Progress of microscopic thermoelectric effects studied by micro- and nano-thermometric techniques
Xue Gong, Ruijie Qian, Huanyi Xue, Weikang Lu, Zhenghua An
Progress of microscopic thermoelectric effects studied by micro- and nano-thermometric techniques
Heat dissipation is one of the most serious problems in modern integrated electronics with the continuously decreasing devices size. Large portion of the consumed power is inevitably dissipated in the form of waste heat which not only restricts the device energy-efficiency performance itself, but also leads to severe environment problems and energy crisis. Thermoelectric Seebeck effect is a green energy-recycling method, while thermoelectric Peltier effect can be employed for heat management by actively cooling overheated devices, where passive cooling by heat conduction is not sufficiently enough. However, the technological applications of thermoelectricity are limited so far by their very low conversion efficiencies and lack of deep understanding of thermoelectricity in microscopic levels. Probing and managing the thermoelectricity is therefore fundamentally important particularly in nanoscale. In this short review, we will first briefly introduce the microscopic techniques for studying nanoscale thermoelectricity, focusing mainly on scanning thermal microscopy (SThM). SThM is a powerful tool for mapping the lattice heat with nanometer spatial resolution and hence detecting the nanoscale thermal transport and dissipation processes. Then we will review recent experiments utilizing these techniques to investigate thermoelectricity in various nanomaterial systems including both (two-material) heterojunctions and (single-material) homojunctions with tailored Seebeck coefficients, and also spin Seebeck and Peltier effects in magnetic materials. Next, we will provide a perspective on the promising applications of our recently developed Scanning Noise Microscope (SNoiM) for directly probing the non-equilibrium transporting hot charges (instead of lattice heat) in thermoelectric devices. SNoiM together with SThM are expected to be able to provide more complete and comprehensive understanding to the microscopic mechanisms in thermoelectrics. Finally, we make a conclusion and outlook on the future development of microscopic studies in thermoelectrics.
scanning thermal microscope (SThM) / scanning noise microscope (SNoiM) / thermoelectric effects / Seebeck coefficient / Peltier cooling / spin caloritronics
[1] |
E. Pop, Energy dissipation and transport in nanoscale devices, Nano Res. 3(3), 147 (2010)
CrossRef
ADS
Google scholar
|
[2] |
E. Pop, S. Sinha, and K. E. Goodson, Heat generation and transport in nanometer-scale transistors, Proc. IEEE94(8), 1587 (2006)
CrossRef
ADS
Google scholar
|
[3] |
D. Vasileska, K. Raleva, and S. M. Goodnick, Modeling heating effects in nanoscale devices: The present and the future, J. Comput. Electron. 7(2), 66 (2008)
CrossRef
ADS
Google scholar
|
[4] |
T. Wagner, F. Menges, H. Riel, B. Gotsmann, and A. Stemmer, Combined scanning probe electronic and thermal characterization of an indium arsenide nanowire, Beilstein J. Nanotechnol. 9, 129 (2018)
