The geometric phase in nonlinear frequency conversion

Aviv Karnieli, Yongyao Li, Ady Arie

PDF(9844 KB)
PDF(9844 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (1) : 12301. DOI: 10.1007/s11467-021-1102-9
REVIEW ARTICLE

The geometric phase in nonlinear frequency conversion

Author information +
History +

Abstract

The geometric phase of light has been demonstrated in various platforms of the linear optical regime, raising interest both for fundamental science as well as applications, such as flat optical elements. Recently, the concept of geometric phases has been extended to nonlinear optics, following advances in engineering both bulk nonlinear photonic crystals and nonlinear metasurfaces. These new technologies offer a great promise of applications for nonlinear manipulation of light. In this review, we cover the recent theoretical and experimental advances in the field of geometric phases accompanying nonlinear frequency conversion. We first consider the case of bulk nonlinear photonic crystals, in which the interaction between propagating waves is quasi-phase-matched, with an engineerable geometric phase accumulated by the light. Nonlinear photonic crystals can offer efficient and robust frequency conversion in both the linearized and fully-nonlinear regimes of interaction, and allow for several applications including adiabatic mode conversion, electromagnetic nonreciprocity and novel topological effects for light. We then cover the rapidly-growing field of nonlinear Pancharatnam-Berry metasurfaces, which allow the simultaneous nonlinear generation and shaping of light by using ultrathin optical elements with subwavelength phase and amplitude resolution. We discuss the macroscopic selection rules that depend on the rotational symmetry of the constituent meta-atoms, the order of the harmonic generations, and the change in circular polarization. Continuous geometric phase gradients allow the steering of light beams and shaping of their spatial modes. More complex designs perform nonlinear imaging and multiplex nonlinear holograms, where the functionality is varied according to the generated harmonic order and polarization. Recent advancements in the fabrication of three dimensional nonlinear photonic crystals, as well as the pursuit of quantum light sources based on nonlinear metasurfaces, offer exciting new possibilities for novel nonlinear optical applications based on geometric phases.

Graphical abstract

Keywords

nonlinear optics / quasi phase matching / holography / geometric phase / nonlinear metasurfaces / Pancharatnam-Berry phase / frequency conversion

Cite this article

Download citation ▾
Aviv Karnieli, Yongyao Li, Ady Arie. The geometric phase in nonlinear frequency conversion. Front. Phys., 2022, 17(1): 12301 https://doi.org/10.1007/s11467-021-1102-9

