, W. H. Wong, Y. B. P. Edwin, T. Zentgraf, K. W. Cheah, and S. Zhang, Symmetry-selective third-harmonic generation from plasmonic metacrystals, Phys. Rev. Lett. 113(3), 033901 (2014)
CrossRef
ADS
Google scholar
|
[177] |
L. Michaeli, S. Keren-Zur, O. Avayu, H. Suchowski, and T. Ellenbogen, Nonlinear surface lattice resonance in plasmonic nanoparticle arrays, Phys. Rev. Lett. 118(24), 243904 (2017)
CrossRef
ADS
Google scholar
|
[178] |
Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, Nonlinear fano-resonant dielectric metasurfaces, Nano Lett. 15(11), 7388 (2015)
CrossRef
ADS
Google scholar
|
[179] |
M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response, Nano Lett. 14(11), 6488 (2014)
CrossRef
ADS
Google scholar
|
[180] |
W. Cai, A. P. Vasudev, and M. L. Brongersma, Electrically controlled nonlinear generation of light with plasmonics, Science 333(6050), 1720 (2011)
CrossRef
ADS
Google scholar
|
[181] |
R. Czaplicki, H. Husu, R. Siikanen, J. Mäkitalo, M. Kauranen, J. Laukkanen, J. Lehtolahti, and M. Kuittinen, Enhancement of second-harmonic generation from metal nanoparticles by passive elements, Phys. Rev. Lett. 110(9), 093902 (2013)
CrossRef
ADS
Google scholar
|
[182] |
P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings, Nano Lett. 10(12), 4880 (2010)
CrossRef
ADS
Google scholar
|
[183] |
J. Renger, R. Quidant, N. Van Hulst, and L. Novotny, Surface-enhanced nonlinear four-wave mixing, Phys. Rev. Lett. 104(4), 046803 (2010)
CrossRef
ADS
Google scholar
|
[184] |
Z. Lin, L. Huang, T. X. Zhen, X. Li, T. Zentgraf, and Y. Wang, Four-wave mixing holographic multiplexing based on nonlinear metasurfaces, Adv. Opt. Mater. 7(21), 1900782 (2019)
CrossRef
ADS
Google scholar
|
[185] |
O. Wolf, S. Campione, A. Benz, A. P. Ravikumar, S. Liu, T. S. Luk, E. A. Kadlec, E. A. Shaner, J. F. Klem, M. B. Sinclair, and I. Brener, Phased-array sources based on nonlinear metamaterial nanocavities, Nat. Commun. 6(1), 7667 (2015)
CrossRef
ADS
Google scholar
|
[186] |
R. Kolkowski, L. Petti, M. Rippa, C. Lafargue, and J. Zyss, Octupolar plasmonic meta-molecules for nonlinear chiral watermarking at subwavelength scale, ACS Photon. 2(7), 899 (2015)
CrossRef
ADS
Google scholar
|
[187] |
R. Camacho-Morales, M. Rahmani, S. Kruk, L. Wang, L. Xu, D. A. Smirnova, A. S. Solntsev, A. Miroshnichenko, H. H. Tan, F. Karouta, S. Naureen, K. Vora, L. Carletti, C. De Angelis, C. Jagadish, Y. S. Kivshar, and D. N. Neshev, Nonlinear generation of vector beams from AlGaAs nanoantennas, Nano Lett. 16(11), 7191 (2016)
CrossRef
ADS
Google scholar
|
[188] |
G. Li, S. Chen, N. Pholchai, B. Reineke, P. W. H. Wong, E. Y. B. Pun, K. W. Cheah, T. Zentgraf, and S. Zhang, Continuous control of the nonlinearity phase for harmonic generations, Nat. Mater. 14, 607 (2015)
CrossRef
ADS
Google scholar
|
[189] |
M. Tymchenko, J. S. Gomez-Diaz, J. Lee, N. Nookala, M. A. Belkin, and A. Alù, Gradient nonlinear Pancharatnam–Berry metasurfaces, Phys. Rev. Lett. 115(20), 207403 (2015)
CrossRef
ADS
Google scholar
|
[190] |
F. Walter, G. Li, C. Meier, S. Zhang, and T. Zentgraf, Ultrathin nonlinear metasurface for optical image encoding, Nano Lett. 17(5), 3171 (2017)
CrossRef
ADS
Google scholar
|
[191] |
M. Tymchenko, J. S. Gomez-Diaz, J. Lee, N. Nookala, M. A. Belkin, and A. Alù, Advanced control of nonlinear beams with Pancharatnam–Berry metasurfaces, Phys. Rev. B 94(21), 214303 (2016)
CrossRef
ADS
Google scholar
|
[192] |
N. Shitrit, J. Kim, D. S. Barth, H. Ramezani, Y. Wang, and X. Zhang, Asymmetric free-space light transport at nonlinear metasurfaces, Phys. Rev. Lett. 121(4), 046101 (2018)
CrossRef
ADS
Google scholar
|
[193] |
S. D. Gennaro, Y. Li, S. A. Maier, and R. F. Oulton, Nonlinear Pancharatnam-Berry phase metasurfaces beyond the dipole approximation, ACS Photon. 6(9), 2335 (2019)