CrossRef
ADS
Google scholar
|
[5] |
T. E. Beechem, R. A. Shaffer, J. Nogan, T. Ohta, A. B. Hamilton, A. E. McDonald, and S. W. Howell, Self-heating and failure in scalable graphene device, Sci. Rep. 6(1), 26457 (2016)
CrossRef
ADS
Google scholar
|
[6] |
G. S. Snyder and E. S. Toberer, Complex thermoelectric materials, Nat. Mater. 7(2), 105 (2008)
CrossRef
ADS
Google scholar
|
[7] |
J. X. Duan, X. M. Wang, X. Y. Lai, G. H. Li, K. Watanabe, T. Taniguchi, M. Zebarjadi, and E. Y. Andrei, High thermoelectric power factor in graphene/hBN devices, Proc. Natl. Acad. Sci. USA113(50), 14272 (2016)
CrossRef
ADS
Google scholar
|
[8] |
L. E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science321(5895), 1457 (2008)
CrossRef
ADS
Google scholar
|
[9] |
Q. C. Weng, K. T. Lin, K. Yoshida, H. Nema, S. Komiyama, S. Kim, K. Hirakawa, and Y. Kajihara, Nearfield radiative nanothermal imaging of nonuniform joule heating in narrow metal wires, Nano Lett. 18(7), 4220 (2018)
CrossRef
ADS
Google scholar
|
[10] |
M. Zebarjadi, Electronic cooling using thermoelectric devices, Appl. Phys. Lett.106(20), 203506 (2015)
CrossRef
ADS
Google scholar
|
[11] |
A. Ziabari, M. Zebarjadi, D. Vashaee, and A. Shakouri, Nanoscale solid-state cooling: A review, Rep. Prog. Phys. 79(9), 095901 (2016)
CrossRef
ADS
Google scholar
|
[12] |
Y. X. Shen, Y. Li, C. R. Jiang, and J. P. Huang, Temperature trapping: Energy-free maintenance of constant temperatures as ambient temperature gradients change, Phys. Rev. Lett. 117(5), 055501 (2016)
CrossRef
ADS
Google scholar
|
[13] |
U. Leonhardt, Cloaking of heat, Nature498(7455), 440 (2013)
CrossRef
ADS
Google scholar
|
[14] |
R. Hu, S. L. Zhou, Y. Li, D. Y. Lei, X. B. Luo, and C. W. Qiu, Illusion thermotics, Adv. Mater. 30(22), 1707237 (2018)
CrossRef
ADS
Google scholar
|
[15] |
A. P. Raman, M. A. Anoma, L. X. Zhu, E. Rephaeli, and S. H. Fan, Passive radiative cooling below ambient air temperature under direct sunlight, Nature515(7528), 540 (2014)
CrossRef
ADS
Google scholar
|
[16] |
Y. Zhai, Y. G. Ma, S. N. David, D. L. Zhao, R. N. Lou, G. Tan, R. G. Yang, and X. B. Yin, Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling, Science355(6329), 1062 (2017)
CrossRef
ADS
Google scholar
|
[17] |
J. C. Zheng, Recent advances on thermoelectric materials, Front. Phys.3(3), 269 (2008)
CrossRef
ADS
Google scholar
|
[18] |
T. Yamamoto, S. Watanabe, and K. Watanabe, Universal features of quantized thermal conductance of carbon nanotubes, Phys. Rev. Lett. 92(7), 075502 (2004)
CrossRef
ADS
Google scholar
|
[19] |
J. Lee, J. Lim, and P. D. Yang, Ballistic phonon transport in holey silicon, Nano Lett.15(5), 3273 (2015)
CrossRef
ADS
Google scholar
|
[20] |
D. Y. Li, Y. Y. Wu, P. Kim, L. Shi, P. D. Yang, and A. Majumdar, Thermal conductivity of individual silicon nanowires, Appl. Phys. Lett. 83(14), 2934 (2003)
CrossRef
ADS
Google scholar
|
[21] |
A. I. Hochbaum, R. K. Chen, R. D. Delgado, W. J. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. D. Yang, Enhanced thermoelectric performance of rough silicon nanowires, Nature451(7175), 163 (2008)
CrossRef
ADS
Google scholar
|
[22] |
S. Lee, K. Hippalgaonkar, F. Yang, J. W. Hong, C. Ko, J. Suh, K. Liu, K. Wang, J. J. Urban, X. Zhang, C. Dames, S. A. Hartnoll, O. Delaire, and J. Q. Wu, Anomalously low electronic thermal conductivity in metallic vanadium dioxide, Science355(6323), 371 (2017)
CrossRef
ADS
Google scholar
|
[23] |
R. J. Qian, X. Gong, H. Y. Huan, W. K. Lu, L. P. Zhu, and Z. H. An, Developments on thermometric techniques in probing micro-and nano-heat, ES. Energy Environ. 6, 4 (2019)
|
[24] |
Y. N. Yue and X. W. Wang, Nanoscale thermal probing, Nano Rev. 3(1), 11586 (2012)
CrossRef
ADS
Google scholar
|
[25] |
M. Quintanilla and L. M. Liz-Marzán, Guiding rules for selecting a nanothermometer, Nano Today19, 126 (2018)
CrossRef
ADS
Google scholar
|
[26] |
C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millan, V. S. Amaral, F. Palacio, and L. D. Carlos, Thermometry at the nanoscale, Nanoscale4(16), 4799 (2012)
CrossRef
ADS
Google scholar
|
[27] |
C. C. Williams and H. K. Wickramasinghe, Scanning thermal profiler, Appl. Phys. Lett. 49(23), 1587 (1986)
CrossRef
ADS
Google scholar
|
[28] |
D. Halbertal, J. Cuppens, M. B. Shalom, L. Embon, N. Shadmi, Y. Anahory, H. R. Naren, J. Sarkar, A. Uri, Y. Ronen, Y. Myasoedov, L. S. Levitov, E. Joselevich, A. K. Geim, and E. Zeldov, Nanoscale thermal imaging of dissipation in quantum systems, Nature539(7629), 407 (2016)
CrossRef
ADS
Google scholar
|
[29] |
A. Majumdar, J. P. Carrejo, and J. Lai, Thermal imaging using the atomic force microscope, Appl. Phys. Lett. 62(20), 2501 (1993)
CrossRef
ADS
Google scholar
|
[30] |
S. Sadat, A. Tan, Y. J. Chua, and P. Reddy, Nanoscale thermometry using point contact thermocouples, Nano Lett. 10(7), 2613 (2010)
CrossRef
ADS
Google scholar
|
[31] |
L. Shi, S. Plyasunov, A. Bachtold, P. L. McEuen, and A. Majumdar, Scanning thermal microscopy of carbon nanotubes using batch-fabricated probes, Appl. Phys. Lett. 77(26), 4295 (2000)
CrossRef
ADS
Google scholar
|
[32] |
J. Varesi and A. Majumdar, Scanning Joule expansion microscopy at nanometer scales, Appl. Phys. Lett.72(1), 37 (1998)
CrossRef
ADS
Google scholar
|
[33] |
A. Majumdar and J. Varesi, Nanoscale temperature distributions measured by scanning Joule expansion microscopy, J. Heat. Trans-T. ASME. 120(2), 297(1998)
CrossRef
ADS
Google scholar
|
[34] |
G. S. Shekhawat, S. Ramachandran, H. Jiryaei Sharahi, S. Sarkar, K. Hujsak, Y. Li, K. Hagglund, S. Kim, G. Aden, A. Chand, and V. P. Dravid, Micromachined chip scale thermal sensor for thermal imaging, ACS Nano12(2), 1760 (2018)
CrossRef
ADS
Google scholar
|
[35] |
J. P. Heremans, M. S. Dresselhaus, L. E. Bell, and D. T. Morelli, When thermoelectrics reached the nanoscale, Nat. Nanotechnol. 8(7), 471 (2013)
CrossRef
ADS
Google scholar
|
[36] |
R. A. Kishore, A. Nozariasbmarz, B. Poudel, M. Sanghadasa, and S. Priya, Ultra-high performance wearable thermoelectric coolers with less materials, Nat. Commun. 10(1), 1765 (2019)
CrossRef
ADS
Google scholar
|
[37] |
I. Chowdhury, R. Prasher, K. Lofgreen, G. Chrysler, S. Narasimhan, R. Mahajan, D. Koester, R. Alley, and R. Venkatasubramanian, On-chip cooling by superlatticebased thin-film thermoelectrics, Nat. Nanotechnol. 4(4), 235 (2009)
CrossRef
ADS
Google scholar
|
[38] |
W. L. Jin, L. Y. Liu, T. Yang, H. G. Shen, J. Zhu, W. Xu, S. Z. Li, Q. Li, L. F. Chi, C. A. Di, and D. D. Zhu, Exploring Peltier effect in organic thermoelectric films, Nat. Commun. 9(1), 3586 (2018)
CrossRef
ADS
Google scholar
|
[39] |
H. D. Hicks and M. S. Dresselhaus, Effect of quantum-well structures on the thermoelectric figure of merit, Phys. Rev. B 47(19), 12727 (1993)
CrossRef
ADS
Google scholar
|
[40] |
J. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken, M. T. Pettes, X. S. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R. S. Ruoff, and L. Shi, Two-dimensional phonon transport in supported graphene, Science328(5975), 213 (2010)
CrossRef
ADS
Google scholar
|
[41] |
A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater.6(3), 183 (2007)
CrossRef
ADS
Google scholar
|
[42] |
K. L. Grosse, M. H. Bae, F. F. Lian, E. Pop, and W. P. King, Nanoscale joule heating, Peltier cooling and current crowding at graphene–metal contacts, Nat. Nanotechnol.6(5), 287 (2011)
CrossRef
ADS
Google scholar
|
[43] |
K. L. Grosse, F. Xiong, S. Hong, W. P. King, and E. Pop, Direct observation of nanometer-scale Joule and Peltier effects in phase change memory devices, Appl. Phys. Lett.102(19), 193503 (2013)
CrossRef
ADS
Google scholar
|
[44] |
I. J. Vera-Marun, J. J. Van den Berg, F. K. Dejene, and B. J. Van Wees, Direct electronic measurement of Peltier cooling and heating in graphene, Nat. Commun. 7(1), 11525 (2016)
CrossRef
ADS
Google scholar
|
[45] |
K. Kim, J. Chung, J. Won, O. Kwon, J. S. Lee, S. H. Park, and Y. K. Choi, Quantitative scanning thermal microscopy using double scan technique, Appl. Phys. Lett. 93(20), 203115 (2008)
CrossRef
ADS
Google scholar
|
[46] |
J. Chung, K. Kim, G. Hwang, O. Kwon, S. Jung, J. Lee, J. W. Lee, and G. T. Kim, Quantitative temperature measurement of an electrically heated carbon nanotube using the null-point method, Rev. Sci. Instrum. 81(11), 114901 (2010)
CrossRef
ADS
Google scholar
|
[47] |
F. Menges, H. Riel, A. Stemmer, and B. Gotsmann, Quantitative thermometry of nanoscale hot spots, Nano Lett. 12(2), 596 (2012)
CrossRef
ADS
Google scholar
|
[48] |
K. Kim, J. Chung, G. Hwang, O. Kwon, and J. S. Lee, Quantitative measurement with scanning thermal microscope by preventing the distortion due to the heat transfer through the air, ACS Nano5(11), 8700 (2011)
CrossRef
ADS
Google scholar
|
[49] |
K. Kim, W. H. Jeong, W. C. Lee, and P. Reddy, Ultrahigh vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry, ACS Nano6(5), 4248 (2012)
CrossRef
ADS
Google scholar
|
[50] |
F. Menges, P. Mensch, H. Schmid, H. Riel, A. Stemmer, and B. Gotsmann, Temperature mapping of operating nanoscale devices by scanning probe thermometry, Nat. Commun. 7(1), 10874 (2016)
CrossRef
ADS
Google scholar
|
[51] |
P. Dollfus, V. Hung Nguyen, and J. Saint-Martin, Thermoelectric effects in graphene nanostructures, J. Phys. Condens. Matter27(13), 133204 (2015)
CrossRef
ADS
Google scholar
|
[52] |
C. J. Vineis, A. Shakouri, A. Majumdar, and M. G. Kanatzidis, Nanostructured thermoelectrics: Big efficiency gains from small features, Adv. Mater. 22(36), 3970 (2010)
CrossRef
ADS
Google scholar
|
[53] |
J. Mao, Z. H. Liu, and Z. F. Ren, Size effect in thermoelectric materials, npj Quantum.Mater.1(1), 16028 (2016)
CrossRef
ADS
Google scholar
|
[54] |
A. Popescu, and L. M. Woods, Enhanced thermoelectricity in composites by electronic structure modifications and nanostructuring, Appl. Phys. Lett. 97(5), 052102 (2010)
CrossRef
ADS
Google scholar
|
[55] |
J. Martin, L. Wang, L. D. Chen, and G. S. Nolas, Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites, Phys. Rev. B 79(11), 115311 (2009)
CrossRef
ADS
Google scholar
|
[56] |
J. M. O. Zide, D. Vashaee, Z. X. Bian, G. Zeng, J. E. Bowers, A. Shakouri, and A. C. Gossard, Demonstration of electron filtering to increase the Seebeck coefficient in In0.53Ga0.47As/In0.53Ga0.28Al0.19As superlattices, Phys. Rev. B 74(20), 205335 (2006)
CrossRef
ADS
Google scholar
|
[57] |
Y. M. Zuev, J. S. Lee, C. Galloy, H. Park, and P. Kim, Diameter dependence of the transport properties of antimony telluride nanowires, Nano Lett. 10(8), 3037 (2010)
CrossRef
ADS
Google scholar
|
[58] |
W. Q. Sun, H. X. Liu, W. W. Gong, L. M. Peng, and S. Y. Xu, Unexpected size effect in the thermopower of thin-film stripes, J. Appl. Phys. 110(8), 083709 (2011)
CrossRef
ADS
Google scholar
|
[59] |
G. P. Szakmany, A. O. Orlov, G. H. Bernstein, and W. Porod, Single-metal nanoscale thermocouples, IEEE Trans. NanoTechnol. 13(6), 1234 (2014)
CrossRef
ADS
Google scholar
|
[60] |
H. X. Liu, W. Q. Sun, and S. Y. Xu, An extremely simple thermocouple made of a single layer of metal, Adv. Mater. 24(24), 3275 (2012)
CrossRef
ADS
Google scholar
|
[61] |
A. X. Levander, T. Tong, K. M. Yu, J. Suh, D. Fu, R. Zhang, H. Lu, W. J. Schaff, O. Dubon, W. Walukiewicz, D. G. Cahill, and J. Wu, Effects of point defects on thermal and thermoelectric properties of inn, Appl. Phys. Lett. 98(1), 012108 (2011)
CrossRef
ADS
Google scholar
|
[62] |
P. Zolotavin, C. I. Evans, and D. Natelson, Substantial local variation of the Seebeck coefficient in gold nanowires, Nanoscale9(26), 9160 (2017)
CrossRef
ADS
Google scholar
|
[63] |
P. Zolotavin, C. Evans, and D. Natelson, Photothermoelectric effects and large photovoltages in plasmonic Au nanowires with nanogaps, J. Phys. Chem. Lett. 8(8), 1739 (2017)
CrossRef
ADS
Google scholar
|
[64] |
A. X. Levander, T. Tong, K. M. Yu, J. Suh, D. Fu, R. Zhang, H. Lu, W. J. Schaff, O. Dubon, W. Walukiewicz, D. G. Cahill, and J. Wu, Effects of point defects on thermal and thermoelectric properties of inn, Appl. Phys. Lett. 98(1), 012108 (2011)
CrossRef
ADS
Google scholar
|
[65] |
P. Zolotavin, C. I. Evans, and D. Natelson, Substantial local variation of the Seebeck coefficient in gold nanowires, Nanoscale9(26), 9160 (2017)
CrossRef
ADS
Google scholar
|
[66] |
P. Zolotavin, C. Evans, and D. Natelson, Photothermoelectric effects and large photovoltages in plasmonic Au nanowires with nanogaps, J. Phys. Chem. Lett. 8(8), 1739 (2017)
CrossRef
ADS
Google scholar
|
[67] |
W. J. Liang, A. I. Hochbaum, M. Fardy, O. Rabin, M. J. Zhang, and P. D. Yang, Field-effect modulation of Seebeck coefficient in single PbSe nanowires, Nano Lett. 9(4), 1689 (2009)
CrossRef
ADS
Google scholar