References

[1]
M. V. Berry, Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. A 392(1802), 45 (1984)
CrossRef ADS Google scholar
[2]
M. V. Berry, The adiabatic phase and Pancharatnam’s phase for polarized light, J. Mod. Opt. 34(11), 1401 (1987)
CrossRef ADS Google scholar
[3]
S. M. Rytov, On transition from wave to geometrical optics, Dokl. Akad. Nauk. USSR 18, 263 (1938)
[4]
V. V. Vladimirsky, The rotation of a polarization plane for curved light ray, Dokl. Akad. Nauk SSSR 31, 222 (1941)
[5]
S. Pancharatnam, Generalized theory of interference, and its applications, Proc. Indian Acad. Sci. Sect. A 44(5), 247 (1956)
CrossRef ADS Google scholar
[6]
M. Berry, Anticipations of the geometric phase, Phys. Today 43(12), 34 (1990)
CrossRef ADS Google scholar
[7]
R. Y. Chiao and Y.-S. Wu, Manifestations of Berry’s topological phase for the photon, Phys. Rev. Lett. 57(8), 933 (1986)
CrossRef ADS Google scholar
[8]
A. Tomita and R. Y. Chiao, Observation of Berry’s topological phase by use of an optical fiber, Phys. Rev. Lett. 57(8), 937 (1986)
CrossRef ADS Google scholar
[9]
N. Yu and F. Capasso, Flat optics with designer metasurfaces, Nat. Mater. 13, 139 (2014)
CrossRef ADS Google scholar
[10]
H. Suchowski, G. Porat, and A. Arie, Adiabatic processes in frequency conversion, Laser Photon. Rev. 8(3), 333 (2014)
CrossRef ADS Google scholar
[11]
G. Li, S. Zhang, and T. Zentgraf, Nonlinear photonic metasurfaces, Nat. Rev. Mater. 2(5), 17010 (2017)
CrossRef ADS Google scholar
[12]
J. Zak, Berry’s phase for energy bands in solids, Phys. Rev. Lett. 62(23), 2747 (1989)
CrossRef ADS Google scholar
[13]
J. von Bergmann and H. C. von Bergmann, Foucault pendulum through basic geometry, Am. J. Phys. 75(10), 888 (2007)
CrossRef ADS Google scholar
[14]
Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)
CrossRef ADS Google scholar
[15]
F. D. M. Haldane, Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”, Phys. Rev. Lett. 61(18), 2015 (1988)
CrossRef ADS Google scholar
[16]
B. A. Bernevig, Topological Insulators and Topological Superconductors, Princeton University Press, 2013
CrossRef ADS Google scholar
[17]
E. Cohen, H. Larocque, F. Bouchard, F. Nejadsattari, Y. Gefen, and E. Karimi, Geometric phase from Aharonov-Bohm to Pancharatnam-Berry and beyond, Nat. Rev. Phys. 1, 437 (2019)
CrossRef ADS Google scholar
[18]
J. Anandan, The geometric phase, Nature 360(6402), 307 (1992)
CrossRef ADS Google scholar
[19]
B. Simon, Holonomy, the quantum adiabatic theorem, and Berry’s phase, Phys. Rev. Lett. 51(24), 2167 (1983)
CrossRef ADS Google scholar
[20]
J. J. Sakurai and J. Napolitano, Modern Quantum Mechanics, Addison-Wesley, 2011
[21]
Y. Aharonov and J. Anandan, Phase change during a cyclic quantum evolution, Phys. Rev. Lett. 58(16), 1593 (1987)
CrossRef ADS Google scholar
[22]
J. Samuel and R. Bhandari, General setting for Berry’s phase, Phys. Rev. Lett. 60(23), 2339 (1988)
CrossRef ADS Google scholar
[23]
Z. Zhou, Y. Margalit, S. Moukouri, Y. Meir, and R. Folman, An experimental test of the geodesic rule proposition for the noncyclic geometric phase, Sci. Adv. 6(9), eaay8345 (2020)
CrossRef ADS Google scholar
[24]
R. Bhandari and J. Samuel, Observation of topological phase by use of a laser interferometer, Phys. Rev. Lett. 60(13), 1211 (1988)
CrossRef ADS Google scholar
[25]
T. H. Chyba, R. Simon, L. J. Wang, and L. Mandel, Measurement of the Pancharatnam phase for a light beam, Opt. Lett. 13(7), 562 (1988)
CrossRef ADS Google scholar
[26]
Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, Space-variant Pancharatnam-Berry phase optical elements with computergenerated subwavelength gratings, Optics Lett. 27(13), 1141 (2002)
CrossRef ADS Google scholar
[27]
E. Hasman, V. Kleiner, G. Biener, and A. Niv, Polarization dependent focusing lens by use of quantized Pancharatnam-Berry phase diffractive optics, Appl. Phys. Lett. 82(3), 328 (2003)
CrossRef ADS Google scholar
[28]
X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, Ultrathin Pancharatnam-Berry metasurface with maximal cross-polarization efficiency, Adv. Mater. 27(7), 1195 (2015)
CrossRef ADS Google scholar
[29]
S. Slussarenko, A. Alberucci, C. P. Jisha, B. Piccirillo, E. Santamato, G. Assanto, and L. Marrucci, Guiding light via geometric phases, Nat. Photon. 10(9), 571 (2016)
CrossRef ADS Google scholar
[30]
K. Y. Bliokh, F. J. Rodríguez-Fortuño, F. Nori, and A. V. Zayats, Spin-orbit interactions of light, Nat. Photon. 9,796 (2015)
CrossRef ADS Google scholar
[31]
R. C. Devlin, A. Ambrosio, N. A. Rubin, J. P. B. Mueller, and F. Capasso, Arbitrary spin-to-orbital angular momentum conversion of light, Science 358(6365), 896 (2017)
CrossRef ADS Google scholar
[32]
L. Marrucci, C. Manzo, and D. Paparo, Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation, Appl. Phys. Lett. 88(22), 221102 (2006)
CrossRef ADS Google scholar
[33]
G. Biener, A. Niv, V. Kleiner, and E. Hasman, Formation of helical beams by use of Pancharatnam-Berry phase optical elements, Opt. Lett. 27(21), 1875 (2002)
CrossRef ADS Google scholar
[34]
F. Cardano, F. Massa, H. Qassim, E. Karimi, S. Slussarenko, D. Paparo, C. De Lisio, F. Sciarrino, E. Santamato, R. W. Boyd, and L. Marrucci, Quantum walks and wavepacket dynamics on a lattice with twisted photons, Sci. Adv. 1(2), e1500087 (2015)
CrossRef ADS Google scholar
[35]
J. R. Kurz, A. M. Schober, D. S. Hum, A. J. Saltzman, and M. M. Fejer, Nonlinear physical optics with transversely patterned quasi-phase-matching gratings, IEEE J. Sel. Top. Quantum Electron. 8(3), 660 (2002)
CrossRef ADS Google scholar
[36]
A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, Twodimensional nonlinear beam shaping, Opt. Lett. 37(11), 2136 (2012)
CrossRef ADS Google scholar
[37]
A. Shapira, I. Juwiler, and A. Arie, Tunable nonlinear beam shaping by non-collinear interactions, Laser Photon. Rev. 7(4), L25 (2013)
