Topological states in quasicrystals
Jiahao Fan, Huaqing Huang
Topological states in quasicrystals
With the rapid development of topological states in crystals, the study of topological states has been extended to quasicrystals in recent years. In this review, we summarize the recent progress of topological states in quasicrystals, particularly focusing on one-dimensional (1D) and 2D systems. We first give a brief introduction to quasicrystalline structures. Then, we discuss topological phases in 1D quasicrystals where the topological nature is attributed to the synthetic dimensions associated with the quasiperiodic order of quasicrystals. We further present the generalization of various types of crystalline topological states to 2D quasicrystals, where real-space expressions of corresponding topological invariants are introduced due to the lack of translational symmetry in quasicrystals. Finally, since quasicrystals possess forbidden symmetries in crystals such as five-fold and eight-fold rotation, we provide an overview of unique quasicrystalline symmetry-protected topological states without crystalline counterpart.
topological states / quasicrystals / quantum Hall effect / topological insulator / topological superconductor
[1] |
X. L. Qi and S. C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83(4), 1057 (2011)
CrossRef
ADS
Google scholar
|
[2] |
M. Z. Hasan and C. L. Kane, Topological insulators, Rev. Mod. Phys. 82(4), 3045 (2010)
CrossRef
ADS
Google scholar
|
[3] |
B. A. Bernevig, Topological Insulators and Topological Superconductors, Princeton University Press, 2013
CrossRef
ADS
Google scholar
|
[4] |
K. Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494 (1980)
CrossRef
ADS
Google scholar
|
[5] |
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall conductance in a twodimensional periodic potential, Phys. Rev. Lett. 49(6), 405 (1982)
CrossRef
ADS
Google scholar
|
[6] |
A. Altland and M. R. Zirnbauer, Nonstandard symmetry classes in mesoscopic normal superconducting hybrid structures, Phys. Rev. B55(2), 1142 (1997)
CrossRef
ADS
Google scholar
|
[7] |
A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Classification of topological insulators and superconductors in three spatial dimensions, Phys. Rev. B 78(19), 195125 (2008)
CrossRef
ADS
Google scholar
|
[8] |
A. Kitaev, Periodic table for topological insulators and superconductors, in: AIP Conference Proceedings, Vol. 1134, pp 22–30, American Institute of Physics, 2009
CrossRef
ADS
Google scholar
|
[9] |
S. Ryu, A. P. Schnyder, A. Furusaki,and A. W. W. Ludwig, Topological insulators and superconductors: Tenfold way and dimensional hierarchy, New J. Phys. 12(6), 065010 (2010)
CrossRef
ADS
Google scholar
|
[10] |
H. Zhang and S. C. Zhang, Topological insulators from the perspective of first-principles calculations, Phys. Status Solidi Rapid Res. Lett. 7(1–2), 72 (2013)
CrossRef
ADS
Google scholar
|
[11] |
Y. Ando, Topological insulator materials, J. Phys. Soc. Jpn. 82(10), 102001 (2013)
CrossRef
ADS
Google scholar
|
[12] |
M. Sato and Y. Ando, Topological superconductors: A review, Rep. Prog. Phys. 80(7), 076501 (2017)
CrossRef
ADS
Google scholar
|
[13] |
H. Huang, Y. Xu, J. Wang, and W. Duan, Emerging topological states in quasi-two-dimensional materials, WIRES: Comp. Mol. Sci, 7(4), e1296 (2017)
CrossRef
ADS
Google scholar
|
[14] |
H. Huang, J. Liu, and W. Duan, Nontrivial Z2 topology in bismuth-based iii–v compounds, Phys. Rev. B90(19), 195105 (2014)
CrossRef
ADS
Google scholar
|
[15] |
H. Huang, Z. Liu, H. Zhang, W. Duan, and D. Vanderbilt, Emergence of a Chern insulating state from a semi-Dirac dispersion, Phys. Rev. B92(16), 161115 (2015)
CrossRef
ADS
Google scholar
|
[16] |
H. Huang and F. Liu, A unified view of topological phase transition in band theory, Research2020, 7832610 (2020)
CrossRef
ADS
Google scholar
|
[17] |
L. Fu, Topological crystalline insulators, Phys. Rev. Lett. 106(10), 106802 (2011)
CrossRef
ADS
Google scholar
|
[18] |
Y. Ando and L. Fu, Topological crystalline insulators and topological superconductors: From concepts to materials, Annu. Rev. Condens. Matter Phys. 6(1), 361 (2015)
CrossRef
ADS
Google scholar
|
[19] |
F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. P. Parkin, B. A. Bernevig, and T. Neupert, Higher-order topological insulators, Sci. Adv. 4(6), eaat0346 (2018)
CrossRef
ADS
Google scholar
|
[20] |
J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, and P. W. Brouwer, Reflection-symmetric second-order topological insulators and superconductors, Phys. Rev. Lett. 119(24), 246401 (2017)
CrossRef
ADS
Google scholar
|
[21] |
H. C. Po, A. Vishwanath, and H. Watanabe, Symmetrybased indicators of band topology in the 230 space groups, Nat. Commun. 8(1), 50 (2017)
CrossRef
ADS
Google scholar
|
[22] |
B. Bradlyn, L. Elcoro, J. Cano, M. G. Vergniory, Z. Wang, C. Felser, M. I. Aroyo, and B. A. Bernevig, Topological quantum chemistry, Nature547(7663), 298 (2017)
CrossRef
ADS
Google scholar
|
[23] |
Z. Song, T. Zhang, Z. Fang, and C. Fang, Quantitative mappings between symmetry and topology in solids, Nat. Commun. 9, 3530 (2018)
CrossRef
ADS
Google scholar
|
[24] |
T. Zhang, Y. Jiang, Z. Song, H. Huang, Y. He, Z. Fang, H. Weng, and C. Fang, Catalogue of topological electronic materials, Nature566(7745), 475 (2019)
CrossRef
ADS
Google scholar
|
[25] |
F. Tang, H. C. Po, A. Vishwanath, and X. Wan, Comprehensive search for topological materials using symmetry indicators, Nature566(7745), 486 (2019)
CrossRef
ADS
Google scholar
|
[26] |
M. G. Vergniory, L. Elcoro, C. Felser, N. Regnault, B. A. Bernevig, and Z. Wang, A complete catalogue of high-quality topological materials, Nature566(7745), 480 (2019)
CrossRef
ADS
Google scholar
|
[27] |
D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett . 53(20), 1951 (1984)
CrossRef
ADS
Google scholar
|
[28] |
P. J. Steinhardt and S. Ostlund, The Physics of Quasicrystals, World Scientific, 1987
CrossRef
ADS
Google scholar
|
[29] |
C. Janot, Quasicrystals, in: Neutron and Synchrotron Radiation for Condensed MatterStudies, pp 197–211, Springer, 1994
CrossRef
ADS
Google scholar
|
[30] |
Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg, Topological states and adiabatic pumping in quasicrystals, Phys. Rev. Lett. 109(10), 106402 (2012)
CrossRef
ADS
Google scholar
|
[31] |
Y. E. Kraus and O. Zilberberg, Topological equivalence between the Fibonacci quasicrystal and the Harper model, Phys. Rev. Lett. 109(11), 116404 (2012)
CrossRef
ADS
Google scholar
|
[32] |
Y. E. Kraus, Z. Ringel, and O. Zilberberg, Fourdimensional quantum hall effect in a two-dimensional quasicrystal, Phys. Rev. Lett. 111(22), 226401 (2013)
CrossRef
ADS
Google scholar
|
[33] |
M. Verbin, O. Zilberberg, Y. E. Kraus, Y. Lahini, and Y. Silberberg, Observation of topological phase transitions in photonic quasicrystals, Phys. Rev. Lett. 110(7), 076403 (2013)
CrossRef
ADS
Google scholar
|
[34] |
D. T. Tran, A. Dauphin, N. Goldman, and P. Gaspard, Topological Hofstadter insulators in a two-dimensional quasicrystal, Phys. Rev. B91(8), 085125 (2015)
CrossRef
ADS
Google scholar
|
[35] |
D. R. Hofstadter, Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields, Phys. Rev. B14(6), 2239 (1976)
CrossRef
ADS
Google scholar
|
[36] |
J. N. Fuchs and J. Vidal, Hofstadter butterfly of a quasicrystal, Phys. Rev. B 94(20), 205437 (2016)
CrossRef
ADS
Google scholar
|
[37] |
G. Naumis, Higher-dimensional quasicrystalline approach to the Hofstadter butterfly topological-phase band conductances: Symbolic sequences and self-similar rules at all magnetic fluxes, Phys. Rev. B100(16), 165101 (2019)
CrossRef
ADS
Google scholar
|
[38] |
C. W. Duncan, S. Manna, and A. E. B. Nielsen, Topological models in rotationally symmetric quasicrystals, Phys. Rev. B 101(11), 115413 (2020)
CrossRef
ADS
Google scholar
|
[39] |
H. Huang and F. Liu, Quantum spin Hall effect and spin Bott index in a quasicrystal lattice, Phys. Rev. Lett. 121(12), 126401 (2018)
CrossRef
ADS
Google scholar
|
[40] |
H. Huang and F. Liu, Theory of spin Bott index for quantum spin hall states in nonperiodic systems, Phys. Rev. B98(12), 125130 (2018)
CrossRef
ADS
Google scholar
|
[41] |
H. Huang and F. Liu, Comparison of quantum spin Hall states in quasicrystals and crystals, Phys. Rev. B100(8), 085119 (2019)
CrossRef
ADS
Google scholar
|
[42] |
J. Li, R. L. Chu, J. K. Jain, and S. Q. Shen, Topological Anderson insulator, Phys. Rev. Lett. 102(13), 136806 (2009)
CrossRef
ADS
Google scholar
|
[43] |
R. Chen, D. H. Xu, and B. Zhou, Topological Anderson insulator phase in a quasicrystal lattice, Phys. Rev. B100(11), 115311 (2019)
CrossRef
ADS
Google scholar
|
[44] |
T. Peng, C. B. Hua, R. Chen, D. H. Xu, and B. Zhou, Topological Anderson insulators in an Ammann–Beenker quasicrystal and a snub-square crystal, Phys. Rev. B 103(8), 085307 (2021)
CrossRef
ADS
Google scholar
|
[45] |
A. L. He, L. R. Ding, Y. Zhou, Y. F. Wang, and C. D. Gong, Quasicrystalline Chern insulators, Phys. Rev. B100(21), 214109 (2019)
CrossRef
ADS
Google scholar
|
[46] |
H. Huang, Y. S. Wu, and F. Liu, Aperiodic topological crystalline insulators, Phys. Rev. B101(4), 041103 (2020)
CrossRef
ADS
Google scholar
|
[47] |
D. Varjas, A. Lau, K. Pöyhönen, A. R. Akhmerov, D. I. Pikulin, and I. C. Fulga, Topological phases without crystalline counterparts, Phys. Rev. Lett. 123(19), 196401 (2019)
CrossRef
ADS
Google scholar
|
[48] |
R. Chen, C. Z. Chen, J. H. Gao, B. Zhou, and D. H. Xu, Higher-order topological insulators in quasicrystals, Phys. Rev. Lett. 124(3), 036803 (2020)
CrossRef
ADS
Google scholar
|
[49] |
S. Spurrier and N. R. Cooper, Kane-Mele with a twist: Quasicrystalline higher-order topological insulators with fractional mass kinks, Phys. Rev. Research2(3), 033071 (2020)
CrossRef
ADS
Google scholar
|
[50] |
C. B. Hua, R. Chen, B. Zhou, and D. H. Xu, Higher-order topological insulator in a dodecagonal quasicrystal, Phys. Rev. B102(24), 241102 (2020)
CrossRef
ADS
Google scholar
|
[51] |
T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Topological characterization of periodically driven quantum systems, Phys. Rev. B82(23), 235114 (2010)
CrossRef
ADS
Google scholar
|
[52] |
Z. Gu, H. A. Fertig, D. P. Arovas, and A. Auerbach, Floquet spectrum and transport through an irradiated graphene ribbon, Phys. Rev. Lett. 107(21), 216601 (2011)
CrossRef
ADS
Google scholar
|
[53] |
M. Tezuka and N. Kawakami, Reentrant topological transitions in a quantum wire/superconductor system with quasiperiodic lattice modulation, Phys. Rev. B 85(14), 140508 (2012)
CrossRef
ADS
Google scholar
|
[54] |
W. DeGottardi, D. Sen, and S. Vishveshwara, Majorana fermions in superconducting 1D systems having periodic, quasiperiodic, and disordered potentials, Phys. Rev. Lett. 110(14), 146404 (2013)
CrossRef
ADS
Google scholar
|
[55] |
R. Ghadimi, T. Sugimoto, and T. Tohyama, Majorana zero-energy mode and fractal structure in Fibonacci–Kitaev chain, J. Phys. Soc. Jpn. 86(11), 114707 (2017)
CrossRef
ADS
Google scholar
|
[56] |
I. C. Fulga, D. I. Pikulin, and T. A. Loring, Aperiodic weak topological superconductors, Phys. Rev. Lett. 116(25), 257002 (2016)
CrossRef
ADS
Google scholar
|
[57] |
R. Ghadimi, T. Sugimoto, K. Tanaka, and T. Tohyama, Topological superconductivity in quasicrystals, arXiv: 2006.06952 (2020)
|
[58] |
Y. Cao, Y. Zhang, Y. B. Liu, C. C. Liu, W. Q. Chen, and F. Yang, Kohn–Luttinger mechanism driven exotic topological superconductivity on the Penrose lattice, Phys. Rev. Lett. 125(1), 017002 (2020)
CrossRef
ADS
Google scholar
|
[59] |
Z. Li and Z. F. Wang, Quantum anomalous Hall effect in twisted bilayer graphene quasicrystal, Chin. Phys. B29(10), 107101 (2020)
CrossRef
ADS
Google scholar
|
[60] |
W. Yao, E. Wang, C. Bao, Y. Zhang, K. Zhang,
CrossRef
ADS
Google scholar
|
[61] |
A. Bansil, H. Lin, and T. Das, Topological band theory, Rev. Mod. Phys. 88(2), 021004 (2016)
CrossRef
ADS
Google scholar
|
[62] |
C. L. Kane and E. J. Mele, Z2 topological order and the quantum spin hall effect, Phys. Rev. Lett. 95(14), 146802 (2005)
CrossRef
ADS
Google scholar
|
[63] |
L. Fu and C. L. Kane, Topological insulators with inversion symmetry, Phys. Rev. B 76(4), 045302 (2007)
CrossRef
ADS
Google scholar
|
[64] |
A. Jagannathan, The Fibonacci quasicrystal: Case study of hidden dimensions and multifractality, arXiv: 2012.14744 (2020)
|
[65] |
E. Prodan, Virtual topological insulators with real quantized physics, Phys. Rev. B 91(24), 245104 (2015)
CrossRef
ADS
Google scholar
|
[66] |
D. Levine and P. J. Steinhardt, Quasicrystals: A new class of ordered structures, Phys. Rev. Lett. 53(26), 2477 (1984)
CrossRef
ADS
Google scholar
|
[67] |
N. Wang, H. Chen, and K. H. Kuo, Two-dimensional quasicrystal with eightfold rotational symmetry, Phys. Rev. Lett. 59(9), 1010 (1987)
CrossRef
ADS
Google scholar
|
[68] |
N. I. N. G. Wang, K. K. Fung, and K. H. Kuo, Symmetry study of the Mn–Si–Al octagonal quasicrystal by convergent beam electron diffraction, Appl. Phys. Lett. 52(25), 2120 (1988)
CrossRef
ADS
Google scholar
|
[69] |
R. Lifshitz, Quasicrystals: A matter of definition, Found. Phys. 33(12), 1703 (2003)
CrossRef
ADS
Google scholar
|
[70] |
P. Bak, Phenomenological theory of icosahedral incommensurate (“quasiperiodic”) order in Mn–Al alloys, Phys. Rev. Lett. 54(14), 1517 (1985)
CrossRef
ADS
Google scholar
|
[71] |
M. Duneau and A. Katz, Quasiperiodic patterns, Phys. Rev. Lett. 54(25), 2688 (1985)
CrossRef
ADS
Google scholar
|
[72] |
V. Elser and C. L. Henley, Crystal and quasicrystal structures in Al–Mn–Si alloys, Phys. Rev. Lett. 55(26), 2883 (1985)
CrossRef
ADS
Google scholar
|
[73] |
J. E. S. Socolar, T. C. Lubensky, and P. J. Steinhardt, Phonons, phasons, and dislocations in quasicrystals, Phys. Rev. B 34(5), 3345 (1986)
CrossRef
ADS
Google scholar
|
[74] |
S. J. Poon, Electronic properties of quasicrystals an experimental review, Adv. Phys. 41(4), 303 (1992)
CrossRef
ADS
Google scholar
|
[75] |
L. Guidoni, C. Triché, P. Verkerk, and G. Grynberg, Quasiperiodic optical lattices, Phys. Rev. Lett. 79(18), 3363 (1997)
CrossRef
ADS
Google scholar
|
[76] |
L. Guidoni, B. Dépret, A. Di Stefano, and P. Verkerk, Atomic diffusion in an optical quasicrystal with five-fold symmetry, Phys. Rev. A60(6), R4233 (1999)
CrossRef
ADS
Google scholar
|
[77] |
T. A. Corcovilos and J. Mittal, Two-dimensional optical quasicrystal potentials for ultracold atom experiments, Appl. Opt. 58(9), 2256 (2019)
CrossRef
ADS
Google scholar
|
[78] |
K. Viebahn, M. Sbroscia, E. Carter, J. C. Yu, and U. Schneider, Matter-wave diffraction from a quasicrystalline optical lattice, Phys. Rev. Lett. 122(11), 110404 (2019)
CrossRef
ADS
Google scholar
|
[79] |
M. Sbroscia, K. Viebahn, E. Carter, J.-C. Yu, A. Gaunt, and U. Schneider, Observing localization in a 2D quasicrystalline optical lattice, Phys. Rev. Lett. 125, 200604 (2020)
CrossRef
ADS
Google scholar
|
[80] |
W. Steurer and D. Sutter-Widmer, Photonic and phononic quasicrystals, J. Phys. D Appl. Phys. 40(13), R229 (2007)
CrossRef
ADS
Google scholar
|
[81] |
M. A. Kaliteevski, S. Brand, R. A. Abram, T. F. Krauss, R. DeLa Rue, and P. Millar, Two-dimensional penrosetiled photonic quasicrystals: From diffraction pattern to band structure, Nanotechnology11(4), 274 (2000)
CrossRef
ADS
Google scholar
|
[82] |
B. Freedman, G. Bartal, M. Segev, R. Lifshitz, and N. Demetrios, Wave and defect dynamics in nonlinear photonic quasicrystals, Nature440(7088), 1166 (2006)
CrossRef
ADS
Google scholar
|
[83] |
A. Jagannathan and M. Duneau, An eightfold optical quasicrystal with cold atoms, EPL 104(6), 66003 (2014)
CrossRef
ADS
Google scholar
|
[84] |
M. Verbin, O. Zilberberg, Y. Lahini, and E. Yaacov, Topological pumping over a photonic Fibonacci quasicrystal, Phys. Rev. B 91(6), 064201 (2015)
CrossRef
ADS
Google scholar
|
[85] |
M. Bayindir, E. Cubukcu, I. Bulu, and E. Ozbay, Photonic band-gap effect, localization, and waveguiding in the two-dimensional Penrose lattice, Phys. Rev. B 63(16), 161104 (2001)
CrossRef
ADS
Google scholar
|
[86] |
A. Della Villa, S. Enoch, G. Tayeb, V. Pierro, V. Galdi, and F. Capolino, Band gap formation and multiple scattering in photonic quasicrystals with a Penrose-type lattice, Phys. Rev. Lett. 94(18), 183903 (2005)
CrossRef
ADS
Google scholar
|
[87] |
P. Bordia, H. Lüschen, S. Scherg, S. Gopalakrishnan, M. Knap, U. Schneider, and I. Bloch, Probing slow relaxation and many-body localization in two-dimensional quasiperiodic systems, Phys. Rev. X 7(4), 041047 (2017)
CrossRef
ADS
Google scholar
|
[88] |
H. P. Lüschen, P. Bordia, S. Scherg, F. Alet, E. Altman, U. Schneider, and I. Bloch, Observation of slow dynamics near the many-body localization transition in one-dimensional quasiperiodic systems, Phys. Rev. Lett. 119(26), 260401 (2017)
CrossRef
ADS
Google scholar
|
[89] |
Y. S. Chan, C. T. Chan, and Z. Y. Liu, Photonic band gaps in two dimensional photonic quasicrystals, Phys. Rev. Lett. 80(5), 956 (1998)
CrossRef
ADS
Google scholar
|
[90] |
L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, Light transport through the band-edge states of Fibonacci quasicrystals, Phys. Rev. Lett. 90(5), 055501 (2003)
CrossRef
ADS
Google scholar
|
[91] |
M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, Complete photonic bandgaps in 12-fold symmetric quasicrystals, Nature404(6779), 740 (2000)
CrossRef
ADS
Google scholar
|
[92] |
I. Bloch, Ultracold quantum gases in optical lattices, Nat. Phys. 1(1), 23 (2005)
CrossRef
ADS
Google scholar
|
[93] |
T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, Topological photonics, Rev. Mod. Phys. 91(1), 015006 (2019)
CrossRef
ADS
Google scholar
|
[94] |
M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, Photonic floquet topological insulators, Nature496(7444), 196 (2013)
CrossRef
ADS
Google scholar
|
[95] |
O. Zilberberg, Topology in quasicrystals, arXiv: 2012. 03644 (2020)
|
[96] |
S. Aubry and G. André, Analyticity breaking and Anderson localization in incommensurate lattices, Ann. Isr. Phys. Soc. 3(133), 18 (1980)
|
[97] |
J. Zak, Magnetic translation group, Phys. Rev. 134(6A), A1602 (1964)
CrossRef
ADS
Google scholar
|
[98] |
I. Dana, Y. Avron, and J. Zak, Quantised Hall conductance in a perfect crystal, J. Phys. C Solid State Phys. 18(22), L679 (1985)
CrossRef
ADS
Google scholar
|
[99] |
D. N. Christodoulides, F. Lederer, and Y. Silberberg, Discretizing light behaviour in linear and nonlinear waveguide lattices, Nature424(6950), 817 (2003)
CrossRef
ADS
Google scholar
|
[100] |
A. Szameit, D. Blömer, J. Burghoff, T. Schreiber, T. Pertsch, S. Nolte, A. Tünnermann, and F. Lederer, Discrete nonlinear localization in femtosecond laser written waveguides in fused silica, Opt. Express13(26), 10552 (2005)
CrossRef
ADS
Google scholar
|
[101] |
Y. Lahini, R. Pugatch, F. Pozzi, M. Sorel, R. Morandotti, N. Davidson, and Y. Silberberg, Observation of a localization transition in quasiperiodic photonic lattices, Phys. Rev. Lett. 103, 013901 (2009)
CrossRef
ADS
Google scholar
|
[102] |
I. Petrides, H. M. Price, and O. Zilberberg, Sixdimensional quantum hall effect and three-dimensional topological pumps, Phys. Rev. B 98, 125431 (2018)
CrossRef
ADS
Google scholar
|
[103] |
T. Fukui, Y. Hatsugai, and H. Suzuki, Chern numbers in discretized Brillouin zone: Efficient method of computing (spin) Hall conductances, J. Phys. Soc. Jpn. 74(6), 1674 (2005)
CrossRef
ADS
Google scholar
|
[104] |
Y. Hatsugai, T. Fukui, and H. Aoki, Topological analysis of the quantum hall effect in graphene: Dirac–Fermi transition across van hove singularities and edge versus bulk quantum numbers, Phys. Rev. B 74(20), 205414 (2006)
CrossRef
ADS
Google scholar
|
[105] |
R. Bianco and R. Resta, Mapping topological order in coordinate space, Phys. Rev. B84(24), 241106 (2011)
CrossRef
ADS
Google scholar
|
[106] |
N. H. Lindner, G. Refael, and V. Galitski, Floquet topological insulator in semiconductor quantum wells, Nat. Phys. 7(6), 490 (2011)
CrossRef
ADS
Google scholar
|
[107] |
M. A. Bandres, M. C. Rechtsman, and M. Segev, Topological photonic quasicrystals: Fractal topological spectrum and protected transport, Phys. Rev. X6(1), 011016 (2016)
CrossRef
ADS
Google scholar
|
[108] |
Z. Gu, H. A. Fertig, and P. Daniel, Floquet spectrum and transport through an irradiated graphene ribbon, Phys. Rev. Lett. 107(21), 216601 (2011)
CrossRef
ADS
Google scholar
|
[109] |
D. Toniolo, On the equivalence of the Bott index and the Chern number on a torus, and the quantization of the Hall conductivity with a real space Kubo formula, arXiv: 1708.05912 (2017)
|
[110] |
F. D. M. Haldane, Model for a quantum hall effect without landau levels: Condensed-matter realization of the parity anomaly, Phys. Rev. Lett. 61(18), 2015 (1988)
CrossRef
ADS
Google scholar
|
[111] |
A. Kitaev, Anyons in an exactly solved model and beyond, Ann. Phys. 321(1), 2 (2006)
CrossRef
ADS
Google scholar
|
[112] |
M. Brzezińska, A. M. Cook, and T. Neupert, Topology in the Sierpiński–Hofstadter problem, Phys. Rev. B98(20), 205116 (2018)
CrossRef
ADS
Google scholar
|
[113] |
C. L. Kane and E. J. Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett. 95(22), 226801 (2005)
CrossRef
ADS
Google scholar
|
[114] |
B. A. Bernevig and S. C. Zhang, Quantum spin Hall effect, Phys. Rev. Lett. 96(10), 106802 (2006)
CrossRef
ADS
Google scholar
|
[115] |
J. Maciejko, T. L. Hughes, and S.-C. Zhang, The quantum spin Hall effect, Annu. Rev. Condens. Matter Phys. 2(1), 31 (2011)
CrossRef
ADS
Google scholar
|
[116] |
M. König, H. Buhmann, L. W. Molenkamp, T. Hughes, C. X. Liu, X. L. Qi, and S. C. Zhang, The quantum spin Hall effect: Theory and experiment, J. Phys. Soc. Jpn. 77(3), 031007 (2008)
CrossRef
ADS
Google scholar
|
[117] |
J. C. Slater and G. F. Koster, Simplified LCAO method for the periodic potential problem, Phys. Rev. 94(6), 1498 (1954)
CrossRef
ADS
Google scholar
|
[118] |
W. A. Harrison, Electronic structure and the properties of solids: the physics of the chemical bond, Courier Corporation, 2012
|
[119] |
D. N. Sheng, Z. Y. Weng, L. Sheng, and F. D. M. Haldane, Quantum spin-Hall effect and topologically invariant Chern numbers, Phys. Rev. Lett. 97(3), 036808 (2006)
CrossRef
ADS
Google scholar
|
[120] |
T. Fukui and Y. Hatsugai, Topological aspects of the quantum spin-Hall effect in graphene: Z2 topological order and spin Chern number, Phys. Rev. B75(12), 121403 (2007)
CrossRef
ADS
Google scholar
|
[121] |
E. Prodan, Robustness of the spin-Chern number, Phys. Rev. B 80(12), 125327 (2009)
CrossRef
ADS
Google scholar
|
[122] |
J. Bellissard, A. van Elst, and H. Schulz-Baldes, The noncommutative geometry of the quantum Hall effect, J. Math. Phys. 35(10), 5373 (1994)
CrossRef
ADS
Google scholar
|
[123] |
M. B. Hastings and T. A. Loring, Almost commuting matrices, localized Wannier functions, and the quantum hall effect, J. Math. Phys. 51(1), 015214 (2010)
CrossRef
ADS
Google scholar
|
[124] |
R. Exel and A. Terry, Invariants of almost commuting unitaries, J. Funct. Anal. 95(2), 364 (1991)
CrossRef
ADS
Google scholar
|
[125] |
H. Katsura and T. Koma, The noncommutative index theorem and the periodic table for disordered topological insulators and superconductors, J. Math. Phys. 59(3), 031903 (2018)
CrossRef
ADS
Google scholar
|
[126] |
J. C. Y. Teo, L. Fu, and C. L. Kane, Surface states and topological invariants in three-dimensional topological insulators: Application to Bi1−xSbx, Phys. Rev. B78(4), 045426 (2008)
CrossRef
ADS
Google scholar
|
[127] |
T. A. Loring, K-theory and pseudospectra for topological insulators, Ann. Phys. 356, 383 (2015)
|
[128] |
Z. Ringel, Y. E. Kraus, and A. Stern, Strong side of weak topological insulators, Phys. Rev. B86(4), 045102 (2012)
CrossRef
ADS
Google scholar
|
[129] |
I. C. Fulga, B. van Heck, J. M. Edge, and A. R. Akhmerov, Statistical topological insulators, Phys. Rev. B 89(15), 155424 (2014)
CrossRef
ADS
Google scholar
|
[130] |
A. Y. Kitaev, Unpaired Majorana fermions in quantum wires, Phys. Uspekhi44(10S), 131 (2001)
CrossRef
ADS
Google scholar
|
[131] |
N. Read and D. Green, Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect, Phys. Rev. B61(15), 10267 (2000)
CrossRef
ADS
Google scholar
|
[132] |
R. Jackiw and C. Rebbi, Solitons with fermion number 1/2, Phys. Rev. D 13(12), 3398 (1976)
CrossRef
ADS
Google scholar
|
[133] |
J. C. Y. Teo and T. L. Hughes, Existence of majoranafermion bound states on disclinations and the classification of topological crystalline superconductors in two dimensions, Phys. Rev. Lett.111(4), 047006 (2013)
CrossRef
ADS
Google scholar
|
[134] |
M. Baake and U. Grimm, Aperiodic Order, Vol. 1, Cambridge University Press, 2013
|
/
〈 | 〉 |