|
[68] |
Y. Saito, T. Iizuka, T. Koretsune, R. Arita, S. Shimizu, and Y. Iwasa, Gate-tuned thermoelectric power in black phosphorus, Nano Lett. 16(8), 4819 (2016)
CrossRef
ADS
Google scholar
|
[69] |
S. Shimizu, T. Iizuka, K. Kanahashi, J. Pu, K. Yanagi, T. Takenobu, and Y. Iwasa, Thermoelectric detection of multi-subband density of states in semiconducting and metallic single-walled carbon nanotubes, Small12(25), 3388 (2016)
CrossRef
ADS
Google scholar
|
[70] |
J. Zhang, H. J. Liu, L. Cheng, J. Wei, J. H. Liang, D. D. Fan, J. Shi, X. F. Tang, and Q. J. Zhang, Phosphorene nanoribbon as a promising candidate for thermoelectric applications, Sci. Rep. 4(1), 6452 (2014)
CrossRef
ADS
Google scholar
|
[71] |
H. K. Lyeo, A. A. Khajetoorians, L. Shi, K. P. Pipe, R. J. Ram, A. Shakouri, and C. K. Shih, Profiling the thermoelectric power of semiconductor junctions with nanometer resolution, Science303(5659), 816 (2004)
CrossRef
ADS
Google scholar
|
[72] |
J. C. Walrath, Y. H. Lin, K. P. Pipe, and R. S. Goldman, Quantifying the local Seebeck coefficient with scanning thermoelectric microscopy, Appl. Phys. Lett. 103(21), 212101 (2013)
CrossRef
ADS
Google scholar
|
[73] |
S. Cho, S. D. Kang, W. Kim, E. S. Lee, S. J. Woo, K. J. Kong, I. Kim, H. D. Kim, T. Zhang, J. A. Stroscio, Y.H. Kim, and H.K. Lyeo, Thermoelectric imaging of structural disorder in epitaxial graphene, Nat. Mater. 12(10), 913 (2013)
CrossRef
ADS
Google scholar
|
[74] |
J. Park, G. He, R. M. Feenstra, and A. P. Li, Atomicscale mapping of thermoelectric power on graphene: Role of defects and boundaries, Nano Lett. 13(7), 3269 (2013)
CrossRef
ADS
Google scholar
|
[75] |
A. Harzheim, C. Evangeli, O. V. Kolosov, and P. Gehring, Direct mapping of local Seebeck coefficient in 2D material nanostructures via scanning thermal gate microscopy, 2D., Mater7(4), 041004 (2020)
CrossRef
ADS
Google scholar
|
[76] |
A. Harzheim, J. Spiece, C. Evangeli, E. McCann, V. Falko, Y. W. Sheng, J. H. Warner, G. A. D. Briggs, J. A. Mol, P. Gehring, and O. V. Kolosov, Geometrically enhanced thermoelectric effects in graphene nanoconstrictions, Nano Lett. 18(12), 7719 (2018)
CrossRef
ADS
Google scholar
|
[77] |
X. D. Hu, X. Gong, M. Zhang, H. H. Lu, Z. Y. Xue, Y. F. Meng, P. K. Chu, Z. H. An, and Z. F. Di, Enhanced Peltier effect in wrinkled graphene constriction by nanobubble engineering, Small16(14), 1907170 (2020)
CrossRef
ADS
Google scholar
|
[78] |
J. Q. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, O. Y. Lian, and H. Park, Strain-induced self organization of metalinsulator domains in single-crystalline VO2 nanobeams, Nano Lett. 6(10), 2313 (2006)
CrossRef
ADS
Google scholar
|
[79] |
J. H. Jeong, Z. Yong, A. Joushaghani, A. Tsukernik, S. Paradis, D. Alain, and J. K. S. Poon, Current induced polycrystalline-to-crystalline transformation in vanadium dioxide nanowires, Sci. Rep. 6(1), 37296 (2016)
CrossRef
ADS
Google scholar
|
[80] |
H. Guo, K. Chen, Y. Oh, K. Wang, C. Dejoie, S. A. S. Asif, O. L. Warren, Z. W. Shan, J. Wu, and A. M. Minor, Mechanics and dynamics of the strain-induced M1-M2 structural phase transition in individual VO2 nanowires, Nano Lett. 11(8), 3207 (2011)