CrossRef
ADS
Google scholar
|
[194] |
C. McDonnell, J. Deng, S. Sideris, T. Ellenbogen, and G. Li, Functional THz emitters based on Pancharatnam–Berry phase nonlinear metasurfaces, Nat. Commun. 12(1), 30 (2021)
CrossRef
ADS
Google scholar
|
[195] |
G. Li, L. Wu, K. F. Li, S. Chen, C. Schlickriede, Z. Xu, S. Huang, W. Li, Y. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation, Nano Lett. 17(12), 7974 (2017)
CrossRef
ADS
Google scholar
|
[196] |
B. Liu, B. Sain, B. Reineke, R. Zhao, C. Meier, L. Huang, Y. Jiang, and T. Zentgraf, Nonlinear wavefront control by geometric-phase dielectric metasurfaces: Influence of mode field and rotational symmetry, Adv. Opt. Mater. 8(9), 1902050 (2020)
CrossRef
ADS
Google scholar
|
[197] |
W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, W. Q. Cheng, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, Spin and wavelength multiplexed nonlinear metasurface holography, Nat. Commun. 7(1), 11930 (2016)
CrossRef
ADS
Google scholar
|
[198] |
Y. Tang, Y. Intaravanne, J. Deng, K. F. Li, X. Chen, and G. Li, Nonlinear vectorial metasurface for optical encryption, Phys. Rev. Appl. 10(2), 024028 (2019)
CrossRef
ADS
Google scholar
|
[199] |
C. Schlickriede, N. Waterman, B. Reineke, P. Georgi, G. Li, S. Zhang, and T. Zentgraf, Imaging through nonlinear metalens using second harmonic generation, Adv. Mater. 30(8), 1703843 (2018)
CrossRef
ADS
Google scholar
|
[200] |
B. Reineke, B. Sain, R. Zhao, L. Carletti, B. Liu, L. Huang, C. De Angelis, and T. Zentgraf, Silicon metasurfaces for third harmonic geometric phase manipulation and multiplexed holography, Nano Lett. 19(9), 6585 (2019)
CrossRef
ADS
Google scholar
|
[201] |
L. Huang, S. Zhang, and T. Zentgraf, Metasurface holography: From fundamentals to applications, Nanophotonics 7(6), 1169 (2018)
CrossRef
ADS
Google scholar
|
[202] |
S. Chen, G. Li, K. W. Cheah, T. Zentgraf, and S. Zhang, Controlling the phase of optical nonlinearity with plasmonic metasurfaces, Nanophotonics 7(6), 1013 (2018)
CrossRef
ADS
Google scholar
|
[203] |
Z. L. Deng and G. Li, Metasurface optical holography, Mater. Today Phys. 3, 16 ( 2017)
CrossRef
ADS
Google scholar
|
[204] |
T. Stolt, J. Kim, S. Héron, A. Vesala, Y. Yang, J. Mun, M. Kim, M. J. Huttunen, R. Czaplicki, M. Kauranen, J. Rho, and P. Genevet, Backward phase-matched secondharmonic generation from stacked metasurfaces, Phys. Rev. Lett. 126(3), 033901 (2021)
CrossRef
ADS
Google scholar
|
[205] |
T. Santiago-Cruz, A. Fedotova, V. Sultanov, M. A. Weissflog, D. Arslan, M. Younesi, T. Pertsch, I. Staude, F. Setzpfandt, and M. Chekhova, Photon pairs from resonant metasurfaces, Nano Lett. 21(10), 4423 (2021)
CrossRef
ADS
Google scholar
|
[206] |
A. S. Solntsev, G. S. Agarwal, and Y. S. Kivshar, Metasurfaces for quantum photonics, Nat. Photon. 15, 327 (2021)
CrossRef
ADS
Google scholar
|
[207] |
C. Okoth, A. Cavanna, T. Santiago-Cruz, and M. V. Chekhova, Microscale generation of entangled photons without momentum conservation, Phys. Rev. Lett. 123(26), 263602 (2019)
CrossRef
ADS
Google scholar
|
[208] |
L. Li, Z. Liu, X. Ren, S. Wang, V.-C. Su, M.-K. Chen, C. H. Chu, H. Y. Kuo, B. Liu, W. Zang, G. Guo, L. Zhang, Z. Wang, S. Zhu, and D. P. Tsai, Metalens-array-based high-dimensional and multiphoton quantum source, Science 368(6498), 1487 (2020)
CrossRef
ADS
Google scholar
|
[209] |
G. Marino, A. S. Solntsev, L. Xu, V. F. Gili, L. Carletti, A. N. Poddubny, M. Rahmani, D. A. Smirnova, H. Chen, A. Lemaître, G. Zhang, A. V. Zayats, C. De Angelis, G. Leo, A. A. Sukhorukov, and D. N. Neshev, Spontaneous photon-pair generation from a dielectric nanoantenna, Optica 6(11), 1416 (2019)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |