Topological states in quasicrystals

Jiahao Fan, Huaqing Huang

PDF(5621 KB)
PDF(5621 KB)
Front. Phys. ›› 2022, Vol. 17 ›› Issue (1) : 13203. DOI: 10.1007/s11467-021-1100-y
TOPICAL REVIEW
TOPICAL REVIEW

Topological states in quasicrystals

Author information +
History +

Abstract

With the rapid development of topological states in crystals, the study of topological states has been extended to quasicrystals in recent years. In this review, we summarize the recent progress of topological states in quasicrystals, particularly focusing on one-dimensional (1D) and 2D systems. We first give a brief introduction to quasicrystalline structures. Then, we discuss topological phases in 1D quasicrystals where the topological nature is attributed to the synthetic dimensions associated with the quasiperiodic order of quasicrystals. We further present the generalization of various types of crystalline topological states to 2D quasicrystals, where real-space expressions of corresponding topological invariants are introduced due to the lack of translational symmetry in quasicrystals. Finally, since quasicrystals possess forbidden symmetries in crystals such as five-fold and eight-fold rotation, we provide an overview of unique quasicrystalline symmetry-protected topological states without crystalline counterpart.

Graphical abstract

Keywords

topological states / quasicrystals / quantum Hall effect / topological insulator / topological superconductor

Cite this article

Download citation ▾
Jiahao Fan, Huaqing Huang. Topological states in quasicrystals. Front. Phys., 2022, 17(1): 13203 https://doi.org/10.1007/s11467-021-1100-y

References

[1]
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
CrossRef ADS Google scholar
[2]
M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
CrossRef ADS Google scholar
[3]
B. A. Bernevig, Topological Insulators and Topological Superconductors, Princeton University Press, 2013
CrossRef ADS Google scholar
[4]
K. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)
CrossRef ADS Google scholar
[5]
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a twodimensional periodic potential, Phys. Rev. Lett. 49(6), 405 (1982)
CrossRef ADS Google scholar
[6]
A. Altland and M. R. Zirnbauer, Nonstandard symmetry classes in mesoscopic normal superconducting hybrid structures, Phys. Rev. B55(2), 1142 (1997)
CrossRef ADS Google scholar
[7]
A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Classification of topological insulators and superconductors in three spatial dimensions, Phys. Rev. B 78(19), 195125 (2008)
CrossRef ADS Google scholar
[8]
A. Kitaev, Periodic table for topological insulators and superconductors, in: AIP Conference Proceedings, Vol. 1134, pp 22–30, American Institute of Physics, 2009
CrossRef ADS Google scholar
[9]
S. Ryu, A. P. Schnyder, A. Furusaki,and A. W. W. Ludwig, Topological insulators and superconductors: Tenfold way and dimensional hierarchy, New J. Phys. 12(6), 065010 (2010)
CrossRef ADS Google scholar
[10]
H. Zhang and S. C. Zhang, Topological insulators from the perspective of first-principles calculations, Phys. Status Solidi Rapid Res. Lett. 7(1–2), 72 (2013)
CrossRef ADS Google scholar
[11]
Y. Ando, Topological insulator materials, J. Phys. Soc. Jpn. 82(10), 102001 (2013)
CrossRef ADS Google scholar
[12]
M. Sato and Y. Ando, Topological superconductors: A review, Rep. Prog. Phys. 80(7), 076501 (2017)
CrossRef ADS Google scholar
[13]
H. Huang, Y. Xu, J. Wang, and W. Duan, Emerging topological states in quasi-two-dimensional materials, WIRES: Comp. Mol. Sci, 7(4), e1296 (2017)
CrossRef ADS Google scholar
[14]
H. Huang, J. Liu, and W. Duan, Nontrivial Z2 topology in bismuth-based iii–v compounds, Phys. Rev. B90(19), 195105 (2014)
CrossRef ADS Google scholar
[15]
H. Huang, Z. Liu, H. Zhang, W. Duan, and D. Vanderbilt, Emergence of a Chern insulating state from a semi-Dirac dispersion, Phys. Rev. B92(16), 161115 (2015)
CrossRef ADS Google scholar
[16]
H. Huang and F. Liu, A unified view of topological phase transition in band theory, Research2020, 7832610 (2020)
CrossRef ADS Google scholar
[17]
L. Fu, Topological crystalline insulators, Phys. Rev. Lett. 106(10), 106802 (2011)
CrossRef ADS Google scholar
[18]
Y. Ando and L. Fu, Topological crystalline insulators and topological superconductors: From concepts to materials, Annu. Rev. Condens. Matter Phys. 6(1), 361 (2015)
CrossRef ADS Google scholar
[19]
F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. P. Parkin, B. A. Bernevig, and T. Neupert, Higher-order topological insulators, Sci. Adv. 4(6), eaat0346 (2018)
CrossRef ADS Google scholar
[20]
J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, and P. W. Brouwer, Reflection-symmetric second-order topological insulators and superconductors, Phys. Rev. Lett. 119(24), 246401 (2017)
CrossRef ADS Google scholar
[21]
H. C. Po, A. Vishwanath, and H. Watanabe, Symmetrybased indicators of band topology in the 230 space groups, Nat. Commun. 8(1), 50 (2017)
CrossRef ADS Google scholar
[22]
B. Bradlyn, L. Elcoro, J. Cano, M. G. Vergniory, Z. Wang, C. Felser, M. I. Aroyo, and B. A. Bernevig, Topological quantum chemistry, Nature547(7663), 298 (2017)
CrossRef ADS Google scholar
[23]
Z. Song, T. Zhang, Z. Fang, and C. Fang, Quantitative mappings between symmetry and topology in solids, Nat. Commun. 9, 3530 (2018)
CrossRef ADS Google scholar
[24]
T. Zhang, Y. Jiang, Z. Song, H. Huang, Y. He, Z. Fang, H. Weng, and C. Fang, Catalogue of topological electronic materials, Nature566(7745), 475 (2019)
CrossRef ADS Google scholar
[25]
F. Tang, H. C. Po, A. Vishwanath, and X. Wan, Comprehensive search for topological materials using symmetry indicators, Nature566(7745), 486 (2019)
CrossRef ADS Google scholar
[26]
M. G. Vergniory, L. Elcoro, C. Felser, N. Regnault, B. A. Bernevig, and Z. Wang, A complete catalogue of high-quality topological materials, Nature566(7745), 480 (2019)
CrossRef ADS Google scholar
[27]
D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett . 53(20), 1951 (1984)
CrossRef ADS Google scholar
[28]
P. J. Steinhardt and S. Ostlund, The Physics of Quasicrystals, World Scientific, 1987
CrossRef ADS Google scholar
[29]
C. Janot, Quasicrystals, in: Neutron and Synchrotron Radiation for Condensed MatterStudies, pp 197–211, Springer, 1994
CrossRef ADS Google scholar
[30]
Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg, Topological states and adiabatic pumping in quasicrystals, Phys. Rev. Lett. 109(10), 106402 (2012)
CrossRef ADS Google scholar
[31]
Y. E. Kraus and O. Zilberberg, Topological equivalence between the Fibonacci quasicrystal and the Harper model, Phys. Rev. Lett. 109(11), 116404 (2012)
CrossRef ADS Google scholar
[32]
Y. E. Kraus, Z. Ringel, and O. Zilberberg, Fourdimensional quantum hall effect in a two-dimensional quasicrystal, Phys. Rev. Lett. 111(22), 226401 (2013)
CrossRef ADS Google scholar
[33]
M. Verbin, O. Zilberberg, Y. E. Kraus, Y. Lahini, and Y. Silberberg, Observation of topological phase transitions in photonic quasicrystals, Phys. Rev. Lett. 110(7), 076403 (2013)
CrossRef ADS Google scholar
[34]
D. T. Tran, A. Dauphin, N. Goldman, and P. Gaspard, Topological Hofstadter insulators in a two-dimensional quasicrystal, Phys. Rev. B91(8), 085125 (2015)
CrossRef ADS Google scholar
[35]
D. R. Hofstadter, Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields, Phys. Rev. B14(6), 2239 (1976)
CrossRef ADS Google scholar
[36]
J. N. Fuchs and J. Vidal, Hofstadter butterfly of a quasicrystal, Phys. Rev. B 94(20), 205437 (2016)
CrossRef ADS Google scholar
[37]
G. Naumis, Higher-dimensional quasicrystalline approach to the Hofstadter butterfly topological-phase band conductances: Symbolic sequences and self-similar rules at all magnetic fluxes, Phys. Rev. B100(16), 165101 (2019)
CrossRef ADS Google scholar
[38]
C. W. Duncan, S. Manna, and A. E. B. Nielsen, Topological models in rotationally symmetric quasicrystals, Phys. Rev. B 101(11), 115413 (2020)
CrossRef ADS Google scholar
[39]
H. Huang and F. Liu, Quantum spin Hall effect and spin Bott index in a quasicrystal lattice, Phys. Rev. Lett. 121(12), 126401 (2018)
CrossRef ADS Google scholar
[40]
H. Huang and F. Liu, Theory of spin Bott index for quantum spin hall states in nonperiodic systems, Phys. Rev. B98(12), 125130 (2018)
CrossRef ADS Google scholar
[41]
H. Huang and F. Liu, Comparison of quantum spin Hall states in quasicrystals and crystals, Phys. Rev. B100(8), 085119 (2019)
CrossRef ADS Google scholar
[42]
J. Li, R. L. Chu, J. K. Jain, and S. Q. Shen, Topological Anderson insulator, Phys. Rev. Lett. 102(13), 136806 (2009)
CrossRef ADS Google scholar
[43]
R. Chen, D. H. Xu, and B. Zhou, Topological Anderson insulator phase in a quasicrystal lattice, Phys. Rev. B100(11), 115311 (2019)
CrossRef ADS Google scholar
[44]
T. Peng, C. B. Hua, R. Chen, D. H. Xu, and B. Zhou, Topological Anderson insulators in an Ammann–Beenker quasicrystal and a snub-square crystal, Phys. Rev. B 103(8), 085307 (2021)
CrossRef ADS Google scholar
[45]
A. L. He, L. R. Ding, Y. Zhou, Y. F. Wang, and C. D. Gong, Quasicrystalline Chern insulators, Phys. Rev. B100(21), 214109 (2019)
CrossRef ADS Google scholar
[46]
H. Huang, Y. S. Wu, and F. Liu, Aperiodic topological crystalline insulators, Phys. Rev. B101(4), 041103 (2020)
CrossRef ADS Google scholar
[47]
D. Varjas, A. Lau, K. Pöyhönen, A. R. Akhmerov, D. I. Pikulin, and I. C. Fulga, Topological phases without crystalline counterparts, Phys. Rev. Lett. 123(19), 196401 (2019)
CrossRef ADS Google scholar
[48]
R. Chen, C. Z. Chen, J. H. Gao, B. Zhou, and D. H. Xu, Higher-order topological insulators in quasicrystals, Phys. Rev. Lett. 124(3), 036803 (2020)
CrossRef ADS Google scholar
[49]
S. Spurrier and N. R. Cooper, Kane-Mele with a twist: Quasicrystalline higher-order topological insulators with fractional mass kinks, Phys. Rev. Research2(3), 033071 (2020)
CrossRef ADS Google scholar
[50]
C. B. Hua, R. Chen, B. Zhou, and D. H. Xu, Higher-order topological insulator in a dodecagonal quasicrystal, Phys. Rev. B102(24), 241102 (2020)
CrossRef ADS Google scholar
[51]
T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Topological characterization of periodically driven quantum systems, Phys. Rev. B82(23), 235114 (2010)
CrossRef ADS Google scholar
[52]
Z. Gu, H. A. Fertig, D. P. Arovas, and A. Auerbach, Floquet spectrum and transport through an irradiated graphene ribbon, Phys. Rev. Lett. 107(21), 216601 (2011)
CrossRef ADS Google scholar
[53]
M. Tezuka and N. Kawakami, Reentrant topological transitions in a quantum wire/superconductor system with quasiperiodic lattice modulation, Phys. Rev. B 85(14), 140508 (2012)
CrossRef ADS Google scholar
[54]
W. DeGottardi, D. Sen, and S. Vishveshwara, Majorana fermions in superconducting 1D systems having periodic, quasiperiodic, and disordered potentials, Phys. Rev. Lett. 110(14), 146404 (2013)
CrossRef ADS Google scholar
[55]
R. Ghadimi, T. Sugimoto, and T. Tohyama, Majorana zero-energy mode and fractal structure in Fibonacci–Kitaev chain, J. Phys. Soc. Jpn. 86(11), 114707 (2017)
CrossRef ADS Google scholar
[56]
I. C. Fulga, D. I. Pikulin, and T. A. Loring, Aperiodic weak topological superconductors, Phys. Rev. Lett. 116(25), 257002 (2016)
CrossRef ADS Google scholar
[57]
R. Ghadimi, T. Sugimoto, K. Tanaka, and T. Tohyama, Topological superconductivity in quasicrystals, arXiv: 2006.06952 (2020)
[58]
Y. Cao, Y. Zhang, Y. B. Liu, C. C. Liu, W. Q. Chen, and F. Yang, Kohn–Luttinger mechanism driven exotic topological superconductivity on the Penrose lattice, Phys. Rev. Lett. 125(1), 017002 (2020)
CrossRef ADS Google scholar
[59]
Z. Li and Z. F. Wang, Quantum anomalous Hall effect in twisted bilayer graphene quasicrystal, Chin. Phys. B29(10), 107101 (2020)
CrossRef ADS Google scholar
[60]
W. Yao, E. Wang, C. Bao, Y. Zhang, K. Zhang, , Quasicrystalline 30 twisted bilayer graphene as an incommensurate superlattice with strong interlayer coupling, Proceedings of the National Academy of Sciences, 115(27), 6928 (2018)
CrossRef ADS Google scholar
[61]
A. Bansil, H. Lin, and T. Das, Topological band theory, Rev. Mod. Phys. 88(2), 021004 (2016)
CrossRef ADS Google scholar
[62]
C. L. Kane and E. J. Mele, Z2 topological order and the quantum spin hall effect, Phys. Rev. Lett. 95(14), 146802 (2005)
CrossRef ADS Google scholar
[63]
L. Fu and C. L. Kane, Topological insulators with inversion symmetry, Phys. Rev. B 76(4), 045302 (2007)
CrossRef ADS Google scholar
[64]
A. Jagannathan, The Fibonacci quasicrystal: Case study of hidden dimensions and multifractality, arXiv: 2012.14744 (2020)
[65]
E. Prodan, Virtual topological insulators with real quantized physics, Phys. Rev. B 91(24), 245104 (2015)
CrossRef ADS Google scholar
[66]
D. Levine and P. J. Steinhardt, Quasicrystals: A new class of ordered structures, Phys. Rev. Lett. 53(26), 2477 (1984)
CrossRef ADS Google scholar
[67]
N. Wang, H. Chen, and K. H. Kuo, Two-dimensional quasicrystal with eightfold rotational symmetry, Phys. Rev. Lett. 59(9), 1010 (1987)
CrossRef ADS Google scholar
[68]
N. I. N. G. Wang, K. K. Fung, and K. H. Kuo, Symmetry study of the Mn–Si–Al octagonal quasicrystal by convergent beam electron diffraction, Appl. Phys. Lett. 52(25), 2120 (1988)
CrossRef ADS Google scholar
[69]
R. Lifshitz, Quasicrystals: A matter of definition, Found. Phys. 33(12), 1703 (2003)
CrossRef ADS Google scholar
[70]
P. Bak, Phenomenological theory of icosahedral incommensurate (“quasiperiodic”) order in Mn–Al alloys, Phys. Rev. Lett. 54(14), 1517 (1985)
CrossRef ADS Google scholar
[71]
M. Duneau and A. Katz, Quasiperiodic patterns, Phys. Rev. Lett. 54(25), 2688 (1985)
CrossRef ADS Google scholar
[72]
V. Elser and C. L. Henley, Crystal and quasicrystal structures in Al–Mn–Si alloys, Phys. Rev. Lett. 55(26), 2883 (1985)
CrossRef ADS Google scholar
[73]
J. E. S. Socolar, T. C. Lubensky, and P. J. Steinhardt, Phonons, phasons, and dislocations in quasicrystals, Phys. Rev. B 34(5), 3345 (1986)
CrossRef ADS Google scholar
[74]
S. J. Poon, Electronic properties of quasicrystals an experimental review, Adv. Phys. 41(4), 303 (1992)
CrossRef ADS Google scholar
[75]
L. Guidoni, C. Triché, P. Verkerk, and G. Grynberg, Quasiperiodic optical lattices, Phys. Rev. Lett. 79(18), 3363 (1997)
CrossRef ADS Google scholar
[76]
L. Guidoni, B. Dépret, A. Di Stefano, and P. Verkerk, Atomic diffusion in an optical quasicrystal with five-fold symmetry, Phys. Rev. A60(6), R4233 (1999)
CrossRef ADS Google scholar
[77]
T. A. Corcovilos and J. Mittal, Two-dimensional optical quasicrystal potentials for ultracold atom experiments, Appl. Opt. 58(9), 2256 (2019)
CrossRef ADS Google scholar
[78]
K. Viebahn, M. Sbroscia, E. Carter, J. C. Yu, and U. Schneider, Matter-wave diffraction from a quasicrystalline optical lattice, Phys. Rev. Lett. 122(11), 110404 (2019)
CrossRef ADS Google scholar
[79]
M. Sbroscia, K. Viebahn, E. Carter, J.-C. Yu, A. Gaunt, and U. Schneider, Observing localization in a 2D quasicrystalline optical lattice, Phys. Rev. Lett. 125, 200604 (2020)
CrossRef ADS Google scholar
[80]
W. Steurer and D. Sutter-Widmer, Photonic and phononic quasicrystals, J. Phys. D Appl. Phys. 40(13), R229 (2007)
CrossRef ADS Google scholar
[81]
M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. DeLa Rue, and P. Millar, Two-dimensional penrosetiled photonic quasicrystals: From diffraction pattern to band structure, Nanotechnology11(4), 274 (2000)
CrossRef ADS Google scholar
[82]
B. Freedman, G. Bartal, M. Segev, R. Lifshitz, and N. Demetrios, Wave and defect dynamics in nonlinear photonic quasicrystals, Nature440(7088), 1166 (2006)
CrossRef ADS Google scholar
[83]
A. Jagannathan and M. Duneau, An eightfold optical quasicrystal with cold atoms, EPL 104(6), 66003 (2014)
CrossRef ADS Google scholar
[84]
M. Verbin, O. Zilberberg, Y. Lahini, and E. Yaacov, Topological pumping over a photonic Fibonacci quasicrystal, Phys. Rev. B 91(6), 064201 (2015)
CrossRef ADS Google scholar
[85]
M. Bayindir, E. Cubukcu, I. Bulu, and E. Ozbay, Photonic band-gap effect, localization, and waveguiding in the two-dimensional Penrose lattice, Phys. Rev. B 63(16), 161104 (2001)
CrossRef ADS Google scholar
[86]
A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice, Phys. Rev. Lett. 94(18), 183903 (2005)
CrossRef ADS Google scholar
[87]
P. Bordia, H. Lüschen, S. Scherg, S. Gopalakrishnan, M. Knap, U. Schneider, and I. Bloch, Probing slow relaxation and many-body localization in two-dimensional quasiperiodic systems, Phys. Rev. X 7(4), 041047 (2017)
CrossRef ADS Google scholar
[88]
H. P. Lüschen, P. Bordia, S. Scherg, F. Alet, E. Altman, U. Schneider, and I. Bloch, Observation of slow dynamics near the many-body localization transition in one-dimensional quasiperiodic systems, Phys. Rev. Lett. 119(26), 260401 (2017)
CrossRef ADS Google scholar
[89]
Y. S. Chan, C. T. Chan, and Z. Y. Liu, Photonic band gaps in two dimensional photonic quasicrystals, Phys. Rev. Lett. 80(5), 956 (1998)
CrossRef ADS Google scholar
[90]
L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, Light transport through the band-edge states of Fibonacci quasicrystals, Phys. Rev. Lett. 90(5), 055501 (2003)
CrossRef ADS Google scholar
[91]
M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, Complete photonic bandgaps in 12-fold symmetric quasicrystals, Nature404(6779), 740 (2000)
CrossRef ADS Google scholar
[92]
I. Bloch, Ultracold quantum gases in optical lattices, Nat. Phys. 1(1), 23 (2005)
CrossRef ADS Google scholar
[93]
T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, Topological photonics, Rev. Mod. Phys. 91(1), 015006 (2019)
CrossRef ADS Google scholar
[94]
M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, Photonic floquet topological insulators, Nature496(7444), 196 (2013)
CrossRef ADS Google scholar
[95]
O. Zilberberg, Topology in quasicrystals, arXiv: 2012. 03644 (2020)
[96]
S. Aubry and G. André, Analyticity breaking and Anderson localization in incommensurate lattices, Ann. Isr. Phys. Soc. 3(133), 18 (1980)
[97]
J. Zak, Magnetic translation group, Phys. Rev. 134(6A), A1602 (1964)
CrossRef ADS Google scholar
[98]
I. Dana, Y. Avron, and J. Zak, Quantised Hall conductance in a perfect crystal, J. Phys. C Solid State Phys. 18(22), L679 (1985)
CrossRef ADS Google scholar
[99]
D. N. Christodoulides, F. Lederer, and Y. Silberberg, Discretizing light behaviour in linear and nonlinear waveguide lattices, Nature424(6950), 817 (2003)
CrossRef ADS Google scholar
[100]
A. Szameit, D. Blömer, J. Burghoff, T. Schreiber, T. Pertsch, S. Nolte, A. Tünnermann, and F. Lederer, Discrete nonlinear localization in femtosecond laser written waveguides in fused silica, Opt. Express13(26), 10552 (2005)
CrossRef ADS Google scholar
[101]
Y. Lahini, R. Pugatch, F. Pozzi, M. Sorel, R. Morandotti, N. Davidson, and Y. Silberberg, Observation of a localization transition in quasiperiodic photonic lattices, Phys. Rev. Lett. 103, 013901 (2009)
CrossRef ADS Google scholar
[102]
I. Petrides, H. M. Price, and O. Zilberberg, Sixdimensional quantum hall effect and three-dimensional topological pumps, Phys. Rev. B 98, 125431 (2018)
CrossRef ADS Google scholar
[103]
T. Fukui, Y. Hatsugai, and H. Suzuki, Chern numbers in discretized Brillouin zone: Efficient method of computing (spin) Hall conductances, J. Phys. Soc. Jpn. 74(6), 1674 (2005)
CrossRef ADS Google scholar
[104]
Y. Hatsugai, T. Fukui, and H. Aoki, Topological analysis of the quantum hall effect in graphene: Dirac–Fermi transition across van hove singularities and edge versus bulk quantum numbers, Phys. Rev. B 74(20), 205414 (2006)
CrossRef ADS Google scholar
[105]
R. Bianco and R. Resta, Mapping topological order in coordinate space, Phys. Rev. B84(24), 241106 (2011)
CrossRef ADS Google scholar
[106]
N. H. Lindner, G. Refael, and V. Galitski, Floquet topological insulator in semiconductor quantum wells, Nat. Phys. 7(6), 490 (2011)
CrossRef ADS Google scholar
[107]
M. A. Bandres, M. C. Rechtsman, and M. Segev, Topological photonic quasicrystals: Fractal topological spectrum and protected transport, Phys. Rev. X6(1), 011016 (2016)
CrossRef ADS Google scholar
[108]
Z. Gu, H. A. Fertig, and P. Daniel, Floquet spectrum and transport through an irradiated graphene ribbon, Phys. Rev. Lett. 107(21), 216601 (2011)
CrossRef ADS Google scholar
[109]
D. Toniolo, On the equivalence of the Bott index and the Chern number on a torus, and the quantization of the Hall conductivity with a real space Kubo formula, arXiv: 1708.05912 (2017)
[110]
F. D. M. Haldane, Model for a quantum hall effect without landau levels: Condensed-matter realization of the parity anomaly, Phys. Rev. Lett. 61(18), 2015 (1988)
CrossRef ADS Google scholar
[111]
A. Kitaev, Anyons in an exactly solved model and beyond, Ann. Phys. 321(1), 2 (2006)
CrossRef ADS Google scholar
[112]
M. Brzezińska, A. M. Cook, and T. Neupert, Topology in the Sierpiński–Hofstadter problem, Phys. Rev. B98(20), 205116 (2018)
CrossRef ADS Google scholar
[113]
C. L. Kane and E. J. Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett. 95(22), 226801 (2005)
CrossRef ADS Google scholar
[114]
B. A. Bernevig and S. C. Zhang, Quantum spin Hall effect, Phys. Rev. Lett. 96(10), 106802 (2006)
CrossRef ADS Google scholar
[115]
J. Maciejko, T. L. Hughes, and S.-C. Zhang, The quantum spin Hall effect, Annu. Rev. Condens. Matter Phys. 2(1), 31 (2011)
CrossRef ADS Google scholar
[116]
M. König, H. Buhmann, L. W. Molenkamp, T. Hughes, C. X. Liu, X. L. Qi, and S. C. Zhang, The quantum spin Hall effect: Theory and experiment, J. Phys. Soc. Jpn. 77(3), 031007 (2008)
CrossRef ADS Google scholar
[117]
J. C. Slater and G. F. Koster, Simplified LCAO method for the periodic potential problem, Phys. Rev. 94(6), 1498 (1954)
CrossRef ADS Google scholar
[118]
W. A. Harrison, Electronic structure and the properties of solids: the physics of the chemical bond, Courier Corporation, 2012
[119]
D. N. Sheng, Z. Y. Weng, L. Sheng, and F. D. M. Haldane, Quantum spin-Hall effect and topologically invariant Chern numbers, Phys. Rev. Lett. 97(3), 036808 (2006)
CrossRef ADS Google scholar
[120]
T. Fukui and Y. Hatsugai, Topological aspects of the quantum spin-Hall effect in graphene: Z2 topological order and spin Chern number, Phys. Rev. B75(12), 121403 (2007)
CrossRef ADS Google scholar
[121]
E. Prodan, Robustness of the spin-Chern number, Phys. Rev. B 80(12), 125327 (2009)
CrossRef ADS Google scholar
[122]
J. Bellissard, A. van Elst, and H. Schulz-Baldes, The noncommutative geometry of the quantum Hall effect, J. Math. Phys. 35(10), 5373 (1994)
CrossRef ADS Google scholar
[123]
M. B. Hastings and T. A. Loring, Almost commuting matrices, localized Wannier functions, and the quantum hall effect, J. Math. Phys. 51(1), 015214 (2010)
CrossRef ADS Google scholar
[124]
R. Exel and A. Terry, Invariants of almost commuting unitaries, J. Funct. Anal. 95(2), 364 (1991)
CrossRef ADS Google scholar
[125]
H. Katsura and T. Koma, The noncommutative index theorem and the periodic table for disordered topological insulators and superconductors, J. Math. Phys. 59(3), 031903 (2018)
CrossRef ADS Google scholar
[126]
J. C. Y. Teo, L. Fu, and C. L. Kane, Surface states and topological invariants in three-dimensional topological insulators: Application to Bi1−xSbx, Phys. Rev. B78(4), 045426 (2008)
CrossRef ADS Google scholar
[127]
T. A. Loring, K-theory and pseudospectra for topological insulators, Ann. Phys. 356, 383 (2015)
[128]
Z. Ringel, Y. E. Kraus, and A. Stern, Strong side of weak topological insulators, Phys. Rev. B86(4), 045102 (2012)
CrossRef ADS Google scholar
[129]
I. C. Fulga, B. van Heck, J. M. Edge, and A. R. Akhmerov, Statistical topological insulators, Phys. Rev. B 89(15), 155424 (2014)
CrossRef ADS Google scholar
[130]
A. Y. Kitaev, Unpaired Majorana fermions in quantum wires, Phys. Uspekhi44(10S), 131 (2001)
CrossRef ADS Google scholar
[131]
N. Read and D. Green, Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect, Phys. Rev. B61(15), 10267 (2000)
CrossRef ADS Google scholar
[132]
R. Jackiw and C. Rebbi, Solitons with fermion number 1/2, Phys. Rev. D 13(12), 3398 (1976)
CrossRef ADS Google scholar
[133]
J. C. Y. Teo and T. L. Hughes, Existence of majoranafermion bound states on disclinations and the classification of topological crystalline superconductors in two dimensions, Phys. Rev. Lett.111(4), 047006 (2013)
CrossRef ADS Google scholar
[134]
M. Baake and U. Grimm, Aperiodic Order, Vol. 1, Cambridge University Press, 2013

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(5621 KB)

Accesses

Citations

Detail

Sections
Recommended

/