CrossRef ADS Google scholar
[38]
B. Yang, X. H. Hong, R. E. Lu, Y. Y. Yue, C. Zhang, Y. Q. Qin, and Y. Y. Zhu, 2D wave-front shaping in optical superlattices using nonlinear volume holography, Opt. Lett. 41(13), 2927 (2016)
CrossRef ADS Google scholar
[39]
N. V. Bloch, K. Shemer, A. Shapira, R. Shiloh, I. Juwiler, and A. Arie, Twisting light by nonlinear photonic crystals, Phys. Rev. Lett. 108(23), 233902 (2012)
CrossRef ADS Google scholar
[40]
S. Trajtenberg-Mills, I. Juwiler, and A. Arie, On-axis shaping of second-harmonic beams, Laser Photon. Rev. 9(6), L40 (2015)
CrossRef ADS Google scholar
[41]
Y. Ming, J. Tang, Z.-X. Chen, F. Xu, L.-J. Zhang, and Y.-Q. Lu, Generation of N00N state with orbital angular momentum in a twisted nonlinear photonic crystal, IEEE J. Sel. Top. Quantum Electron. 21(3), 225 (2015)
CrossRef ADS Google scholar
[42]
T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, Nonlinear generation and manipulation of airy beams, Nat. Photon. 3(7), 395 (2009)
CrossRef ADS Google scholar
[43]
J. Imbrock, L. Wesemann, S. Kroesen, M. Ayoub, and C. Denz, Waveguide integrated three-dimensional quasiphase-matching structures, Optica 7(1), 28 (2020)
CrossRef ADS Google scholar
[44]
S. Liu, K. Switkowski, C. Xu, J. Tian, B. Wang, P. Lu, W. Krolikowski, and Y. Sheng, Nonlinear wavefront shaping with optically induced three-dimensional nonlinear photonic crystals, Nat. Commun. 10(1), 3208 (2019)
CrossRef ADS Google scholar
[45]
P. Mandel, P. Galatola, L. A. Lugiato, and K. G. Wang, Berry phase analogies in nonlinear optics, Opt. Commun. 80(3–4), 262 (1991)
CrossRef ADS Google scholar
[46]
M. S. Alber, G. G. Luther, J. E. Marsden, and J. M. Robbins, Geometric phases, reduction and Lie-Poisson structure for the resonant three-wave interaction, Physica D 123(1–4), 271 (1998)
CrossRef ADS Google scholar
[47]
V. Y. Toronov and V. L. Derbov, Geometric phases in lasers and liquid flows, Phys. Rev. A 49(2), 1392 (1994)
CrossRef ADS Google scholar
[48]
J. C. Garrison and R. Y. Chiao, Geometrical phases from global gauge invariance of nonlinear classical field theories, Phys. Rev. Lett. 60(3), 165 (1988)
CrossRef ADS Google scholar
[49]
J. Liu and L. B. Fu, Berry phase in nonlinear systems, Phys. Rev. A 81(5), 052112 (2010)
CrossRef ADS Google scholar
[50]
L. D. Zhang, L. B. Fu, and J. Liu, Adiabatic geometric phase in the nonlinear coherent coupler, Eur. Phys. J. D 65(3), 557 (2011)
CrossRef ADS Google scholar
[51]
J. Liu, S. C. Li, L. B. Fu, and D. F. Ye, Nonlinear Adiabatic Evolution of Quantum Systems, in:Nonlinear Adiabatic Evolution of Quantum Systems, pp 49–72, Springer Singapore, 2018
CrossRef ADS Google scholar
[52]
G. G. Luther, M. S. Alber, J. E. Marsden, and J. M. Robbins, Geometric analysis of optical frequency conversion and its control in quadratic nonlinear media, J. Opt. Soc. Am. B 17(6), 932 (2000)
CrossRef ADS Google scholar
[53]
H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, Geometrical representation of sum frequency generation and adiabatic frequency conversion, Phys. Rev. A 78(6), 063821 (2008)
CrossRef ADS Google scholar
[54]
H. Suchowski, V. Prabhudesai, D. Oron, A. Arie, and Y. Silberberg, Robust adiabatic sum frequency conversion, Opt. Express 17(15), 12731 (2009)
CrossRef ADS Google scholar
[55]
P. Krogen, H. Suchowski, H. Liang, N. Flemens, K. H. Hong, F. X. Kärtner, and J. Moses, Generation and multioctave shaping of mid-infrared intense single-cycle pulses, Nat. Photon. 11(4), 222 (2017)
CrossRef ADS Google scholar
[56]
X. Ding, D. Heberle, K. Harrington, N. Flemens, W. Z. Chang, T. A. Birks, and J. Moses, Observation of rapid adiabatic passage in optical four-wave mixing, Phys. Rev. Lett. 124, 153902 (2020)
CrossRef ADS Google scholar
[57]
E. Bahar, X. Ding, A. Dahan, H. Suchowski, and J. Moses, Adiabatic four-wave mixing frequency conversion, Opt. Express 26(20), 25582 (2018)
CrossRef ADS Google scholar
[58]
K. Wang, Y. Shi, A. S. Solntsev, S. Fan, A. A. Sukhorukov, and D. N. Neshev, Non-reciprocal geometric phase in nonlinear frequency conversion, Opt. Lett. 42(10), 1990 (2017)
CrossRef ADS Google scholar
[59]
A. Karnieli and A. Arie, Fully controllable adiabatic geometric phase in nonlinear optics, Opt. Express 26(4), 4920 (2018)
CrossRef ADS Google scholar
[60]
A. Karnieli, S. Trajtenberg-Mills, G. Di Domenico, and A. Arie, Experimental observation of the geometric phase in nonlinear frequency conversion, Optica 6(11), 1401 (2019)
CrossRef ADS Google scholar
[61]
Y. Li, O. Yesharim, I. Hurvitz, A. Karnieli, S. Fu, G. Porat, and A. Arie, Adiabatic geometric phase in fully nonlinear three-wave mixing, Phys. Rev. A101(3), 033807 (2020)
CrossRef ADS Google scholar
[62]
Y. Li, J. Lü, S. Fu, and A. Arie, Geometric representation and the adiabatic geometric phase in four-wave mixing processes, Opt. Express 29(5), 7288 (2021)
CrossRef ADS Google scholar
[63]
N. Westerberg, C. Maitland, D. Faccio, K. Wilson, P. Öhberg, and E. M. Wright, Synthetic magnetism for photon fluids, Phys. Rev. A94(2), 023805 (2016)
CrossRef ADS Google scholar
[64]
A. Karnieli, S. Tsesses, G. Bartal, and A. Arie, Emulating spin transport with nonlinear optics, from high-order skyrmions to the topological Hall effect, Nat. Commun. 12(1), 1092 (2021)
CrossRef ADS Google scholar
[65]
A. Karnieli, S. Tsesses, G. Bartal, and A. Arie, Optical skyrmions and a topological Hall effect in artificial gauge fields, in:CLEO: QELS_Fundamental Science, p. FW4A.6, 2020
CrossRef ADS Google scholar
[66]
D. Smirnova, D. Leykam, Y. Chong, and Y. Kivshar, Nonlinear topological photonics, Appl. Phys. Rev. 7(2), 021306 (2020)
CrossRef ADS Google scholar
[67]
R. W. Boyd, Nonlinear Optics, Academic Press, 2008
[68]
P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, Effects of dispersion and focusing on the production of optical harmonics, Phys. Rev. Lett. 8(1), 21 (1962)
CrossRef ADS Google scholar
[69]
E. Rozenberg and A. Arie, Broadband and robust adiabatic second harmonic generation by temperature gradient in birefringently phase matched lithium triborate crystal, Opt. Lett. 44(13), 3358 (2019)
CrossRef ADS Google scholar
[70]
M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation, Appl. Phys. Lett. 62(5), 435 (1993)
CrossRef ADS Google scholar
[71]
T. Xu, K. Switkowski, X. Chen, S. Liu, K. Koynov, H. Yu, H. Zhang, J. Wang, Y. Sheng, and W. Krolikowski, Three-dimensional nonlinear photonic crystal in ferroelectric barium calcium titanate, Nat. Photon. 12(10), 591 (2018)
CrossRef ADS Google scholar
[72]
D. Wei, C. Wang, H. Wang, X. Hu, D. Wei, X. Fang, Y. Zhang, D. Wu, Y. Hu, J. Li, S. Zhu, and M. Xiao, Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal, Nat. Photon. 12(10), 596 (2018)
CrossRef ADS Google scholar
[73]
S. Signorini, M. Mancinelli, M. Borghi, M. Bernard, M. Ghulinyan, G. Pucker, and L. Pavesi, Intermodal fourwave mixing in silicon waveguides, Photon. Res. 6(8), 805 (2018)
CrossRef ADS Google scholar
[74]
X. Chen, P. Karpinski, V. Shvedov, K. Koynov, B. Wang, J. Trull, C. Cojocaru, W. Krolikowski, and Y. Sheng, Ferroelectric domain engineering by focused infrared femtosecond pulses, Appl. Phys. Lett. 107(14), 141102 (2015)
CrossRef ADS Google scholar
[75]
X. Chen, P. Karpinski, V. Shvedov, A. Boes, A. Mitchell, W. Krolikowski, and Y. Sheng, Quasi-phase matching via femtosecond laser-induced domain inversion in lithium niobate waveguides, Opt. Lett. 41(11), 2410 (2016)
CrossRef ADS Google scholar
[76]
S. Keren-Zur and T. Ellenbogen, A new dimension for nonlinear photonic crystals, Nat. Photon. 12, 575 (2018)
CrossRef ADS Google scholar
[77]
W. H. Lee, Binary computer-generated holograms, Appl. Opt. 18(21), 3661 (1979)
CrossRef ADS Google scholar
[78]
A. Shapira, I. Juwiler, and A. Arie, Nonlinear computergenerated holograms, Opt. Lett. 36(15), 3015 (2011)
CrossRef ADS Google scholar
[79]
A. Shapira, L. Naor, and A. Arie, Nonlinear optical holograms for spatial and spectral shaping of light waves, Sci. Bull. (Beijing) 60(16), 1403 (2015)
CrossRef ADS Google scholar
[80]
S. Trajtenebrg-Mills and A. Arie, Shaping light beams in nonlinear processes using structured light and patterned crystals, Opt. Mater. Express 7(8), 2928 (2017)
CrossRef ADS Google scholar
[81]
G. Imeshev, M. Proctor, and M. M. Fejer, Lateral patterning of nonlinear frequency conversion with radially varying quasi-phase-matching gratings, Opt. Lett. 23(9), 673 (1998)
CrossRef ADS Google scholar
[82]
S. M. Saltiel, D. N. Neshev, W. Krolikowski, A. Arie, O. Bang, and Y. S. Kivshar, Multiorder nonlinear diffraction in frequency doubling processes, Opt. Lett. 34(6), 848 (2009)
CrossRef ADS Google scholar
[83]
T. Ellenbogen, A. Ganany-Padowicz, and A. Arie, Nonlinear photonic structures for all-optical deflection, Opt. Express 16(5), 3077 (2008)
CrossRef ADS Google scholar
[84]
K. Shemer, N. Voloch-Bloch, A. Shapira, A. Libster, I. Juwiler, and A. Arie, Azimuthal and radial shaping of vortex beams generated in twisted nonlinear photonic crystals, Opt. Lett. 38(24), 5470 (2013)
CrossRef ADS Google scholar
[85]
B. Zhu, H. Liu, Y. Chen, and X. Chen, High conversion efficiency second-harmonic beam shaping via amplitudetype nonlinear photonic crystals, Opt. Lett. 45(1), 220 (2020)
CrossRef ADS Google scholar
[86]
D. Liu, S. Liu, L. M. Mazur, B. Wang, P. Lu, W. Krolikowski, and Y. Sheng, Smart optically induced nonlinear photonic crystals for frequency conversion and control, Appl. Phys. Lett. 116(5), 051104 (2020)
CrossRef ADS Google scholar
[87]
B. Zhu, H. Liu, Y. Liu, X. Yan, Y. Chen, and X. Chen, Secondharmonic computer-generated holographic imaging through monolithic lithium niobate crystal by femtosecond laser micromachining, Opt. Lett. 45(15), 4132 (2020)
CrossRef ADS Google scholar
[88]
A. Libster-Hershko, S. Trajtenberg-Mills, and A. Arie, Dynamic control of light beams in second harmonic generation, Opt. Lett. 40(9), 1944 (2015)
CrossRef ADS Google scholar
[89]
T. Ellenbogen, I. Dolev, and A. Arie, Mode conversion in quadratic nonlinear crystals, Opt. Lett. 33(11), 1207 (2008)
CrossRef ADS Google scholar
[90]
Y. Z. Zhi, Y. Li, S. D. Dong, K. J. Yun, W. Zhang, S. Shi, S. S. Bao, and C. G. Guang, Generation of light with controllable spatial patterns via the sum frequency in quasi-phase matching crystals, Sci. Rep. 4(1), 1 (2014)
CrossRef ADS Google scholar
[91]
Y. Qin, C. Zhang, Y. Zhu, X. Hu, and G. Zhao, Wavefront engineering by Huygens-Fresnel principle for nonlinear optical interactions in domain engineered structures, Phys. Rev. Lett. 100(6), 063902 (2008)
CrossRef ADS Google scholar
[92]
H. H. Xu, B. Yang, C. Zhang, Q. Q. Yi, and Y. Z. Yong, Nonlinear volume holography for wave-front engineering, Phys. Rev. Lett. 113(16), 163902 (2014)
CrossRef ADS Google scholar
[93]
I. Dolev, T. Ellenbogen, N. Voloch-Bloch, and A. Arie, Control of free space propagation of Airy beams generated by quadratic nonlinear photonic crystals, Appl. Phys. Lett. 95, 201112 (2009)
CrossRef ADS Google scholar
[94]
I. Dolev, A. Libster, and A. Arie, Selfaccelerating parabolic beams in quadratic nonlinear media, Appl. Phys. Lett. 101(10), 101109 (2012)
CrossRef ADS Google scholar
[95]
I. Dolev and A. Arie, Three wave mixing of airy beams in a quadratic nonlinear photonic crystals, Appl. Phys. Lett. 97(17), 171102 (2010)
CrossRef ADS Google scholar
[96]
I. Dolev, T. Ellenbogen, and A. Arie, Switching the acceleration direction of Airy beams by a nonlinear optical process, Opt. Lett. 35(10), 1581 (2010)
CrossRef ADS Google scholar
[97]
I. Dolev, I. Kaminer, A. Shapira, M. Segev, and A. Arie, Experimental observation of self-accelerating beams in quadratic nonlinear media, Phys. Rev. Lett. 108(11), 113903 (2012)
CrossRef ADS Google scholar
[98]
S. Trajtenberg-Mills, I. Juwiler, and A. Arie, Generation of second-harmonic beams with switchable curved trajectories, Optica 4(1), 153 (2017)
CrossRef ADS Google scholar
[99]
D. Liu, Y. Zhang, J. Wen, Z. Chen, D. Wei, X. Hu, G. Zhao, S. N. Zhu, and M. Xiao, Diffraction interference induced superfocusing in nonlinear Talbot effect, Sci. Rep. 4, 6134 (2014)
CrossRef ADS Google scholar
[100]
G. Imeshev, M. A. Arbore, M. M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, Ultrashortpulse second-harmonic generation with longitudinally nonuniform quasi-phase-matching gratings: Pulse compression and shaping, J. Opt. Soc. Am. B 17(2), 304 (2000)
CrossRef ADS Google scholar
[101]
C. R. Phillips, B. W. Mayer, L. Gallmann, and U. Keller, Frequency-domain nonlinear optics in two-dimensionally patterned quasi-phase-matching media, Opt. Express 24(14), 15940 (2016)
CrossRef ADS Google scholar
[102]
R. Shiloh and A. Arie, Spectral and temporal holograms with nonlinear optics, Opt. Lett. 37(17), 3591 (2012)
CrossRef ADS Google scholar
[103]
A. Leshem, R. Shiloh, and A. Arie, Experimental realization of spectral shaping using nonlinear optical holograms, Opt. Lett. 39(18), 5370 (2014)
CrossRef ADS Google scholar
[104]
R. Remez and A. Arie, Super-narrow frequency conversion, Optica 2(5), 472 (2015)
CrossRef ADS Google scholar
[105]
J. P. Torres, A. Alexandrescu, S. Carrasco, and L. Torner, Quasi-phase-matching engineering for spatial control of entangled twophoton states, Opt. Lett. 29(4), 376 (2004)
CrossRef ADS Google scholar
[106]
S. Trajtenberg‐Mills, A. Karnieli, N. Voloch‐Bloch, E. Megidish, H. S. Eisenberg, and A. Arie, Simulating correlations of structured spontaneously down‐converted photon pairs, Laser Photon. Rev. 14(3), 1900321 (2020)
CrossRef ADS Google scholar
[107]
H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, On-chip steering of entangled photons in nonlinear photonic crystals, Nat. Commun. 2(1), 429 (2011)
CrossRef ADS Google scholar
[108]
E. Megidish, A. Halevy, H. S. Eisenberg, A. Ganany-Padowicz, N. Habshoosh, and A. Arie, Compact 2D nonlinear photonic crystal source of beamlike path entangled photons, Opt. Express 21(6), 6689 (2013)
CrossRef ADS Google scholar
[109]
L. L. Lu, P. Xu, M. L. Zhong, Y. F. Bai, and S. N. Zhu, Orbital angular momentum entanglement via forkpoling nonlinear photonic crystals, Opt. Express 23(2), 1203 (2015)
CrossRef ADS Google scholar
[110]
H. Jin, P. Xu, X. W. Luo, H. Y. Leng, Y. X. Gong, W. J. Yu, M. L. Zhong, G. Zhao, and S. N. Zhu, Compact engineering of path-entangled sources from a monolithic quadratic nonlinear photonic crystal, Phys. Rev. Lett. 111(2), 023603 (2013)
CrossRef ADS Google scholar
[111]
A. Bahabad and A. Arie, Generation of optical vortex beams by nonlinear wave mixing, Opt. Express 15(26), 17619 (2007)
CrossRef ADS Google scholar
[112]
Y. Zhang, Y. Sheng, S. Zhu, M. Xiao, and W. Krolikowski, Nonlinear photonic crystals: From 2D to 3D, Optica 8(3), 372 (2021)
CrossRef ADS Google scholar
[113]
S. Liu, L. M. Mazur, W. Krolikowski, and Y. Sheng, Nonlinear volume holography in 3D nonlinear photonic crystals, Laser Photon. Rev. 14(11), 2000224 (2020)
CrossRef ADS Google scholar
[114]
D. Wei, C. Wang, X. Xu, H. Wang, Y. Hu, P. Chen, J. Li, Y. Zhu, C. Xin, X. Hu, Y. Zhang, D. Wu, J. Chu, S. Zhu, and M. Xiao, Efficient nonlinear beam shaping in three-dimensional lithium niobate nonlinear photonic crystals, Nat. Commun. 10(1), 4193 (2019)
CrossRef ADS Google scholar
[115]
A. Rangelov and S. Longhi, Nonlinear adiabatic optical isolator, Appl. Opt. 56(11), 2991 (2017)
CrossRef ADS Google scholar
[116]
K. Abdelsalam, T. Li, J. B. Khurgin, and S. Fathpour, Linear isolators using wavelength conversion, Optica 7(3), 209 (2020)
CrossRef ADS Google scholar
[117]
A. Markov, A. Mazhorova, H. Breitenborn, A. Bruhacs, M. Clerici, D. Modotto, O. Jedrkiewicz, P. di Trapani, A. Major, F. Vidal, and R. Morandotti, Broadband and efficient adiabatic threewave-mixing in a temperaturecontrolled bulk crystal, Opt. Express 26(4), 4448 (2018)
CrossRef ADS Google scholar
[118]
T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, Topological photonics, Rev. Mod. Phys. 91(1), 015006 (2019)
CrossRef ADS Google scholar
[119]
L. Lu, J. D. Joannopoulos, and M. Soljačić, Topological photonics, Nat. Photon. 8(11), 821 (2014)
CrossRef ADS Google scholar
[120]
G. Harari, M. A. Bandres, Y. Lumer, M. C. Rechtsman, Y. D. Chong, M. Khajavikhan Demetrios, N. Christodoulides, and M. Sege, Topological insulator laser: Theory, Science 359(6381), eaar4003 (2018)
CrossRef ADS Google scholar
[121]
B. Bahari, A. Ndao, F. Vallini, A. El Amili, Y. Fainman, and B. Kanté, Nonreciprocal lasing in topological cavities of arbitrary geometries, Science 358(6363), 636 (2017)
CrossRef ADS Google scholar
[122]
S. Mukherjee and M. C. Rechtsman, Observation of Floquet solitons in a topological bandgap, Science 368(6493), 856 (2020)
CrossRef ADS Google scholar
[123]
Y. Wang, L. J. Lang, H. L. Ching, B. Zhang, and Y. D. Chong, Topologically enhanced harmonic generation in a nonlinear transmission line metamaterial, Nat. Commun. 10(1), 1102 (2019)
CrossRef ADS Google scholar
[124]
S. Kruk, A. Poddubny, D. Smirnova, L. Wang, A. Slobozhanyuk, A. Shorokhov, I. Kravchenko, B. Luther-Davies, and Y. Kivshar, Nonlinear light generation in topological nanostructures, Nat. Nanotechnol. 14(2), 126 (2019)
CrossRef ADS Google scholar
[125]
X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa, and Y. Tokura, Realspace observation of a two-dimensional skyrmion crystal, Nature 465(7300), 901 (2010)
CrossRef ADS Google scholar
[126]
A. Fert, N. Reyren, and V. Cros, Magnetic skyrmions: Advances in physics and potential applications, Nat. Rev. Mater. 2(7), 17031 (2017)
CrossRef ADS Google scholar
[127]
A. Karnieli and A. Arie, All-optical Stern-Gerlach effect, Phys. Rev. Lett. 120(5), 053901 (2018)
CrossRef ADS Google scholar
[128]
A. Karnieli and A. Arie, Frequency domain Stern-Gerlach effect for photonic qubits and qutrits, Optica 5(10), 1297 (2018)
CrossRef ADS Google scholar
[129]
P. Bruno, V. K. Dugaev, and M. Taillefumier, Topological Hall effect and Berry phase in magnetic nanostructures, Phys. Rev. Lett. 93(9), 096806 (2004)
CrossRef ADS Google scholar
[130]
A. Neubauer, C. Pfleiderer, B. Binz, A. Rosch, R. Ritz, P. G. Niklowitz, and P. Böni, Topological Hall effect in the a phase of MnSi, Phys. Rev. Lett. 102(18), 186602 (2009)
CrossRef ADS Google scholar
[131]
N. Kanazawa, Y. Onose, T. Arima, D. Okuyama, K. Ohoyama, S. Wakimoto, K. Kakurai, S. Ishiwata, and Y. Tokura, Large topological Hall effect in a short-period helimagnet MnGe, Phys. Rev. Lett. 106(15), 156603 (2011)
CrossRef ADS Google scholar
[132]
K. Everschor-Sitte and M. Sitte, Realspace Berry phases: Skyrmion soccer, J. Appl. Phys. 115(17), 172602 (2014)
CrossRef ADS Google scholar
[133]
J. Ping Liu, Z. Zhang, and G. Zhao, Skyrmions: Topological Structures, Properties, and Applications, CRC Press, 2016
[134]
G. Porat and A. Arie, Efficient, broadband, and robust frequency conversion by fully nonlinear adiabatic threewave mixing, J. Opt. Soc. Am. B 30(5), 1342 (2013)
CrossRef ADS Google scholar
[135]
C. R. Phillips, C. Langrock, D. Chang, Y. W. Lin, L. Gallmann, and M. M. Fejer, Apodization of chirped quasi-phasematching devices, J. Opt. Soc. Am. B 30(6), 1551 (2013)
CrossRef ADS Google scholar
[136]
C. R. Phillips and M. M. Fejer, Adiabatic optical parametric oscillators: Steady-state and dynamical behavior, Opt. Express 20(3), 2466 (2012)
CrossRef ADS Google scholar
[137]
C. R. Phillips and M. M. Fejer, Efficiency and phase of optical parametric amplification in chirped quasi-phasematched gratings, Opt. Lett. 35(18), 3093 (2010)
CrossRef ADS Google scholar
[138]
C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, Ultrabroadband, highly flexible amplifier for ultrashort midinfrared laser pulses based on a periodically poled Mg:LiNbO3, Opt. Lett. 35(14), 2340 (2010)
CrossRef ADS Google scholar
[139]
C. Heese, C. R. Phillips, L. Gallmann, M. M. Fejer, and U. Keller, Role of apodization in optical parametric amplifiers based on aperiodic quasi-phase matching gratings, Opt. Express 20(16), 18066 (2012)
CrossRef ADS Google scholar
[140]
C. Heese, C. R. Phillips, B. W. Mayer, L. Gallmann, M. M. Fejer, and U. Keller, 75 MW few-cycle midinfrared pulses from a collinear apodized APPLN-based OPCPA, Opt. Express 20(24), 26888 (2012)
CrossRef ADS Google scholar
[141]
O. Yaakobi, L. Caspani, M. Clerici, F. Vidal, and R. Morandotti, Complete energy conversion by autoresonant three-wave mixing in nonuniform media, Opt. Express 21(2), 1623 (2013)
CrossRef ADS Google scholar
[142]
O. Yaakobi, M. Clerici, L. Caspani, F. Vidal, and R. Morandotti, Complete pump depletion by autoresonant second harmonic generation in a nonuniform medium, J. Opt. Soc. Am. B 30(6), 1637 (2013)
CrossRef ADS Google scholar
[143]
J. T. Lü, F. Y. Zhao, W. Pang, and Y. Y. Li, Constant adiabatic geometric phase in three-wave mixing under different depletion levels, Phys. Lett. A 397, 127266 (2021)
CrossRef ADS Google scholar
[144]
F. Y. Zhao, J. T. Lü, H. X. He, Y. G. Zhou, S. H. Fu, and Y. Y. Li, Geometric phase with full-wedge and half-wedge rotation in nonlinear frequency conversion, Opt. Express 29(14), 21820 (2021)
CrossRef ADS Google scholar
[145]
J. Liu, B. Wu, and Q. Niu, Nonlinear evolution of quantum states in the adiabatic regime, Phys. Rev. Lett. 90(17), 170404 (2003)
CrossRef ADS Google scholar
[146]
N. Segal, S. Keren-Zur, N. Hendler, and T. Ellenbogen, Controlling light with metamaterial-based nonlinear photonic crystals, Nat. Photon. 9(3), 180 (2015)
CrossRef ADS Google scholar
[147]
S. Keren-Zur, O. Avayu, L. Michaeli, and T. Ellenbogen, Nonlinear beam shaping with plasmonic metasurfaces, ACS Photon. 3(1), 117 (2016)
CrossRef ADS Google scholar
[148]
X. L. Gui, M. C. Shu, Y. Cai, S. Zhang, and K. W. Cheah, Third harmonic generation of optical vortices using holography-based Gold-Fork microstructure, Adv. Opt. Mater. 2(4), 389 (2014)
CrossRef ADS Google scholar
[149]
E. Almeida, G. Shalem, and Y. Prior, Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces, Nat. Commun. 7(1), 10367 (2016)
CrossRef ADS Google scholar
[150]
L. Wang, S. Kruk, K. Koshelev, I. Kravchenko, B. Luther-Davies, and Y. Kivshar, Nonlinear wavefront control with all-dielectric metasurfaces, Nano Lett. 18(6), 3978 (2018)
CrossRef ADS Google scholar
[151]
E. Almeida, O. Bitton, and Y. Prior, Nonlinear metamaterials for holography, Nat. Commun. 7(1), 12533 (2016)
CrossRef ADS Google scholar
[152]
C. Schlickriede, S. S. Kruk, L. Wang, B. Sain, Y. Kivshar, and T. Zentgraf, Nonlinear imaging with alldielectric metasurfaces, Nano Lett. 20(6), 4370 (2020)
CrossRef ADS Google scholar
[153]
S. Keren-Zur, M. Tal, S. Fleischer, D. M. Mittleman, and T. Ellenbogen, Generation of spatiotemporally tailored terahertz wavepackets by nonlinear metasurfaces, Nat. Commun. 10(1), 1778 (2019)
CrossRef ADS Google scholar
[154]
Y. Gao, Y. Fan, Y. Wang, W. Yang, Q. Song, and S. Xiao, Nonlinear holographic all-dielectric metasurfaces, Nano Lett. 18(12), 8054 (2018)
CrossRef ADS Google scholar
[155]
A. Krasnok, M. Tymchenko, and A. Alù, Nonlinear metasurfaces: A paradigm shift in nonlinear optics, Mater. Today 21(1), 8 (2018)
CrossRef ADS Google scholar
[156]
B. Sain, C. Meier, and T. Zentgraf, Nonlinear optics in all-dielectric nanoantennas and metasurfaces: A review, Adv. Photon. 1(02), 1 (2019)
CrossRef ADS Google scholar
[157]
S. Keren-Zur, L. Michaeli, H. Suchowski, and T. Ellenbogen, Shaping light with nonlinear metasurfaces, Adv. Opt. Photon. 10(1), 309 (2018)
CrossRef ADS Google scholar
[158]
T. Huang, X. Zhao, S. Zeng, A. Crunteanu, P. P. Shum, and N. Yu, Planar nonlinear metasurface optics and their applications, Rep. Prog. Phys. 83(12), 126101 (2020)
CrossRef ADS Google scholar
[159]
C. Gigli, G. Marino, A. Artioli, D. Rocco, C. De Angelis, J. Claudon, J. M. Gérard, and G. Leo, Tensorial phase control in nonlinear meta-optics, Optica 8(2), 269 (2021)
CrossRef ADS Google scholar
[160]
N. Nookala, J. Lee, M. Tymchenko, J. Sebastian Gomez-Diaz, F. Demmerle, G. Boehm, K. Lai, G. Shvets, M. C. Amann, A. Alù, and M. Belkin, Ultrathin gradient nonlinear metasurface with a giant nonlinear response, Optica 3(3), 283 (2016)
CrossRef ADS Google scholar
[161]
N. Bloembergen and P. S. Pershan, Light waves at the boundary of nonlinear media, Phys. Rev. 128(2), 606 (1962)
CrossRef ADS Google scholar
[162]
N. Bloembergen, Surface nonlinear optics: A historical overview, Appl. Phys. B 68(3), 289 (1999)
CrossRef ADS Google scholar
[163]
M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, Second-harmonic generation from magnetic metamaterials, Science 313(5786), 502 (2006)
CrossRef ADS Google scholar
[164]
S. P. Rodrigues, S. Lan, L. Kang, Y. Cui, and W. Cai, Nonlinear imaging and spectroscopy of chiral metamaterials, Adv. Mater. 26(35), 6157 (2014)
CrossRef ADS Google scholar
[165]
R. Hou, V. Shynkar, C. Lafargue, R. Kolkowski, J. Zyss, and F. Lagugné-Labarthet, Second harmonic generation from gold meta-molecules with three-fold symmetry, Phys. Chem. Chem. Phys. 18(11), 7956 (2016)
CrossRef ADS Google scholar
[166]
A. Salomon, M. Zielinski, R. Kolkowski, J. Zyss, and Y. Prior, Size and shape resonances in second harmonic generation from silver nanocavities, J. Phys. Chem. C 117(43), 22377 (2013)
CrossRef ADS Google scholar
[167]
V. K. Valev, Characterization of nanostructured plasmonic surfaces with second harmonic generation, Langmuir 28(44), 15454 (2012)
CrossRef ADS Google scholar
[168]
J. Lee, M. Tymchenko, C. Argyropoulos, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alù, and M. A. Belkin, Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions, Nature 511(7507), 65 (2014)
CrossRef ADS Google scholar
[169]
H. Husu, R. Siikanen, J. Mäkitalo, J. Lehtolahti, J. Laukkanen, M. Kuittinen, and M. Kauranen, Metamaterials with tailored nonlinear optical response, Nano Lett. 12(2), 673 (2012)
CrossRef ADS Google scholar
[170]
V. K. Valev, N. Smisdom, A. V. Silhanek, B. De Clercq, W. Gillijns, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, Plasmonic ratchet wheels: Switching circular dichroism by arranging chiral nanostructures, Nano Lett. 9(11), 3945 (2009)
CrossRef ADS Google scholar
[171]
K. O’Brien, H. Suchowski, J. Rho, A. Salandrino, B. Kante, X. Yin, and X. Zhang, Predicting nonlinear properties of metamaterials from the linear response, Nat. Mater. 14(4), 379 (2015)
CrossRef ADS Google scholar
[172]
H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, Third-harmonic upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna, Nat. Nanotechnol. 9(4), 290 (2014)
CrossRef ADS Google scholar
[173]
M. J. Huttunen, G. Bautista, M. Decker, S. Linden, M. Wegener, and M. Kauranen, Nonlinear chiral imaging of subwavelength-sized twisted-cross gold nanodimers, Opt. Mater. Express 1(1), 46 (2011) (Invited)
CrossRef ADS Google scholar
[174]
S. Linden, F. B. P. Niesler, J. Förstner, Y. Grynko, T. Meier, and M. Wegener, Collective effects in secondharmonic generation from splitring-resonator arrays, Phys. Rev. Lett. 109(1), 015502 (2012)
CrossRef ADS Google scholar
[175]
K. Konishi, T. Higuchi, J. Li, J. Larsson, S. Ishii, and M. Kuwata-Gonokami, Polarization-controlled circular second harmonic generation from metal hole arrays with threefold rotational symmetry, Phys. Rev. Lett. 112(13), 135502 (2014)
CrossRef ADS Google scholar
[176]
S. Chen, G. Li, F. Zeuner, W. H. Wong, Y. B. P. Edwin, T. Zentgraf, K. W. Cheah, and S. Zhang, Symmetry-selective third-harmonic generation from plasmonic metacrystals, Phys. Rev. Lett. 113(3), 033901 (2014)
CrossRef ADS Google scholar
[177]
L. Michaeli, S. Keren-Zur, O. Avayu, H. Suchowski, and T. Ellenbogen, Nonlinear surface lattice resonance in plasmonic nanoparticle arrays, Phys. Rev. Lett. 118(24), 243904 (2017)
CrossRef ADS Google scholar
[178]
Y. Yang, W. Wang, A. Boulesbaa, I. I. Kravchenko, D. P. Briggs, A. Puretzky, D. Geohegan, and J. Valentine, Nonlinear fano-resonant dielectric metasurfaces, Nano Lett. 15(11), 7388 (2015)
CrossRef ADS Google scholar
[179]
M. R. Shcherbakov, D. N. Neshev, B. Hopkins, A. S. Shorokhov, I. Staude, E. V. Melik-Gaykazyan, M. Decker, A. A. Ezhov, A. E. Miroshnichenko, I. Brener, A. A. Fedyanin, and Y. S. Kivshar, Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response, Nano Lett. 14(11), 6488 (2014)
CrossRef ADS Google scholar
[180]
W. Cai, A. P. Vasudev, and M. L. Brongersma, Electrically controlled nonlinear generation of light with plasmonics, Science 333(6050), 1720 (2011)
CrossRef ADS Google scholar
[181]
R. Czaplicki, H. Husu, R. Siikanen, J. Mäkitalo, M. Kauranen, J. Laukkanen, J. Lehtolahti, and M. Kuittinen, Enhancement of second-harmonic generation from metal nanoparticles by passive elements, Phys. Rev. Lett. 110(9), 093902 (2013)
CrossRef ADS Google scholar
[182]
P. Genevet, J. P. Tetienne, E. Gatzogiannis, R. Blanchard, M. A. Kats, M. O. Scully, and F. Capasso, Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings, Nano Lett. 10(12), 4880 (2010)
CrossRef ADS Google scholar
[183]
J. Renger, R. Quidant, N. Van Hulst, and L. Novotny, Surface-enhanced nonlinear four-wave mixing, Phys. Rev. Lett. 104(4), 046803 (2010)
CrossRef ADS Google scholar
[184]
Z. Lin, L. Huang, T. X. Zhen, X. Li, T. Zentgraf, and Y. Wang, Four-wave mixing holographic multiplexing based on nonlinear metasurfaces, Adv. Opt. Mater. 7(21), 1900782 (2019)
CrossRef ADS Google scholar
[185]
O. Wolf, S. Campione, A. Benz, A. P. Ravikumar, S. Liu, T. S. Luk, E. A. Kadlec, E. A. Shaner, J. F. Klem, M. B. Sinclair, and I. Brener, Phased-array sources based on nonlinear metamaterial nanocavities, Nat. Commun. 6(1), 7667 (2015)
CrossRef ADS Google scholar
[186]
R. Kolkowski, L. Petti, M. Rippa, C. Lafargue, and J. Zyss, Octupolar plasmonic meta-molecules for nonlinear chiral watermarking at subwavelength scale, ACS Photon. 2(7), 899 (2015)
CrossRef ADS Google scholar
[187]
R. Camacho-Morales, M. Rahmani, S. Kruk, L. Wang, L. Xu, D. A. Smirnova, A. S. Solntsev, A. Miroshnichenko, H. H. Tan, F. Karouta, S. Naureen, K. Vora, L. Carletti, C. De Angelis, C. Jagadish, Y. S. Kivshar, and D. N. Neshev, Nonlinear generation of vector beams from AlGaAs nanoantennas, Nano Lett. 16(11), 7191 (2016)
CrossRef ADS Google scholar
[188]
G. Li, S. Chen, N. Pholchai, B. Reineke, P. W. H. Wong, E. Y. B. Pun, K. W. Cheah, T. Zentgraf, and S. Zhang, Continuous control of the nonlinearity phase for harmonic generations, Nat. Mater. 14, 607 (2015)
CrossRef ADS Google scholar
[189]
M. Tymchenko, J. S. Gomez-Diaz, J. Lee, N. Nookala, M. A. Belkin, and A. Alù, Gradient nonlinear Pancharatnam–Berry metasurfaces, Phys. Rev. Lett. 115(20), 207403 (2015)
CrossRef ADS Google scholar
[190]
F. Walter, G. Li, C. Meier, S. Zhang, and T. Zentgraf, Ultrathin nonlinear metasurface for optical image encoding, Nano Lett. 17(5), 3171 (2017)
CrossRef ADS Google scholar
[191]
M. Tymchenko, J. S. Gomez-Diaz, J. Lee, N. Nookala, M. A. Belkin, and A. Alù, Advanced control of nonlinear beams with Pancharatnam–Berry metasurfaces, Phys. Rev. B 94(21), 214303 (2016)
CrossRef ADS Google scholar
[192]
N. Shitrit, J. Kim, D. S. Barth, H. Ramezani, Y. Wang, and X. Zhang, Asymmetric free-space light transport at nonlinear metasurfaces, Phys. Rev. Lett. 121(4), 046101 (2018)
CrossRef ADS Google scholar
[193]
S. D. Gennaro, Y. Li, S. A. Maier, and R. F. Oulton, Nonlinear Pancharatnam-Berry phase metasurfaces beyond the dipole approximation, ACS Photon. 6(9), 2335 (2019)
CrossRef ADS Google scholar
[194]
C. McDonnell, J. Deng, S. Sideris, T. Ellenbogen, and G. Li, Functional THz emitters based on Pancharatnam–Berry phase nonlinear metasurfaces, Nat. Commun. 12(1), 30 (2021)
CrossRef ADS Google scholar
[195]
G. Li, L. Wu, K. F. Li, S. Chen, C. Schlickriede, Z. Xu, S. Huang, W. Li, Y. Liu, E. Y. B. Pun, T. Zentgraf, K. W. Cheah, Y. Luo, and S. Zhang, Nonlinear metasurface for simultaneous control of spin and orbital angular momentum in second harmonic generation, Nano Lett. 17(12), 7974 (2017)
CrossRef ADS Google scholar
[196]
B. Liu, B. Sain, B. Reineke, R. Zhao, C. Meier, L. Huang, Y. Jiang, and T. Zentgraf, Nonlinear wavefront control by geometric-phase dielectric metasurfaces: Influence of mode field and rotational symmetry, Adv. Opt. Mater. 8(9), 1902050 (2020)
CrossRef ADS Google scholar
[197]
W. Ye, F. Zeuner, X. Li, B. Reineke, S. He, W. Q. Cheng, J. Liu, Y. Wang, S. Zhang, and T. Zentgraf, Spin and wavelength multiplexed nonlinear metasurface holography, Nat. Commun. 7(1), 11930 (2016)
CrossRef ADS Google scholar
[198]
Y. Tang, Y. Intaravanne, J. Deng, K. F. Li, X. Chen, and G. Li, Nonlinear vectorial metasurface for optical encryption, Phys. Rev. Appl. 10(2), 024028 (2019)
CrossRef ADS Google scholar
[199]
C. Schlickriede, N. Waterman, B. Reineke, P. Georgi, G. Li, S. Zhang, and T. Zentgraf, Imaging through nonlinear metalens using second harmonic generation, Adv. Mater. 30(8), 1703843 (2018)
CrossRef ADS Google scholar
[200]
B. Reineke, B. Sain, R. Zhao, L. Carletti, B. Liu, L. Huang, C. De Angelis, and T. Zentgraf, Silicon metasurfaces for third harmonic geometric phase manipulation and multiplexed holography, Nano Lett. 19(9), 6585 (2019)
CrossRef ADS Google scholar
[201]
L. Huang, S. Zhang, and T. Zentgraf, Metasurface holography: From fundamentals to applications, Nanophotonics 7(6), 1169 (2018)
CrossRef ADS Google scholar
[202]
S. Chen, G. Li, K. W. Cheah, T. Zentgraf, and S. Zhang, Controlling the phase of optical nonlinearity with plasmonic metasurfaces, Nanophotonics 7(6), 1013 (2018)
CrossRef ADS Google scholar
[203]
Z. L. Deng and G. Li, Metasurface optical holography, Mater. Today Phys. 3, 16 ( 2017)
CrossRef ADS Google scholar
[204]
T. Stolt, J. Kim, S. Héron, A. Vesala, Y. Yang, J. Mun, M. Kim, M. J. Huttunen, R. Czaplicki, M. Kauranen, J. Rho, and P. Genevet, Backward phase-matched secondharmonic generation from stacked metasurfaces, Phys. Rev. Lett. 126(3), 033901 (2021)
CrossRef ADS Google scholar
[205]
T. Santiago-Cruz, A. Fedotova, V. Sultanov, M. A. Weissflog, D. Arslan, M. Younesi, T. Pertsch, I. Staude, F. Setzpfandt, and M. Chekhova, Photon pairs from resonant metasurfaces, Nano Lett. 21(10), 4423 (2021)
CrossRef ADS Google scholar
[206]
A. S. Solntsev, G. S. Agarwal, and Y. S. Kivshar, Metasurfaces for quantum photonics, Nat. Photon. 15, 327 (2021)
CrossRef ADS Google scholar
[207]
C. Okoth, A. Cavanna, T. Santiago-Cruz, and M. V. Chekhova, Microscale generation of entangled photons without momentum conservation, Phys. Rev. Lett. 123(26), 263602 (2019)
CrossRef ADS Google scholar
[208]
L. Li, Z. Liu, X. Ren, S. Wang, V.-C. Su, M.-K. Chen, C. H. Chu, H. Y. Kuo, B. Liu, W. Zang, G. Guo, L. Zhang, Z. Wang, S. Zhu, and D. P. Tsai, Metalens-array-based high-dimensional and multiphoton quantum source, Science 368(6498), 1487 (2020)
CrossRef ADS Google scholar
[209]
G. Marino, A. S. Solntsev, L. Xu, V. F. Gili, L. Carletti, A. N. Poddubny, M. Rahmani, D. A. Smirnova, H. Chen, A. Lemaître, G. Zhang, A. V. Zayats, C. De Angelis, G. Leo, A. A. Sukhorukov, and D. N. Neshev, Spontaneous photon-pair generation from a dielectric nanoantenna, Optica 6(11), 1416 (2019)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 The Author(s) 2022. This article is published with open access at link.springer.com and journal.hep.com.cn
AI Summary AI Mindmap
PDF(9844 KB)

Accesses

Citations

Detail

Sections
Recommended

/