CrossRef
ADS
Google scholar
|
[81] |
M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging, Science318(5857), 1750 (2007)
CrossRef
ADS
Google scholar
|
[82] |
M. M. Qazilbash, M. Brehm, G. O. Andreev, A. Frenzel, P. C. Ho, B. G. Chae, B. J. Kim, S. J. Yun, H. T. Kim, A. V. Balatsky, O. G. Shpyrko, M. B. Maple, F. Keilmann, and D. N. Basov, Infrared spectroscopy and nano-imaging of the insulator-to-metal transition in vanadium dioxide, Phys. Rev. B79(7), 075107 (2009)
CrossRef
ADS
Google scholar
|
[83] |
M. M. Qazilbash, A. Tripathi, A. A. Schafgans, B. J. Kim, H. T. Kim, Z. H. Cai, M. V. Holt, J. M. Maser, F. Keilmann, O. G. Shpyrko, and D. N. Basov, Nanoscale imaging of the electronic and structural transitions in vanadium dioxide, Phys. Rev. B83(16), 165108 (2011)
CrossRef
ADS
Google scholar
|
[84] |
T. Favaloro, J. Suh, J. B. Vermeersch, K. Liu, Y. J. Gu, Y. L. Q. Chen, K. X. Wang, J. Q. Wu, and A. Shakouri, Direct observation of nanoscale Peltier and Joule effects at metalinsulator domain walls in vanadium dioxide nanobeams, Nano Lett. 14(5), 2394 (2014)
CrossRef
ADS
Google scholar
|
[85] |
F. Könemann, M. Vollmann, F. Menges, L. J. Chen, N. M. Ghazali, T. Yamaguchi, K. Ishibashi, C. Thelander, and B. Gotsmann, Nanoscale scanning probe thermometry, in: 24rd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), 2018
CrossRef
ADS
Google scholar
|
[86] |
I. J. Chen, S. Lehmann, M. Nilsson, P. Kivisaari, H. Linke, K. A. Dick, and C. Thelandert, Conduction band offset and polarization effects in InAs nanowire polytype junctions, Nano Lett. 17(2), 902 (2017)
CrossRef
ADS
Google scholar
|
[87] |
S. T. B. Goennenwein and G. E. W. Bauer, Spin caloritronics: electron spins blow hot and cold, Nat. Nanotechnol. 7(3), 145 (2012)
CrossRef
ADS
Google scholar
|
[88] |
K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, Observation of the spin seebeck effect, Nature455(7214), 778 (2008)
CrossRef
ADS
Google scholar
|
[89] |
K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S. Maekawa, and E. Saitoh, Spin Seebeck insulator, Nat. Mater. 9(11), 894 (2010)
CrossRef
ADS
Google scholar
|
[90] |
J. Flipse, J. F. L. Bakker, A. Slachter, F. K. Dejene, and B. J. Van Wees,Direct observation of the spin-dependent Peltier effect, Nat. Nanotechnol. 7(3), 166 (2012)
CrossRef
ADS
Google scholar
|
[91] |
S. Daimon, R. Iguchi, T. Hioki, E. Saitoh, and K. I. Uchida, Thermal imaging of spin Peltier effect, Nat. Commun. 7(1), 13754 (2016)
CrossRef
ADS
Google scholar
|
[92] |
K. I. Uchida, S. Daimon, R. Iguchi, and E. Saitoh, Observation of anisotropic magneto-Peltier effect in nickel, Nature558(7708), 95 (2018)
CrossRef
ADS
Google scholar
|
[93] |
Q. C. Weng, S. Komiyama, L. Yang, Z. H. An, P. P. Chen, S. A. Biehs, Y. Kajihara, and W. Lu, Imaging of nonlocal hot-electron energy dissipation via shot noise, Science360(6390), 775 (2018)
CrossRef
ADS
Google scholar
|
[94] |
L. Yang, R. J. Qian, Z. H. An, S. Komiyama, and W. Lu, Simulation of temperature profile for the electron and the lattice systems in laterally structured layered conductors, EPL128(1), 17001 (2019)
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |