Progress of microscopic thermoelectric effects studied by micro- and nano-thermometric techniques

Xue Gong, Ruijie Qian, Huanyi Xue, Weikang Lu, Zhenghua An

PDF(5450 KB)
PDF(5450 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (2) : 23201. DOI: 10.1007/s11467-021-1101-x
TOPICAL REVIEW
TOPICAL REVIEW

Progress of microscopic thermoelectric effects studied by micro- and nano-thermometric techniques

Author information +
History +

Abstract

Heat dissipation is one of the most serious problems in modern integrated electronics with the continuously decreasing devices size. Large portion of the consumed power is inevitably dissipated in the form of waste heat which not only restricts the device energy-efficiency performance itself, but also leads to severe environment problems and energy crisis. Thermoelectric Seebeck effect is a green energy-recycling method, while thermoelectric Peltier effect can be employed for heat management by actively cooling overheated devices, where passive cooling by heat conduction is not sufficiently enough. However, the technological applications of thermoelectricity are limited so far by their very low conversion efficiencies and lack of deep understanding of thermoelectricity in microscopic levels. Probing and managing the thermoelectricity is therefore fundamentally important particularly in nanoscale. In this short review, we will first briefly introduce the microscopic techniques for studying nanoscale thermoelectricity, focusing mainly on scanning thermal microscopy (SThM). SThM is a powerful tool for mapping the lattice heat with nanometer spatial resolution and hence detecting the nanoscale thermal transport and dissipation processes. Then we will review recent experiments utilizing these techniques to investigate thermoelectricity in various nanomaterial systems including both (two-material) heterojunctions and (single-material) homojunctions with tailored Seebeck coefficients, and also spin Seebeck and Peltier effects in magnetic materials. Next, we will provide a perspective on the promising applications of our recently developed Scanning Noise Microscope (SNoiM) for directly probing the non-equilibrium transporting hot charges (instead of lattice heat) in thermoelectric devices. SNoiM together with SThM are expected to be able to provide more complete and comprehensive understanding to the microscopic mechanisms in thermoelectrics. Finally, we make a conclusion and outlook on the future development of microscopic studies in thermoelectrics.

Graphical abstract

Keywords

scanning thermal microscope (SThM) / scanning noise microscope (SNoiM) / thermoelectric effects / Seebeck coefficient / Peltier cooling / spin caloritronics

Cite this article

Download citation ▾
Xue Gong, Ruijie Qian, Huanyi Xue, Weikang Lu, Zhenghua An. Progress of microscopic thermoelectric effects studied by micro- and nano-thermometric techniques. Front. Phys., 2022, 17(2): 23201 https://doi.org/10.1007/s11467-021-1101-x

References

[1]
E. Pop, Energy dissipation and transport in nanoscale devices, Nano Res. 3(3), 147 (2010)
CrossRef ADS Google scholar
[2]
E. Pop, S. Sinha, and K. E. Goodson, Heat generation and transport in nanometer-scale transistors, Proc. IEEE94(8), 1587 (2006)
CrossRef ADS Google scholar
[3]
D. Vasileska, K. Raleva, and S. M. Goodnick, Modeling heating effects in nanoscale devices: The present and the future, J. Comput. Electron. 7(2), 66 (2008)
CrossRef ADS Google scholar
[4]
T. Wagner, F. Menges, H. Riel, B. Gotsmann, and A. Stemmer, Combined scanning probe electronic and thermal characterization of an indium arsenide nanowire, Beilstein J. Nanotechnol. 9, 129 (2018)
CrossRef ADS Google scholar
[5]
T. E. Beechem, R. A. Shaffer, J. Nogan, T. Ohta, A. B. Hamilton, A. E. McDonald, and S. W. Howell, Self-heating and failure in scalable graphene device, Sci. Rep. 6(1), 26457 (2016)
CrossRef ADS Google scholar
[6]
G. S. Snyder and E. S. Toberer, Complex thermoelectric materials, Nat. Mater. 7(2), 105 (2008)
CrossRef ADS Google scholar
[7]
J. X. Duan, X. M. Wang, X. Y. Lai, G. H. Li, K. Watanabe, T. Taniguchi, M. Zebarjadi, and E. Y. Andrei, High thermoelectric power factor in graphene/hBN devices, Proc. Natl. Acad. Sci. USA113(50), 14272 (2016)
CrossRef ADS Google scholar
[8]
L. E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science321(5895), 1457 (2008)
CrossRef ADS Google scholar
[9]
Q. C. Weng, K. T. Lin, K. Yoshida, H. Nema, S. Komiyama, S. Kim, K. Hirakawa, and Y. Kajihara, Nearfield radiative nanothermal imaging of nonuniform joule heating in narrow metal wires, Nano Lett. 18(7), 4220 (2018)
CrossRef ADS Google scholar
[10]
M. Zebarjadi, Electronic cooling using thermoelectric devices, Appl. Phys. Lett.106(20), 203506 (2015)
CrossRef ADS Google scholar
[11]
A. Ziabari, M. Zebarjadi, D. Vashaee, and A. Shakouri, Nanoscale solid-state cooling: A review, Rep. Prog. Phys. 79(9), 095901 (2016)
CrossRef ADS Google scholar
[12]
Y. X. Shen, Y. Li, C. R. Jiang, and J. P. Huang, Temperature trapping: Energy-free maintenance of constant temperatures as ambient temperature gradients change, Phys. Rev. Lett. 117(5), 055501 (2016)
CrossRef ADS Google scholar
[13]
U. Leonhardt, Cloaking of heat, Nature498(7455), 440 (2013)
CrossRef ADS Google scholar
[14]
R. Hu, S. L. Zhou, Y. Li, D. Y. Lei, X. B. Luo, and C. W. Qiu, Illusion thermotics, Adv. Mater. 30(22), 1707237 (2018)
CrossRef ADS Google scholar
[15]
A. P. Raman, M. A. Anoma, L. X. Zhu, E. Rephaeli, and S. H. Fan, Passive radiative cooling below ambient air temperature under direct sunlight, Nature515(7528), 540 (2014)
CrossRef ADS Google scholar
[16]
Y. Zhai, Y. G. Ma, S. N. David, D. L. Zhao, R. N. Lou, G. Tan, R. G. Yang, and X. B. Yin, Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling, Science355(6329), 1062 (2017)
CrossRef ADS Google scholar
[17]
J. C. Zheng, Recent advances on thermoelectric materials, Front. Phys.3(3), 269 (2008)
CrossRef ADS Google scholar
[18]
T. Yamamoto, S. Watanabe, and K. Watanabe, Universal features of quantized thermal conductance of carbon nanotubes, Phys. Rev. Lett. 92(7), 075502 (2004)
CrossRef ADS Google scholar
[19]
J. Lee, J. Lim, and P. D. Yang, Ballistic phonon transport in holey silicon, Nano Lett.15(5), 3273 (2015)
CrossRef ADS Google scholar
[20]
D. Y. Li, Y. Y. Wu, P. Kim, L. Shi, P. D. Yang, and A. Majumdar, Thermal conductivity of individual silicon nanowires, Appl. Phys. Lett. 83(14), 2934 (2003)
CrossRef ADS Google scholar
[21]
A. I. Hochbaum, R. K. Chen, R. D. Delgado, W. J. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. D. Yang, Enhanced thermoelectric performance of rough silicon nanowires, Nature451(7175), 163 (2008)
CrossRef ADS Google scholar
[22]
S. Lee, K. Hippalgaonkar, F. Yang, J. W. Hong, C. Ko, J. Suh, K. Liu, K. Wang, J. J. Urban, X. Zhang, C. Dames, S. A. Hartnoll, O. Delaire, and J. Q. Wu, Anomalously low electronic thermal conductivity in metallic vanadium dioxide, Science355(6323), 371 (2017)
CrossRef ADS Google scholar
[23]
R. J. Qian, X. Gong, H. Y. Huan, W. K. Lu, L. P. Zhu, and Z. H. An, Developments on thermometric techniques in probing micro-and nano-heat, ES. Energy Environ. 6, 4 (2019)
[24]
Y. N. Yue and X. W. Wang, Nanoscale thermal probing, Nano Rev. 3(1), 11586 (2012)
CrossRef ADS Google scholar
[25]
M. Quintanilla and L. M. Liz-Marzán, Guiding rules for selecting a nanothermometer, Nano Today19, 126 (2018)
CrossRef ADS Google scholar
[26]
C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, Thermometry at the nanoscale, Nanoscale4(16), 4799 (2012)
CrossRef ADS Google scholar
[27]
C. C. Williams and H. K. Wickramasinghe, Scanning thermal profiler, Appl. Phys. Lett. 49(23), 1587 (1986)
CrossRef ADS Google scholar
[28]
D. Halbertal, J. Cuppens, M. B. Shalom, L. Embon, N. Shadmi, Y. Anahory, H. R. Naren, J. Sarkar, A. Uri, Y. Ronen, Y. Myasoedov, L. S. Levitov, E. Joselevich, A. K. Geim, and E. Zeldov, Nanoscale thermal imaging of dissipation in quantum systems, Nature539(7629), 407 (2016)
CrossRef ADS Google scholar
[29]
A. Majumdar, J. P. Carrejo, and J. Lai, Thermal imaging using the atomic force microscope, Appl. Phys. Lett. 62(20), 2501 (1993)
CrossRef ADS Google scholar
[30]
S. Sadat, A. Tan, Y. J. Chua, and P. Reddy, Nanoscale thermometry using point contact thermocouples, Nano Lett. 10(7), 2613 (2010)
CrossRef ADS Google scholar
[31]
L. Shi, S. Plyasunov, A. Bachtold, P. L. McEuen, and A. Majumdar, Scanning thermal microscopy of carbon nanotubes using batch-fabricated probes, Appl. Phys. Lett. 77(26), 4295 (2000)
CrossRef ADS Google scholar
[32]
J. Varesi and A. Majumdar, Scanning Joule expansion microscopy at nanometer scales, Appl. Phys. Lett.72(1), 37 (1998)
CrossRef ADS Google scholar
[33]
A. Majumdar and J. Varesi, Nanoscale temperature distributions measured by scanning Joule expansion microscopy, J. Heat. Trans-T. ASME. 120(2), 297(1998)
CrossRef ADS Google scholar
[34]
G. S. Shekhawat, S. Ramachandran, H. Jiryaei Sharahi, S. Sarkar, K. Hujsak, Y. Li, K. Hagglund, S. Kim, G. Aden, A. Chand, and V. P. Dravid, Micromachined chip scale thermal sensor for thermal imaging, ACS Nano12(2), 1760 (2018)
CrossRef ADS Google scholar
[35]
J. P. Heremans, M. S. Dresselhaus, L. E. Bell, and D. T. Morelli, When thermoelectrics reached the nanoscale, Nat. Nanotechnol. 8(7), 471 (2013)
CrossRef ADS Google scholar
[36]
R. A. Kishore, A. Nozariasbmarz, B. Poudel, M. Sanghadasa, and S. Priya, Ultra-high performance wearable thermoelectric coolers with less materials, Nat. Commun. 10(1), 1765 (2019)
CrossRef ADS Google scholar
[37]
I. Chowdhury, R. Prasher, K. Lofgreen, G. Chrysler, S. Narasimhan, R. Mahajan, D. Koester, R. Alley, and R. Venkatasubramanian, On-chip cooling by superlatticebased thin-film thermoelectrics, Nat. Nanotechnol. 4(4), 235 (2009)
CrossRef ADS Google scholar
[38]
W. L. Jin, L. Y. Liu, T. Yang, H. G. Shen, J. Zhu, W. Xu, S. Z. Li, Q. Li, L. F. Chi, C. A. Di, and D. D. Zhu, Exploring Peltier effect in organic thermoelectric films, Nat. Commun. 9(1), 3586 (2018)
CrossRef ADS Google scholar
[39]
H. D. Hicks and M. S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B 47(19), 12727 (1993)
CrossRef ADS Google scholar
[40]
J. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken, M. T. Pettes, X. S. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R. S. Ruoff, and L. Shi, Two-dimensional phonon transport in supported graphene, Science328(5975), 213 (2010)
CrossRef ADS Google scholar
[41]
A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater.6(3), 183 (2007)
CrossRef ADS Google scholar
[42]
K. L. Grosse, M. H. Bae, F. F. Lian, E. Pop, and W. P. King, Nanoscale joule heating, Peltier cooling and current crowding at graphene–metal contacts, Nat. Nanotechnol.6(5), 287 (2011)
CrossRef ADS Google scholar
[43]
K. L. Grosse, F. Xiong, S. Hong, W. P. King, and E. Pop, Direct observation of nanometer-scale Joule and Peltier effects in phase change memory devices, Appl. Phys. Lett.102(19), 193503 (2013)
CrossRef ADS Google scholar
[44]
I. J. Vera-Marun, J. J. Van den Berg, F. K. Dejene, and B. J. Van Wees, Direct electronic measurement of Peltier cooling and heating in graphene, Nat. Commun. 7(1), 11525 (2016)
CrossRef ADS Google scholar
[45]
K. Kim, J. Chung, J. Won, O. Kwon, J. S. Lee, S. H. Park, and Y. K. Choi, Quantitative scanning thermal microscopy using double scan technique, Appl. Phys. Lett. 93(20), 203115 (2008)
CrossRef ADS Google scholar
[46]
J. Chung, K. Kim, G. Hwang, O. Kwon, S. Jung, J. Lee, J. W. Lee, and G. T. Kim, Quantitative temperature measurement of an electrically heated carbon nanotube using the null-point method, Rev. Sci. Instrum. 81(11), 114901 (2010)
CrossRef ADS Google scholar
[47]
F. Menges, H. Riel, A. Stemmer, and B. Gotsmann, Quantitative thermometry of nanoscale hot spots, Nano Lett. 12(2), 596 (2012)
CrossRef ADS Google scholar
[48]
K. Kim, J. Chung, G. Hwang, O. Kwon, and J. S. Lee, Quantitative measurement with scanning thermal microscope by preventing the distortion due to the heat transfer through the air, ACS Nano5(11), 8700 (2011)
CrossRef ADS Google scholar
[49]
K. Kim, W. H. Jeong, W. C. Lee, and P. Reddy, Ultrahigh vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry, ACS Nano6(5), 4248 (2012)
CrossRef ADS Google scholar
[50]
F. Menges, P. Mensch, H. Schmid, H. Riel, A. Stemmer, and B. Gotsmann, Temperature mapping of operating nanoscale devices by scanning probe thermometry, Nat. Commun. 7(1), 10874 (2016)
CrossRef ADS Google scholar
[51]
P. Dollfus, V. Hung Nguyen, and J. Saint-Martin, Thermoelectric effects in graphene nanostructures, J. Phys. Condens. Matter27(13), 133204 (2015)
CrossRef ADS Google scholar
[52]
C. J. Vineis, A. Shakouri, A. Majumdar, and M. G. Kanatzidis, Nanostructured thermoelectrics: Big efficiency gains from small features, Adv. Mater. 22(36), 3970 (2010)
CrossRef ADS Google scholar
[53]
J. Mao, Z. H. Liu, and Z. F. Ren, Size effect in thermoelectric materials, npj Quantum.Mater.1(1), 16028 (2016)
CrossRef ADS Google scholar
[54]
A. Popescu, and L. M. Woods, Enhanced thermoelectricity in composites by electronic structure modifications and nanostructuring, Appl. Phys. Lett. 97(5), 052102 (2010)
CrossRef ADS Google scholar
[55]
J. Martin, L. Wang, L. D. Chen, and G. S. Nolas, Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites, Phys. Rev. B 79(11), 115311 (2009)
CrossRef ADS Google scholar
[56]
J. M. O. Zide, D. Vashaee, Z. X. Bian, G. Zeng, J. E. Bowers, A. Shakouri, and A. C. Gossard, Demonstration of electron filtering to increase the Seebeck coefficient in In0.53Ga0.47As/In0.53Ga0.28Al0.19As superlattices, Phys. Rev. B 74(20), 205335 (2006)
CrossRef ADS Google scholar
[57]
Y. M. Zuev, J. S. Lee, C. Galloy, H. Park, and P. Kim, Diameter dependence of the transport properties of antimony telluride nanowires, Nano Lett. 10(8), 3037 (2010)
CrossRef ADS Google scholar
[58]
W. Q. Sun, H. X. Liu, W. W. Gong, L. M. Peng, and S. Y. Xu, Unexpected size effect in the thermopower of thin-film stripes, J. Appl. Phys. 110(8), 083709 (2011)
CrossRef ADS Google scholar
[59]
G. P. Szakmany, A. O. Orlov, G. H. Bernstein, and W. Porod, Single-metal nanoscale thermocouples, IEEE Trans. NanoTechnol. 13(6), 1234 (2014)
CrossRef ADS Google scholar
[60]
H. X. Liu, W. Q. Sun, and S. Y. Xu, An extremely simple thermocouple made of a single layer of metal, Adv. Mater. 24(24), 3275 (2012)
CrossRef ADS Google scholar
[61]
A. X. Levander, T. Tong, K. M. Yu, J. Suh, D. Fu, R. Zhang, H. Lu, W. J. Schaff, O. Dubon, W. Walukiewicz, D. G. Cahill, and J. Wu, Effects of point defects on thermal and thermoelectric properties of inn, Appl. Phys. Lett. 98(1), 012108 (2011)
CrossRef ADS Google scholar
[62]
P. Zolotavin, C. I. Evans, and D. Natelson, Substantial local variation of the Seebeck coefficient in gold nanowires, Nanoscale9(26), 9160 (2017)
CrossRef ADS Google scholar
[63]
P. Zolotavin, C. Evans, and D. Natelson, Photothermoelectric effects and large photovoltages in plasmonic Au nanowires with nanogaps, J. Phys. Chem. Lett. 8(8), 1739 (2017)
CrossRef ADS Google scholar
[64]
A. X. Levander, T. Tong, K. M. Yu, J. Suh, D. Fu, R. Zhang, H. Lu, W. J. Schaff, O. Dubon, W. Walukiewicz, D. G. Cahill, and J. Wu, Effects of point defects on thermal and thermoelectric properties of inn, Appl. Phys. Lett. 98(1), 012108 (2011)
CrossRef ADS Google scholar
[65]
P. Zolotavin, C. I. Evans, and D. Natelson, Substantial local variation of the Seebeck coefficient in gold nanowires, Nanoscale9(26), 9160 (2017)
CrossRef ADS Google scholar
[66]
P. Zolotavin, C. Evans, and D. Natelson, Photothermoelectric effects and large photovoltages in plasmonic Au nanowires with nanogaps, J. Phys. Chem. Lett. 8(8), 1739 (2017)
CrossRef ADS Google scholar
[67]
W. J. Liang, A. I. Hochbaum, M. Fardy, O. Rabin, M. J. Zhang, and P. D. Yang, Field-effect modulation of Seebeck coefficient in single PbSe nanowires, Nano Lett. 9(4), 1689 (2009)
CrossRef ADS Google scholar
[68]
Y. Saito, T. Iizuka, T. Koretsune, R. Arita, S. Shimizu, and Y. Iwasa, Gate-tuned thermoelectric power in black phosphorus, Nano Lett. 16(8), 4819 (2016)
CrossRef ADS Google scholar
[69]
S. Shimizu, T. Iizuka, K. Kanahashi, J. Pu, K. Yanagi, T. Takenobu, and Y. Iwasa, Thermoelectric detection of multi-subband density of states in semiconducting and metallic single-walled carbon nanotubes, Small12(25), 3388 (2016)
CrossRef ADS Google scholar
[70]
J. Zhang, H. J. Liu, L. Cheng, J. Wei, J. H. Liang, D. D. Fan, J. Shi, X. F. Tang, and Q. J. Zhang, Phosphorene nanoribbon as a promising candidate for thermoelectric applications, Sci. Rep. 4(1), 6452 (2014)
CrossRef ADS Google scholar
[71]
H. K. Lyeo, A. A. Khajetoorians, L. Shi, K. P. Pipe, R. J. Ram, A. Shakouri, and C. K. Shih, Profiling the thermoelectric power of semiconductor junctions with nanometer resolution, Science303(5659), 816 (2004)
CrossRef ADS Google scholar
[72]
J. C. Walrath, Y. H. Lin, K. P. Pipe, and R. S. Goldman, Quantifying the local Seebeck coefficient with scanning thermoelectric microscopy, Appl. Phys. Lett. 103(21), 212101 (2013)
CrossRef ADS Google scholar
[73]
S. Cho, S. D. Kang, W. Kim, E. S. Lee, S. J. Woo, K. J. Kong, I. Kim, H. D. Kim, T. Zhang, J. A. Stroscio, Y.H. Kim, and H.K. Lyeo, Thermoelectric imaging of structural disorder in epitaxial graphene, Nat. Mater. 12(10), 913 (2013)
CrossRef ADS Google scholar
[74]
J. Park, G. He, R. M. Feenstra, and A. P. Li, Atomicscale mapping of thermoelectric power on graphene: Role of defects and boundaries, Nano Lett. 13(7), 3269 (2013)
CrossRef ADS Google scholar
[75]
A. Harzheim, C. Evangeli, O. V. Kolosov, and P. Gehring, Direct mapping of local Seebeck coefficient in 2D material nanostructures via scanning thermal gate microscopy, 2D., Mater7(4), 041004 (2020)
CrossRef ADS Google scholar
[76]
A. Harzheim, J. Spiece, C. Evangeli, E. McCann, V. Falko, Y. W. Sheng, J. H. Warner, G. A. D. Briggs, J. A. Mol, P. Gehring, and O. V. Kolosov, Geometrically enhanced thermoelectric effects in graphene nanoconstrictions, Nano Lett. 18(12), 7719 (2018)
CrossRef ADS Google scholar
[77]
X. D. Hu, X. Gong, M. Zhang, H. H. Lu, Z. Y. Xue, Y. F. Meng, P. K. Chu, Z. H. An, and Z. F. Di, Enhanced Peltier effect in wrinkled graphene constriction by nanobubble engineering, Small16(14), 1907170 (2020)
CrossRef ADS Google scholar
[78]
J. Q. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, O. Y. Lian, and H. Park, Strain-induced self organization of metalinsulator domains in single-crystalline VO2 nanobeams, Nano Lett. 6(10), 2313 (2006)
CrossRef ADS Google scholar
[79]
J. H. Jeong, Z. Yong, A. Joushaghani, A. Tsukernik, S. Paradis, D. Alain, and J. K. S. Poon, Current induced polycrystalline-to-crystalline transformation in vanadium dioxide nanowires, Sci. Rep. 6(1), 37296 (2016)
CrossRef ADS Google scholar
[80]
H. Guo, K. Chen, Y. Oh, K. Wang, C. Dejoie, S. A. S. Asif, O. L. Warren, Z. W. Shan, J. Wu, and A. M. Minor, Mechanics and dynamics of the strain-induced M1-M2 structural phase transition in individual VO2 nanowires, Nano Lett. 11(8), 3207 (2011)
CrossRef ADS Google scholar
[81]
M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging, Science318(5857), 1750 (2007)
CrossRef ADS Google scholar
[82]
M. M. Qazilbash, M. Brehm, G. O. Andreev, A. Frenzel, P. C. Ho, B. G. Chae, B. J. Kim, S. J. Yun, H. T. Kim, A. V. Balatsky, O. G. Shpyrko, M. B. Maple, F. Keilmann, and D. N. Basov, Infrared spectroscopy and nano-imaging of the insulator-to-metal transition in vanadium dioxide, Phys. Rev. B79(7), 075107 (2009)
CrossRef ADS Google scholar
[83]
M. M. Qazilbash, A. Tripathi, A. A. Schafgans, B. J. Kim, H. T. Kim, Z. H. Cai, M. V. Holt, J. M. Maser, F. Keilmann, O. G. Shpyrko, and D. N. Basov, Nanoscale imaging of the electronic and structural transitions in vanadium dioxide, Phys. Rev. B83(16), 165108 (2011)
CrossRef ADS Google scholar
[84]
T. Favaloro, J. Suh, J. B. Vermeersch, K. Liu, Y. J. Gu, Y. L. Q. Chen, K. X. Wang, J. Q. Wu, and A. Shakouri, Direct observation of nanoscale Peltier and Joule effects at metalinsulator domain walls in vanadium dioxide nanobeams, Nano Lett. 14(5), 2394 (2014)
CrossRef ADS Google scholar
[85]
F. Könemann, M. Vollmann, F. Menges, L. J. Chen, N. M. Ghazali, T. Yamaguchi, K. Ishibashi, C. Thelander, and B. Gotsmann, Nanoscale scanning probe thermometry, in: 24rd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), 2018
CrossRef ADS Google scholar
[86]
I. J. Chen, S. Lehmann, M. Nilsson, P. Kivisaari, H. Linke, K. A. Dick, and C. Thelandert, Conduction band offset and polarization effects in InAs nanowire polytype junctions, Nano Lett. 17(2), 902 (2017)
CrossRef ADS Google scholar
[87]
S. T. B. Goennenwein and G. E. W. Bauer, Spin caloritronics: electron spins blow hot and cold, Nat. Nanotechnol. 7(3), 145 (2012)
CrossRef ADS Google scholar
[88]
K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, Observation of the spin seebeck effect, Nature455(7214), 778 (2008)
CrossRef ADS Google scholar
[89]
K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S. Maekawa, and E. Saitoh, Spin Seebeck insulator, Nat. Mater. 9(11), 894 (2010)
CrossRef ADS Google scholar
[90]
J. Flipse, J. F. L. Bakker, A. Slachter, F. K. Dejene, and B. J. Van Wees,Direct observation of the spin-dependent Peltier effect, Nat. Nanotechnol. 7(3), 166 (2012)
CrossRef ADS Google scholar
[91]
S. Daimon, R. Iguchi, T. Hioki, E. Saitoh, and K. I. Uchida, Thermal imaging of spin Peltier effect, Nat. Commun. 7(1), 13754 (2016)
CrossRef ADS Google scholar
[92]
K. I. Uchida, S. Daimon, R. Iguchi, and E. Saitoh, Observation of anisotropic magneto-Peltier effect in nickel, Nature558(7708), 95 (2018)
CrossRef ADS Google scholar
[93]
Q. C. Weng, S. Komiyama, L. Yang, Z. H. An, P. P. Chen, S. A. Biehs, Y. Kajihara, and W. Lu, Imaging of nonlocal hot-electron energy dissipation via shot noise, Science360(6390), 775 (2018)
CrossRef ADS Google scholar
[94]
L. Yang, R. J. Qian, Z. H. An, S. Komiyama, and W. Lu, Simulation of temperature profile for the electron and the lattice systems in laterally structured layered conductors, EPL128(1), 17001 (2019)
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(5450 KB)

Accesses

Citations

Detail

Sections
Recommended

/