Progress of microscopic thermoelectric effects studied by micro- and nano-thermometric techniques

Xue Gong , Ruijie Qian , Huanyi Xue , Weikang Lu , Zhenghua An

Front. Phys. ›› 2022, Vol. 17 ›› Issue (2) : 23201

PDF (5450KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (2) : 23201 DOI: 10.1007/s11467-021-1101-x
TOPICAL REVIEW

Progress of microscopic thermoelectric effects studied by micro- and nano-thermometric techniques

Author information +
History +
PDF (5450KB)

Abstract

Heat dissipation is one of the most serious problems in modern integrated electronics with the continuously decreasing devices size. Large portion of the consumed power is inevitably dissipated in the form of waste heat which not only restricts the device energy-efficiency performance itself, but also leads to severe environment problems and energy crisis. Thermoelectric Seebeck effect is a green energy-recycling method, while thermoelectric Peltier effect can be employed for heat management by actively cooling overheated devices, where passive cooling by heat conduction is not sufficiently enough. However, the technological applications of thermoelectricity are limited so far by their very low conversion efficiencies and lack of deep understanding of thermoelectricity in microscopic levels. Probing and managing the thermoelectricity is therefore fundamentally important particularly in nanoscale. In this short review, we will first briefly introduce the microscopic techniques for studying nanoscale thermoelectricity, focusing mainly on scanning thermal microscopy (SThM). SThM is a powerful tool for mapping the lattice heat with nanometer spatial resolution and hence detecting the nanoscale thermal transport and dissipation processes. Then we will review recent experiments utilizing these techniques to investigate thermoelectricity in various nanomaterial systems including both (two-material) heterojunctions and (single-material) homojunctions with tailored Seebeck coefficients, and also spin Seebeck and Peltier effects in magnetic materials. Next, we will provide a perspective on the promising applications of our recently developed Scanning Noise Microscope (SNoiM) for directly probing the non-equilibrium transporting hot charges (instead of lattice heat) in thermoelectric devices. SNoiM together with SThM are expected to be able to provide more complete and comprehensive understanding to the microscopic mechanisms in thermoelectrics. Finally, we make a conclusion and outlook on the future development of microscopic studies in thermoelectrics.

Graphical abstract

Keywords

scanning thermal microscope (SThM) / scanning noise microscope (SNoiM) / thermoelectric effects / Seebeck coefficient / Peltier cooling / spin caloritronics

Cite this article

Download citation ▾
Xue Gong, Ruijie Qian, Huanyi Xue, Weikang Lu, Zhenghua An. Progress of microscopic thermoelectric effects studied by micro- and nano-thermometric techniques. Front. Phys., 2022, 17(2): 23201 DOI:10.1007/s11467-021-1101-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

E. Pop, Energy dissipation and transport in nanoscale devices, Nano Res. 3(3), 147 (2010)

[2]

E. Pop, S. Sinha, and K. E. Goodson, Heat generation and transport in nanometer-scale transistors, Proc. IEEE94(8), 1587 (2006)

[3]

D. Vasileska, K. Raleva, and S. M. Goodnick, Modeling heating effects in nanoscale devices: The present and the future, J. Comput. Electron. 7(2), 66 (2008)

[4]

T. Wagner, F. Menges, H. Riel, B. Gotsmann, and A. Stemmer, Combined scanning probe electronic and thermal characterization of an indium arsenide nanowire, Beilstein J. Nanotechnol. 9, 129 (2018)

[5]

T. E. Beechem, R. A. Shaffer, J. Nogan, T. Ohta, A. B. Hamilton, A. E. McDonald, and S. W. Howell, Self-heating and failure in scalable graphene device, Sci. Rep. 6(1), 26457 (2016)

[6]

G. S. Snyder and E. S. Toberer, Complex thermoelectric materials, Nat. Mater. 7(2), 105 (2008)

[7]

J. X. Duan, X. M. Wang, X. Y. Lai, G. H. Li, K. Watanabe, T. Taniguchi, M. Zebarjadi, and E. Y. Andrei, High thermoelectric power factor in graphene/hBN devices, Proc. Natl. Acad. Sci. USA113(50), 14272 (2016)

[8]

L. E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science321(5895), 1457 (2008)

[9]

Q. C. Weng, K. T. Lin, K. Yoshida, H. Nema, S. Komiyama, S. Kim, K. Hirakawa, and Y. Kajihara, Nearfield radiative nanothermal imaging of nonuniform joule heating in narrow metal wires, Nano Lett. 18(7), 4220 (2018)

[10]

M. Zebarjadi, Electronic cooling using thermoelectric devices, Appl. Phys. Lett.106(20), 203506 (2015)

[11]

A. Ziabari, M. Zebarjadi, D. Vashaee, and A. Shakouri, Nanoscale solid-state cooling: A review, Rep. Prog. Phys. 79(9), 095901 (2016)

[12]

Y. X. Shen, Y. Li, C. R. Jiang, and J. P. Huang, Temperature trapping: Energy-free maintenance of constant temperatures as ambient temperature gradients change, Phys. Rev. Lett. 117(5), 055501 (2016)

[13]

U. Leonhardt, Cloaking of heat, Nature498(7455), 440 (2013)

[14]

R. Hu, S. L. Zhou, Y. Li, D. Y. Lei, X. B. Luo, and C. W. Qiu, Illusion thermotics, Adv. Mater. 30(22), 1707237 (2018)

[15]

A. P. Raman, M. A. Anoma, L. X. Zhu, E. Rephaeli, and S. H. Fan, Passive radiative cooling below ambient air temperature under direct sunlight, Nature515(7528), 540 (2014)

[16]

Y. Zhai, Y. G. Ma, S. N. David, D. L. Zhao, R. N. Lou, G. Tan, R. G. Yang, and X. B. Yin, Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling, Science355(6329), 1062 (2017)

[17]

J. C. Zheng, Recent advances on thermoelectric materials, Front. Phys.3(3), 269 (2008)

[18]

T. Yamamoto, S. Watanabe, and K. Watanabe, Universal features of quantized thermal conductance of carbon nanotubes, Phys. Rev. Lett. 92(7), 075502 (2004)

[19]

J. Lee, J. Lim, and P. D. Yang, Ballistic phonon transport in holey silicon, Nano Lett.15(5), 3273 (2015)

[20]

D. Y. Li, Y. Y. Wu, P. Kim, L. Shi, P. D. Yang, and A. Majumdar, Thermal conductivity of individual silicon nanowires, Appl. Phys. Lett. 83(14), 2934 (2003)

[21]

A. I. Hochbaum, R. K. Chen, R. D. Delgado, W. J. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. D. Yang, Enhanced thermoelectric performance of rough silicon nanowires, Nature451(7175), 163 (2008)

[22]

S. Lee, K. Hippalgaonkar, F. Yang, J. W. Hong, C. Ko, J. Suh, K. Liu, K. Wang, J. J. Urban, X. Zhang, C. Dames, S. A. Hartnoll, O. Delaire, and J. Q. Wu, Anomalously low electronic thermal conductivity in metallic vanadium dioxide, Science355(6323), 371 (2017)

[23]

R. J. Qian, X. Gong, H. Y. Huan, W. K. Lu, L. P. Zhu, and Z. H. An, Developments on thermometric techniques in probing micro-and nano-heat, ES. Energy Environ. 6, 4 (2019)

[24]

Y. N. Yue and X. W. Wang, Nanoscale thermal probing, Nano Rev. 3(1), 11586 (2012)

[25]

M. Quintanilla and L. M. Liz-Marzán, Guiding rules for selecting a nanothermometer, Nano Today19, 126 (2018)

[26]

C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, Thermometry at the nanoscale, Nanoscale4(16), 4799 (2012)

[27]

C. C. Williams and H. K. Wickramasinghe, Scanning thermal profiler, Appl. Phys. Lett. 49(23), 1587 (1986)

[28]

D. Halbertal, J. Cuppens, M. B. Shalom, L. Embon, N. Shadmi, Y. Anahory, H. R. Naren, J. Sarkar, A. Uri, Y. Ronen, Y. Myasoedov, L. S. Levitov, E. Joselevich, A. K. Geim, and E. Zeldov, Nanoscale thermal imaging of dissipation in quantum systems, Nature539(7629), 407 (2016)

[29]

A. Majumdar, J. P. Carrejo, and J. Lai, Thermal imaging using the atomic force microscope, Appl. Phys. Lett. 62(20), 2501 (1993)

[30]

S. Sadat, A. Tan, Y. J. Chua, and P. Reddy, Nanoscale thermometry using point contact thermocouples, Nano Lett. 10(7), 2613 (2010)

[31]

L. Shi, S. Plyasunov, A. Bachtold, P. L. McEuen, and A. Majumdar, Scanning thermal microscopy of carbon nanotubes using batch-fabricated probes, Appl. Phys. Lett. 77(26), 4295 (2000)

[32]

J. Varesi and A. Majumdar, Scanning Joule expansion microscopy at nanometer scales, Appl. Phys. Lett.72(1), 37 (1998)

[33]

A. Majumdar and J. Varesi, Nanoscale temperature distributions measured by scanning Joule expansion microscopy, J. Heat. Trans-T. ASME. 120(2), 297(1998)

[34]

G. S. Shekhawat, S. Ramachandran, H. Jiryaei Sharahi, S. Sarkar, K. Hujsak, Y. Li, K. Hagglund, S. Kim, G. Aden, A. Chand, and V. P. Dravid, Micromachined chip scale thermal sensor for thermal imaging, ACS Nano12(2), 1760 (2018)

[35]

J. P. Heremans, M. S. Dresselhaus, L. E. Bell, and D. T. Morelli, When thermoelectrics reached the nanoscale, Nat. Nanotechnol. 8(7), 471 (2013)

[36]

R. A. Kishore, A. Nozariasbmarz, B. Poudel, M. Sanghadasa, and S. Priya, Ultra-high performance wearable thermoelectric coolers with less materials, Nat. Commun. 10(1), 1765 (2019)

[37]

I. Chowdhury, R. Prasher, K. Lofgreen, G. Chrysler, S. Narasimhan, R. Mahajan, D. Koester, R. Alley, and R. Venkatasubramanian, On-chip cooling by superlatticebased thin-film thermoelectrics, Nat. Nanotechnol. 4(4), 235 (2009)

[38]

W. L. Jin, L. Y. Liu, T. Yang, H. G. Shen, J. Zhu, W. Xu, S. Z. Li, Q. Li, L. F. Chi, C. A. Di, and D. D. Zhu, Exploring Peltier effect in organic thermoelectric films, Nat. Commun. 9(1), 3586 (2018)

[39]

H. D. Hicks and M. S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B 47(19), 12727 (1993)

[40]

J. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken, M. T. Pettes, X. S. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R. S. Ruoff, and L. Shi, Two-dimensional phonon transport in supported graphene, Science328(5975), 213 (2010)

[41]

A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater.6(3), 183 (2007)

[42]

K. L. Grosse, M. H. Bae, F. F. Lian, E. Pop, and W. P. King, Nanoscale joule heating, Peltier cooling and current crowding at graphene–metal contacts, Nat. Nanotechnol.6(5), 287 (2011)

[43]

K. L. Grosse, F. Xiong, S. Hong, W. P. King, and E. Pop, Direct observation of nanometer-scale Joule and Peltier effects in phase change memory devices, Appl. Phys. Lett.102(19), 193503 (2013)

[44]

I. J. Vera-Marun, J. J. Van den Berg, F. K. Dejene, and B. J. Van Wees, Direct electronic measurement of Peltier cooling and heating in graphene, Nat. Commun. 7(1), 11525 (2016)

[45]

K. Kim, J. Chung, J. Won, O. Kwon, J. S. Lee, S. H. Park, and Y. K. Choi, Quantitative scanning thermal microscopy using double scan technique, Appl. Phys. Lett. 93(20), 203115 (2008)

[46]

J. Chung, K. Kim, G. Hwang, O. Kwon, S. Jung, J. Lee, J. W. Lee, and G. T. Kim, Quantitative temperature measurement of an electrically heated carbon nanotube using the null-point method, Rev. Sci. Instrum. 81(11), 114901 (2010)

[47]

F. Menges, H. Riel, A. Stemmer, and B. Gotsmann, Quantitative thermometry of nanoscale hot spots, Nano Lett. 12(2), 596 (2012)

[48]

K. Kim, J. Chung, G. Hwang, O. Kwon, and J. S. Lee, Quantitative measurement with scanning thermal microscope by preventing the distortion due to the heat transfer through the air, ACS Nano5(11), 8700 (2011)

[49]

K. Kim, W. H. Jeong, W. C. Lee, and P. Reddy, Ultrahigh vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry, ACS Nano6(5), 4248 (2012)

[50]

F. Menges, P. Mensch, H. Schmid, H. Riel, A. Stemmer, and B. Gotsmann, Temperature mapping of operating nanoscale devices by scanning probe thermometry, Nat. Commun. 7(1), 10874 (2016)

[51]

P. Dollfus, V. Hung Nguyen, and J. Saint-Martin, Thermoelectric effects in graphene nanostructures, J. Phys. Condens. Matter27(13), 133204 (2015)

[52]

C. J. Vineis, A. Shakouri, A. Majumdar, and M. G. Kanatzidis, Nanostructured thermoelectrics: Big efficiency gains from small features, Adv. Mater. 22(36), 3970 (2010)

[53]

J. Mao, Z. H. Liu, and Z. F. Ren, Size effect in thermoelectric materials, npj Quantum.Mater.1(1), 16028 (2016)

[54]

A. Popescu, and L. M. Woods, Enhanced thermoelectricity in composites by electronic structure modifications and nanostructuring, Appl. Phys. Lett. 97(5), 052102 (2010)

[55]

J. Martin, L. Wang, L. D. Chen, and G. S. Nolas, Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites, Phys. Rev. B 79(11), 115311 (2009)

[56]

J. M. O. Zide, D. Vashaee, Z. X. Bian, G. Zeng, J. E. Bowers, A. Shakouri, and A. C. Gossard, Demonstration of electron filtering to increase the Seebeck coefficient in In0.53Ga0.47As/In0.53Ga0.28Al0.19As superlattices, Phys. Rev. B 74(20), 205335 (2006)

[57]

Y. M. Zuev, J. S. Lee, C. Galloy, H. Park, and P. Kim, Diameter dependence of the transport properties of antimony telluride nanowires, Nano Lett. 10(8), 3037 (2010)

[58]

W. Q. Sun, H. X. Liu, W. W. Gong, L. M. Peng, and S. Y. Xu, Unexpected size effect in the thermopower of thin-film stripes, J. Appl. Phys. 110(8), 083709 (2011)

[59]

G. P. Szakmany, A. O. Orlov, G. H. Bernstein, and W. Porod, Single-metal nanoscale thermocouples, IEEE Trans. NanoTechnol. 13(6), 1234 (2014)

[60]

H. X. Liu, W. Q. Sun, and S. Y. Xu, An extremely simple thermocouple made of a single layer of metal, Adv. Mater. 24(24), 3275 (2012)

[61]

A. X. Levander, T. Tong, K. M. Yu, J. Suh, D. Fu, R. Zhang, H. Lu, W. J. Schaff, O. Dubon, W. Walukiewicz, D. G. Cahill, and J. Wu, Effects of point defects on thermal and thermoelectric properties of inn, Appl. Phys. Lett. 98(1), 012108 (2011)

[62]

P. Zolotavin, C. I. Evans, and D. Natelson, Substantial local variation of the Seebeck coefficient in gold nanowires, Nanoscale9(26), 9160 (2017)

[63]

P. Zolotavin, C. Evans, and D. Natelson, Photothermoelectric effects and large photovoltages in plasmonic Au nanowires with nanogaps, J. Phys. Chem. Lett. 8(8), 1739 (2017)

[64]

A. X. Levander, T. Tong, K. M. Yu, J. Suh, D. Fu, R. Zhang, H. Lu, W. J. Schaff, O. Dubon, W. Walukiewicz, D. G. Cahill, and J. Wu, Effects of point defects on thermal and thermoelectric properties of inn, Appl. Phys. Lett. 98(1), 012108 (2011)

[65]

P. Zolotavin, C. I. Evans, and D. Natelson, Substantial local variation of the Seebeck coefficient in gold nanowires, Nanoscale9(26), 9160 (2017)

[66]

P. Zolotavin, C. Evans, and D. Natelson, Photothermoelectric effects and large photovoltages in plasmonic Au nanowires with nanogaps, J. Phys. Chem. Lett. 8(8), 1739 (2017)

[67]

W. J. Liang, A. I. Hochbaum, M. Fardy, O. Rabin, M. J. Zhang, and P. D. Yang, Field-effect modulation of Seebeck coefficient in single PbSe nanowires, Nano Lett. 9(4), 1689 (2009)

[68]

Y. Saito, T. Iizuka, T. Koretsune, R. Arita, S. Shimizu, and Y. Iwasa, Gate-tuned thermoelectric power in black phosphorus, Nano Lett. 16(8), 4819 (2016)

[69]

S. Shimizu, T. Iizuka, K. Kanahashi, J. Pu, K. Yanagi, T. Takenobu, and Y. Iwasa, Thermoelectric detection of multi-subband density of states in semiconducting and metallic single-walled carbon nanotubes, Small12(25), 3388 (2016)

[70]

J. Zhang, H. J. Liu, L. Cheng, J. Wei, J. H. Liang, D. D. Fan, J. Shi, X. F. Tang, and Q. J. Zhang, Phosphorene nanoribbon as a promising candidate for thermoelectric applications, Sci. Rep. 4(1), 6452 (2014)

[71]

H. K. Lyeo, A. A. Khajetoorians, L. Shi, K. P. Pipe, R. J. Ram, A. Shakouri, and C. K. Shih, Profiling the thermoelectric power of semiconductor junctions with nanometer resolution, Science303(5659), 816 (2004)

[72]

J. C. Walrath, Y. H. Lin, K. P. Pipe, and R. S. Goldman, Quantifying the local Seebeck coefficient with scanning thermoelectric microscopy, Appl. Phys. Lett. 103(21), 212101 (2013)

[73]

S. Cho, S. D. Kang, W. Kim, E. S. Lee, S. J. Woo, K. J. Kong, I. Kim, H. D. Kim, T. Zhang, J. A. Stroscio, Y.H. Kim, and H.K. Lyeo, Thermoelectric imaging of structural disorder in epitaxial graphene, Nat. Mater. 12(10), 913 (2013)

[74]

J. Park, G. He, R. M. Feenstra, and A. P. Li, Atomicscale mapping of thermoelectric power on graphene: Role of defects and boundaries, Nano Lett. 13(7), 3269 (2013)

[75]

A. Harzheim, C. Evangeli, O. V. Kolosov, and P. Gehring, Direct mapping of local Seebeck coefficient in 2D material nanostructures via scanning thermal gate microscopy, 2D., Mater7(4), 041004 (2020)

[76]

A. Harzheim, J. Spiece, C. Evangeli, E. McCann, V. Falko, Y. W. Sheng, J. H. Warner, G. A. D. Briggs, J. A. Mol, P. Gehring, and O. V. Kolosov, Geometrically enhanced thermoelectric effects in graphene nanoconstrictions, Nano Lett. 18(12), 7719 (2018)

[77]

X. D. Hu, X. Gong, M. Zhang, H. H. Lu, Z. Y. Xue, Y. F. Meng, P. K. Chu, Z. H. An, and Z. F. Di, Enhanced Peltier effect in wrinkled graphene constriction by nanobubble engineering, Small16(14), 1907170 (2020)

[78]

J. Q. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, O. Y. Lian, and H. Park, Strain-induced self organization of metalinsulator domains in single-crystalline VO2 nanobeams, Nano Lett. 6(10), 2313 (2006)

[79]

J. H. Jeong, Z. Yong, A. Joushaghani, A. Tsukernik, S. Paradis, D. Alain, and J. K. S. Poon, Current induced polycrystalline-to-crystalline transformation in vanadium dioxide nanowires, Sci. Rep. 6(1), 37296 (2016)

[80]

H. Guo, K. Chen, Y. Oh, K. Wang, C. Dejoie, S. A. S. Asif, O. L. Warren, Z. W. Shan, J. Wu, and A. M. Minor, Mechanics and dynamics of the strain-induced M1-M2 structural phase transition in individual VO2 nanowires, Nano Lett. 11(8), 3207 (2011)

[81]

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging, Science318(5857), 1750 (2007)

[82]

M. M. Qazilbash, M. Brehm, G. O. Andreev, A. Frenzel, P. C. Ho, B. G. Chae, B. J. Kim, S. J. Yun, H. T. Kim, A. V. Balatsky, O. G. Shpyrko, M. B. Maple, F. Keilmann, and D. N. Basov, Infrared spectroscopy and nano-imaging of the insulator-to-metal transition in vanadium dioxide, Phys. Rev. B79(7), 075107 (2009)

[83]

M. M. Qazilbash, A. Tripathi, A. A. Schafgans, B. J. Kim, H. T. Kim, Z. H. Cai, M. V. Holt, J. M. Maser, F. Keilmann, O. G. Shpyrko, and D. N. Basov, Nanoscale imaging of the electronic and structural transitions in vanadium dioxide, Phys. Rev. B83(16), 165108 (2011)

[84]

T. Favaloro, J. Suh, J. B. Vermeersch, K. Liu, Y. J. Gu, Y. L. Q. Chen, K. X. Wang, J. Q. Wu, and A. Shakouri, Direct observation of nanoscale Peltier and Joule effects at metalinsulator domain walls in vanadium dioxide nanobeams, Nano Lett. 14(5), 2394 (2014)

[85]

F. Könemann, M. Vollmann, F. Menges, L. J. Chen, N. M. Ghazali, T. Yamaguchi, K. Ishibashi, C. Thelander, and B. Gotsmann, Nanoscale scanning probe thermometry, in: 24rd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), 2018

[86]

I. J. Chen, S. Lehmann, M. Nilsson, P. Kivisaari, H. Linke, K. A. Dick, and C. Thelandert, Conduction band offset and polarization effects in InAs nanowire polytype junctions, Nano Lett. 17(2), 902 (2017)

[87]

S. T. B. Goennenwein and G. E. W. Bauer, Spin caloritronics: electron spins blow hot and cold, Nat. Nanotechnol. 7(3), 145 (2012)

[88]

K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, Observation of the spin seebeck effect, Nature455(7214), 778 (2008)

[89]

K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S. Maekawa, and E. Saitoh, Spin Seebeck insulator, Nat. Mater. 9(11), 894 (2010)

[90]

J. Flipse, J. F. L. Bakker, A. Slachter, F. K. Dejene, and B. J. Van Wees,Direct observation of the spin-dependent Peltier effect, Nat. Nanotechnol. 7(3), 166 (2012)

[91]

S. Daimon, R. Iguchi, T. Hioki, E. Saitoh, and K. I. Uchida, Thermal imaging of spin Peltier effect, Nat. Commun. 7(1), 13754 (2016)

[92]

K. I. Uchida, S. Daimon, R. Iguchi, and E. Saitoh, Observation of anisotropic magneto-Peltier effect in nickel, Nature558(7708), 95 (2018)

[93]

Q. C. Weng, S. Komiyama, L. Yang, Z. H. An, P. P. Chen, S. A. Biehs, Y. Kajihara, and W. Lu, Imaging of nonlocal hot-electron energy dissipation via shot noise, Science360(6390), 775 (2018)

[94]

L. Yang, R. J. Qian, Z. H. An, S. Komiyama, and W. Lu, Simulation of temperature profile for the electron and the lattice systems in laterally structured layered conductors, EPL128(1), 17001 (2019)

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (5450KB)

849

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/